Browse Source

Merge pull request #707 from Lesords/feat/hm1055

feat: add camera drivers for hm0360 and hm1055
pull/759/head
Me No Dev 1 week ago committed by GitHub
parent
commit
5fe2266536
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 2
      CMakeLists.txt
  2. 16
      Kconfig
  3. 2
      README.md
  4. 12
      driver/esp_camera.c
  5. 7
      driver/include/sensor.h
  6. 2
      driver/sensor.c
  7. 453
      sensors/hm0360.c
  8. 829
      sensors/hm1055.c
  9. 27
      sensors/private_include/hm0360.h
  10. 150
      sensors/private_include/hm0360_regs.h
  11. 549
      sensors/private_include/hm0360_settings.h
  12. 27
      sensors/private_include/hm1055.h
  13. 120
      sensors/private_include/hm1055_regs.h
  14. 697
      sensors/private_include/hm1055_settings.h
  15. 2
      target/esp32s3/ll_cam.c

2
CMakeLists.txt

@ -41,6 +41,8 @@ if(IDF_TARGET STREQUAL "esp32" OR IDF_TARGET STREQUAL "esp32s2" OR IDF_TARGET ST @@ -41,6 +41,8 @@ if(IDF_TARGET STREQUAL "esp32" OR IDF_TARGET STREQUAL "esp32s2" OR IDF_TARGET ST
sensors/sc030iot.c
sensors/sc031gs.c
sensors/mega_ccm.c
sensors/hm1055.c
sensors/hm0360.c
)
list(APPEND priv_include_dirs

16
Kconfig

@ -116,6 +116,22 @@ menu "Camera configuration" @@ -116,6 +116,22 @@ menu "Camera configuration"
SC031GS is a global shutter CMOS sensor with high frame rate and single-frame HDR.
Enable this option if you want to use the SC031GS.
Disable this option to save memory.
config HM1055_SUPPORT
bool "Support HM1055 VGA"
default y
help
Enable this option if you want to use the HM1055.
Disable this option to save memory.
config HM0360_SUPPORT
bool "Support HM0360 VGA"
default y
help
Enable this option if you want to use the HM0360.
Disable this option to save memory.
config SCCB_I2C_PORT
config MEGA_CCM_SUPPORT
bool "Support MEGA CCM 5MP"

2
README.md

@ -29,6 +29,8 @@ This repository hosts ESP32 series Soc compatible driver for image sensors. Addi @@ -29,6 +29,8 @@ This repository hosts ESP32 series Soc compatible driver for image sensors. Addi
| SC101IOT| 1280 x 720 | color | YUV/YCbCr422<br/>Raw RGB | 1/4.2" |
| SC030IOT| 640 x 480 | color | YUV/YCbCr422<br/>RAW Bayer | 1/6.5" |
| SC031GS | 640 x 480 | monochrome | RAW MONO<br/>Grayscale | 1/6" |
| HM0360 | 656 x 496 | monochrome | RAW MONO<br/>Grayscale | 1/6" |
| HM1055 | 1280 x 720 | color | 8/10-bit Raw<br/>YUV/YCbCr422<br/>RGB565/555/444 | 1/6" |
## Important to Remember

12
driver/esp_camera.c

@ -72,6 +72,12 @@ @@ -72,6 +72,12 @@
#if CONFIG_MEGA_CCM_SUPPORT
#include "mega_ccm.h"
#endif
#if CONFIG_HM1055_SUPPORT
#include "hm1055.h"
#endif
#if CONFIG_HM0360_SUPPORT
#include "hm0360.h"
#endif
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
@ -149,6 +155,12 @@ static const sensor_func_t g_sensors[] = { @@ -149,6 +155,12 @@ static const sensor_func_t g_sensors[] = {
#if CONFIG_MEGA_CCM_SUPPORT
{mega_ccm_detect, mega_ccm_init},
#endif
#if CONFIG_HM1055_SUPPORT
{hm1055_detect, hm1055_init},
#endif
#if CONFIG_HM0360_SUPPORT
{hm0360_detect, hm0360_init},
#endif
};
static esp_err_t camera_probe(const camera_config_t *config, camera_model_t *out_camera_model)

7
driver/include/sensor.h

@ -32,6 +32,8 @@ typedef enum { @@ -32,6 +32,8 @@ typedef enum {
SC030IOT_PID = 0x9a46,
SC031GS_PID = 0x0031,
MEGA_CCM_PID =0x039E,
HM1055_PID = 0x0955,
HM0360_PID = 0x0360
} camera_pid_t;
typedef enum {
@ -50,6 +52,8 @@ typedef enum { @@ -50,6 +52,8 @@ typedef enum {
CAMERA_SC030IOT,
CAMERA_SC031GS,
CAMERA_MEGA_CCM,
CAMERA_HM1055,
CAMERA_HM0360,
CAMERA_MODEL_MAX,
CAMERA_NONE,
} camera_model_t;
@ -70,6 +74,8 @@ typedef enum { @@ -70,6 +74,8 @@ typedef enum {
SC030IOT_SCCB_ADDR = 0x68,// 0xd0 >> 1
SC031GS_SCCB_ADDR = 0x30,
MEGA_CCM_SCCB_ADDR = 0x1F, // 0x3E >> 1
HM1055_SCCB_ADDR = 0x24,
HM0360_SCCB_ADDR = 0x12,
} camera_sccb_addr_t;
typedef enum {
@ -82,6 +88,7 @@ typedef enum { @@ -82,6 +88,7 @@ typedef enum {
PIXFORMAT_RAW, // RAW
PIXFORMAT_RGB444, // 3BP2P/RGB444
PIXFORMAT_RGB555, // 3BP2P/RGB555
PIXFORMAT_RAW8, // RAW 8-bit
} pixformat_t;
typedef enum {

2
driver/sensor.c

@ -18,6 +18,8 @@ const camera_sensor_info_t camera_sensor[CAMERA_MODEL_MAX] = { @@ -18,6 +18,8 @@ const camera_sensor_info_t camera_sensor[CAMERA_MODEL_MAX] = {
{CAMERA_SC030IOT, "SC030IOT", SC030IOT_SCCB_ADDR, SC030IOT_PID, FRAMESIZE_VGA, false},
{CAMERA_SC031GS, "SC031GS", SC031GS_SCCB_ADDR, SC031GS_PID, FRAMESIZE_VGA, false},
{CAMERA_MEGA_CCM, "MEGA_CCM", MEGA_CCM_SCCB_ADDR, MEGA_CCM_PID, FRAMESIZE_5MP, true},
{CAMERA_HM1055, "HM1055", HM1055_SCCB_ADDR, HM1055_PID, FRAMESIZE_HD, false},
{CAMERA_HM0360, "HM0360", HM0360_SCCB_ADDR, HM0360_PID, FRAMESIZE_VGA, false},
};
const resolution_info_t resolution[FRAMESIZE_INVALID] = {

453
sensors/hm0360.c

@ -0,0 +1,453 @@ @@ -0,0 +1,453 @@
/*
*
* HM0360 driver.
*
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "sccb.h"
#include "xclk.h"
#include "hm0360.h"
#include "hm0360_regs.h"
#include "hm0360_settings.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#else
#include "esp_log.h"
static const char *TAG = "HM0360";
#endif
// #define REG_DEBUG_ON
static int _set_pll(sensor_t *sensor, int bypass, int multiplier, int sys_div, int root_2x, int pre_div, int seld5, int pclk_manual, int pclk_div);
static int read_reg(uint8_t slv_addr, const uint16_t reg)
{
int ret = SCCB_Read16(slv_addr, reg);
#ifdef REG_DEBUG_ON
if (ret < 0) {
ESP_LOGE(TAG, "READ REG 0x%04x FAILED: %d", reg, ret);
}
#endif
return ret;
}
static int check_reg_mask(uint8_t slv_addr, uint16_t reg, uint8_t mask)
{
return (read_reg(slv_addr, reg) & mask) == mask;
}
static int read_reg16(uint8_t slv_addr, const uint16_t reg)
{
int ret = 0, ret2 = 0;
ret = read_reg(slv_addr, reg);
if (ret >= 0) {
ret = (ret & 0xFF) << 8;
ret2 = read_reg(slv_addr, reg + 1);
if (ret2 < 0) {
ret = ret2;
} else {
ret |= ret2 & 0xFF;
}
}
return ret;
}
static int write_reg(uint8_t slv_addr, const uint16_t reg, uint8_t value)
{
int ret = 0;
#ifndef REG_DEBUG_ON
ret = SCCB_Write16(slv_addr, reg, value);
#else
int old_value = read_reg(slv_addr, reg);
if (old_value < 0) {
return old_value;
}
if ((uint8_t)old_value != value) {
ESP_LOGD(TAG, "NEW REG 0x%04x: 0x%02x to 0x%02x", reg, (uint8_t)old_value, value);
ret = SCCB_Write16(slv_addr, reg, value);
} else {
ESP_LOGD(TAG, "OLD REG 0x%04x: 0x%02x", reg, (uint8_t)old_value);
ret = SCCB_Write16(slv_addr, reg, value); // maybe not?
}
if (ret < 0) {
ESP_LOGE(TAG, "WRITE REG 0x%04x FAILED: %d", reg, ret);
}
#endif
return ret;
}
static int set_reg_bits(uint8_t slv_addr, uint16_t reg, uint8_t offset, uint8_t mask, uint8_t value)
{
int ret = 0;
uint8_t c_value, new_value;
ret = read_reg(slv_addr, reg);
if (ret < 0) {
return ret;
}
c_value = ret;
new_value = (c_value & ~(mask << offset)) | ((value & mask) << offset);
ret = write_reg(slv_addr, reg, new_value);
return ret;
}
static int write_regs(uint8_t slv_addr, const uint16_t (*regs)[2])
{
int i = 0, ret = 0;
while (!ret && regs[i][0] != REGLIST_TAIL) {
if (regs[i][0] == REG_DLY) {
vTaskDelay(regs[i][1] / portTICK_PERIOD_MS);
} else {
ret = write_reg(slv_addr, regs[i][0], regs[i][1]);
}
i++;
}
return ret;
}
static int write_reg16(uint8_t slv_addr, const uint16_t reg, uint16_t value)
{
if (write_reg(slv_addr, reg, value >> 8) || write_reg(slv_addr, reg + 1, value)) {
return -1;
}
return 0;
}
static int write_addr_reg(uint8_t slv_addr, const uint16_t reg, uint16_t x_value, uint16_t y_value)
{
if (write_reg16(slv_addr, reg, x_value) || write_reg16(slv_addr, reg + 2, y_value)) {
return -1;
}
return 0;
}
#define write_reg_bits(slv_addr, reg, mask, enable) set_reg_bits(slv_addr, reg, 0, mask, (enable) ? (mask) : 0)
static int reset(sensor_t *sensor)
{
vTaskDelay(100 / portTICK_PERIOD_MS);
int ret = 0;
// Software Reset: clear all registers and reset them to their default values
ret = write_reg(sensor->slv_addr, SW_RESET, 0x00);
if (ret) {
ESP_LOGE(TAG, "Software Reset FAILED!");
return ret;
}
vTaskDelay(100 / portTICK_PERIOD_MS);
ret = write_regs(sensor->slv_addr, sensor_default_regs);
if (ret == 0) {
ESP_LOGD(TAG, "Camera defaults loaded");
vTaskDelay(100 / portTICK_PERIOD_MS);
}
return ret;
}
static int set_pixformat(sensor_t *sensor, pixformat_t pixformat)
{
int ret = 0;
sensor->pixformat = pixformat;
switch (pixformat) {
case PIXFORMAT_GRAYSCALE:
break;
default:
ESP_LOGE(TAG, "Only support GRAYSCALE");
return -1;
}
return ret;
}
static int set_framesize(sensor_t *sensor, framesize_t framesize)
{
int ret = 0;
sensor->status.framesize = framesize;
ret = write_regs(sensor->slv_addr, sensor_default_regs);
if (framesize == FRAMESIZE_QQVGA) {
ESP_LOGI(TAG, "Set FRAMESIZE_QQVGA");
ret |= write_regs(sensor->slv_addr, sensor_framesize_QQVGA);
ret |= set_reg_bits(sensor->slv_addr, 0x3024, 0, 0x01, 1);
} else if (framesize == FRAMESIZE_QVGA) {
ESP_LOGI(TAG, "Set FRAMESIZE_QVGA");
ret |= write_regs(sensor->slv_addr, sensor_framesize_QVGA);
ret |= set_reg_bits(sensor->slv_addr, 0x3024, 0, 0x01, 1);
} else if (framesize == FRAMESIZE_VGA) {
ESP_LOGI(TAG, "Set FRAMESIZE_VGA");
ret |= set_reg_bits(sensor->slv_addr, 0x3024, 0, 0x01, 0);
} else {
ESP_LOGI(TAG, "Dont suppost this size, Set FRAMESIZE_VGA");
ret |= set_reg_bits(sensor->slv_addr, 0x3024, 0, 0x01, 0);
}
if (ret == 0) {
_set_pll(sensor, 0, 0, 0, 0, 0, 0, 0, 0);
ret |= write_reg(sensor->slv_addr, 0x0104, 0x01);
}
return ret;
}
static int set_hmirror(sensor_t *sensor, int enable)
{
if (set_reg_bits(sensor->slv_addr, 0x0101, 0, 0x01, enable)) {
return -1;
}
ESP_LOGD(TAG, "Set h-mirror to: %d", enable);
return 0;
}
static int set_vflip(sensor_t *sensor, int enable)
{
if (set_reg_bits(sensor->slv_addr, 0x0101, 1, 0x01, enable)) {
return -1;
}
ESP_LOGD(TAG, "Set v-flip to: %d", enable);
return 0;
}
static int set_colorbar(sensor_t *sensor, int enable)
{
if (set_reg_bits(sensor->slv_addr, 0x0601, 0, 0x01, enable)) {
return -1;
}
ESP_LOGD(TAG, "Set color-bar to: %d", enable);
return 0;
}
static int set_exposure_ctrl(sensor_t *sensor, int enable)
{
if (set_reg_bits(sensor->slv_addr, 0x2000, 0, 0x01, enable)) {
return -1;
}
ESP_LOGD(TAG, "Set exposure to: %d", enable);
return 0;
}
static int set_brightness(sensor_t *sensor, int level)
{
uint8_t ae_mean;
switch (level) {
case 0:
ae_mean = 60;
break;
case 1:
ae_mean = 80;
break;
case 2:
ae_mean = 100;
break;
case 3:
ae_mean = 127;
break;
default:
ae_mean = 80;
}
return write_reg(sensor->slv_addr, AE_TARGET_MEAN, ae_mean);
}
static int get_reg(sensor_t *sensor, int reg, int mask)
{
int ret = 0, ret2 = 0;
if (mask > 0xFF) {
ret = read_reg16(sensor->slv_addr, reg);
if (ret >= 0 && mask > 0xFFFF) {
ret2 = read_reg(sensor->slv_addr, reg + 2);
if (ret2 >= 0) {
ret = (ret << 8) | ret2;
} else {
ret = ret2;
}
}
} else {
ret = read_reg(sensor->slv_addr, reg);
}
if (ret > 0) {
ret &= mask;
}
return ret;
}
static int set_reg(sensor_t *sensor, int reg, int mask, int value)
{
int ret = 0, ret2 = 0;
if (mask > 0xFF) {
ret = read_reg16(sensor->slv_addr, reg);
if (ret >= 0 && mask > 0xFFFF) {
ret2 = read_reg(sensor->slv_addr, reg + 2);
if (ret2 >= 0) {
ret = (ret << 8) | ret2;
} else {
ret = ret2;
}
}
} else {
ret = read_reg(sensor->slv_addr, reg);
}
if (ret < 0) {
return ret;
}
value = (ret & ~mask) | (value & mask);
if (mask > 0xFFFF) {
ret = write_reg16(sensor->slv_addr, reg, value >> 8);
if (ret >= 0) {
ret = write_reg(sensor->slv_addr, reg + 2, value & 0xFF);
}
} else if (mask > 0xFF) {
ret = write_reg16(sensor->slv_addr, reg, value);
} else {
ret = write_reg(sensor->slv_addr, reg, value);
}
return ret;
}
static int set_xclk(sensor_t *sensor, int timer, int xclk)
{
int ret = 0;
sensor->xclk_freq_hz = xclk * 1000000U;
ret = xclk_timer_conf(timer, sensor->xclk_freq_hz);
if (ret == 0) {
ESP_LOGD(TAG, "Set xclk to %d", xclk);
}
return ret;
}
static int _set_pll(sensor_t *sensor, int bypass, int multiplier, int sys_div, int root_2x, int pre_div, int seld5, int pclk_manual, int pclk_div)
{
uint8_t value = 0;
uint8_t pll_cfg = 0;
if (sensor->xclk_freq_hz <= 6000000) {
value = 0x03;
} else if (sensor->xclk_freq_hz <= 12000000) {
value = 0x02;
} else if (sensor->xclk_freq_hz <= 18000000) {
value = 0x01;
} else { // max is 48000000
value = 0x00;
}
pll_cfg = read_reg(sensor->slv_addr, PLL1CFG);
return write_reg(sensor->slv_addr, PLL1CFG, (pll_cfg & 0xFC) | value);
}
static int set_dummy(sensor_t *sensor, int val)
{
ESP_LOGW(TAG, "Unsupported");
return -1;
}
static int set_gainceiling_dummy(sensor_t *sensor, gainceiling_t val)
{
ESP_LOGW(TAG, "Unsupported");
return -1;
}
static int init_status(sensor_t *sensor)
{
(void) write_addr_reg;
sensor->status.brightness = 0;
sensor->status.contrast = 0;
sensor->status.saturation = 0;
sensor->status.sharpness = 0;
sensor->status.denoise = 0;
sensor->status.ae_level = 0;
sensor->status.awb = 0;
sensor->status.aec = 0;
sensor->status.hmirror = check_reg_mask(sensor->slv_addr, 0x101, 0x01);
sensor->status.vflip = check_reg_mask(sensor->slv_addr, 0x101, 0x02);
sensor->status.lenc = 0;
sensor->status.awb_gain = 0;
sensor->status.agc_gain = 0;
sensor->status.aec_value = 0;
return 0;
}
int hm0360_detect(int slv_addr, sensor_id_t *id)
{
if (HM1055_SCCB_ADDR == slv_addr) {
uint8_t h = SCCB_Read16(slv_addr, MODEL_ID_H);
uint8_t l = SCCB_Read16(slv_addr, MODEL_ID_L);
uint16_t PID = (h << 8) | l;
if (HM0360_PID == PID) {
id->PID = PID;
id->VER = SCCB_Read16(slv_addr, SILICON_REV);
return PID;
} else {
ESP_LOGD(TAG, "Mismatch PID=0x%x", PID);
}
}
return 0;
}
int hm0360_init(sensor_t *sensor)
{
sensor->reset = reset;
sensor->set_pixformat = set_pixformat;
sensor->set_framesize = set_framesize;
sensor->set_contrast = set_dummy;
sensor->set_brightness = set_brightness;
sensor->set_saturation = set_dummy;
sensor->set_sharpness = set_dummy;
sensor->set_gainceiling = set_gainceiling_dummy;
sensor->set_quality = set_dummy;
sensor->set_colorbar = set_colorbar;
sensor->set_gain_ctrl = set_dummy;
sensor->set_exposure_ctrl = set_exposure_ctrl;
sensor->set_whitebal = set_dummy;
sensor->set_hmirror = set_hmirror;
sensor->set_vflip = set_vflip;
sensor->init_status = init_status;
sensor->set_aec2 = set_dummy;
sensor->set_aec_value = set_dummy;
sensor->set_special_effect = set_dummy;
sensor->set_wb_mode = set_dummy;
sensor->set_ae_level = set_dummy;
sensor->set_dcw = set_dummy;
sensor->set_bpc = set_dummy;
sensor->set_wpc = set_dummy;
sensor->set_agc_gain = set_dummy;
sensor->set_raw_gma = set_dummy;
sensor->set_lenc = set_dummy;
sensor->set_denoise = set_dummy;
sensor->get_reg = get_reg;
sensor->set_reg = set_reg;
sensor->set_res_raw = NULL;
sensor->set_pll = _set_pll;
sensor->set_xclk = set_xclk;
return 0;
}

829
sensors/hm1055.c

@ -0,0 +1,829 @@ @@ -0,0 +1,829 @@
/*
*
* HM1055 driver.
*
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "sccb.h"
#include "xclk.h"
#include "hm1055.h"
#include "hm1055_regs.h"
#include "hm1055_settings.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#else
#include "esp_log.h"
static const char *TAG = "HM1055";
#endif
// #define REG_DEBUG_ON
static int _set_pll(sensor_t *sensor, int bypass, int multiplier, int sys_div, int root_2x, int pre_div, int seld5, int pclk_manual, int pclk_div);
static int read_reg(uint8_t slv_addr, const uint16_t reg)
{
int ret = SCCB_Read16(slv_addr, reg);
#ifdef REG_DEBUG_ON
if (ret < 0)
{
ESP_LOGE(TAG, "READ REG 0x%04x FAILED: %d", reg, ret);
}
#endif
return ret;
}
static int check_reg_mask(uint8_t slv_addr, uint16_t reg, uint8_t mask)
{
return (read_reg(slv_addr, reg) & mask) == mask;
}
static int read_reg16(uint8_t slv_addr, const uint16_t reg)
{
int ret = 0, ret2 = 0;
ret = read_reg(slv_addr, reg);
if (ret >= 0)
{
ret = (ret & 0xFF) << 8;
ret2 = read_reg(slv_addr, reg + 1);
if (ret2 < 0)
{
ret = ret2;
}
else
{
ret |= ret2 & 0xFF;
}
}
return ret;
}
static int write_reg(uint8_t slv_addr, const uint16_t reg, uint8_t value)
{
int ret = 0;
#ifndef REG_DEBUG_ON
ret = SCCB_Write16(slv_addr, reg, value);
#else
int old_value = read_reg(slv_addr, reg);
if (old_value < 0)
{
return old_value;
}
if ((uint8_t)old_value != value)
{
ESP_LOGD(TAG, "NEW REG 0x%04x: 0x%02x to 0x%02x", reg, (uint8_t)old_value, value);
ret = SCCB_Write16(slv_addr, reg, value);
}
else
{
ESP_LOGD(TAG, "OLD REG 0x%04x: 0x%02x", reg, (uint8_t)old_value);
ret = SCCB_Write16(slv_addr, reg, value); // maybe not?
}
if (ret < 0)
{
ESP_LOGE(TAG, "WRITE REG 0x%04x FAILED: %d", reg, ret);
}
#endif
return ret;
}
static int set_reg_bits(uint8_t slv_addr, uint16_t reg, uint8_t offset, uint8_t mask, uint8_t value)
{
int ret = 0;
uint8_t c_value, new_value;
ret = read_reg(slv_addr, reg);
if (ret < 0)
{
return ret;
}
c_value = ret;
new_value = (c_value & ~(mask << offset)) | ((value & mask) << offset);
ret = write_reg(slv_addr, reg, new_value);
return ret;
}
static int write_regs(uint8_t slv_addr, const uint16_t (*regs)[2])
{
int i = 0, ret = 0;
while (!ret && regs[i][0] != REGLIST_TAIL)
{
if (regs[i][0] == REG_DLY)
{
vTaskDelay(regs[i][1] / portTICK_PERIOD_MS);
}
else
{
ret = write_reg(slv_addr, regs[i][0], regs[i][1]);
}
i++;
}
return ret;
}
static int write_reg16(uint8_t slv_addr, const uint16_t reg, uint16_t value)
{
if (write_reg(slv_addr, reg, value >> 8) || write_reg(slv_addr, reg + 1, value))
{
return -1;
}
return 0;
}
static int write_addr_reg(uint8_t slv_addr, const uint16_t reg, uint16_t x_value, uint16_t y_value)
{
if (write_reg16(slv_addr, reg, x_value) || write_reg16(slv_addr, reg + 2, y_value))
{
return -1;
}
return 0;
}
#define write_reg_bits(slv_addr, reg, mask, enable) set_reg_bits(slv_addr, reg, 0, mask, (enable) ? (mask) : 0)
static int set_ae_level(sensor_t *sensor, int level);
static int reset(sensor_t *sensor)
{
vTaskDelay(100 / portTICK_PERIOD_MS);
int ret = 0;
// Software Reset: clear all registers and reset them to their default values
ret = write_reg(sensor->slv_addr, SFTRST, 0x55);
if (ret)
{
ESP_LOGE(TAG, "Software Reset FAILED!");
return ret;
}
vTaskDelay(100 / portTICK_PERIOD_MS);
ret = write_regs(sensor->slv_addr, sensor_default_regs);
if (ret == 0)
{
ESP_LOGD(TAG, "Camera defaults loaded");
vTaskDelay(100 / portTICK_PERIOD_MS);
set_ae_level(sensor, 0);
}
return ret;
}
static int set_pixformat(sensor_t *sensor, pixformat_t pixformat)
{
int ret = 0;
switch (pixformat)
{
case PIXFORMAT_RAW:
ret = write_reg(sensor->slv_addr, PORTCTRL, 0x20);
break;
case PIXFORMAT_YUV422:
ret = write_reg(sensor->slv_addr, PORTCTRL, 0x30);
break;
case PIXFORMAT_RGB565:
case PIXFORMAT_RGB888:
ret = write_reg(sensor->slv_addr, PORTCTRL, 0x40);
break;
case PIXFORMAT_RGB555:
ret = write_reg(sensor->slv_addr, PORTCTRL, 0x50);
break;
case PIXFORMAT_RGB444:
ret = write_reg(sensor->slv_addr, PORTCTRL, 0x60);
break;
default:
break;
}
if (ret == 0)
{
sensor->pixformat = pixformat;
ESP_LOGD(TAG, "Set pixformat: %d", pixformat);
}
return ret;
}
static int set_framesize(sensor_t *sensor, framesize_t framesize)
{
int ret = 0;
sensor->status.framesize = framesize;
ESP_LOGD(TAG, "Set framesize: %d", framesize);
ret = write_regs(sensor->slv_addr, sensor_default_regs);
if (framesize == FRAMESIZE_QQVGA)
{
ESP_LOGD(TAG, "Set FRAMESIZE_QQVGA");
ret = write_regs(sensor->slv_addr, sensor_framesize_QQVGA);
}
else if (framesize == FRAMESIZE_QCIF)
{
ESP_LOGD(TAG, "Set FRAMESIZE_QCIF");
ret = write_regs(sensor->slv_addr, sensor_framesize_QCIF);
}
else if (framesize == FRAMESIZE_240X240)
{
ESP_LOGD(TAG, "Set FRAMESIZE_240X240");
ret = write_regs(sensor->slv_addr, sensor_framesize_240X240);
}
else if (framesize == FRAMESIZE_QVGA)
{
ESP_LOGD(TAG, "Set FRAMESIZE_QVGA");
ret = write_regs(sensor->slv_addr, sensor_framesize_QVGA);
}
else if (framesize == FRAMESIZE_CIF)
{
ESP_LOGD(TAG, "Set FRAMESIZE_CIF");
ret = write_regs(sensor->slv_addr, sensor_framesize_CIF);
}
else if (framesize == FRAMESIZE_VGA)
{
ESP_LOGD(TAG, "Set FRAMESIZE_VGA");
ret = write_regs(sensor->slv_addr, sensor_framesize_VGA);
}
else if (framesize == FRAMESIZE_SVGA)
{
ESP_LOGD(TAG, "Set FRAMESIZE_SVGA");
ret = write_regs(sensor->slv_addr, sensor_framesize_SVGA);
}
else if (framesize == FRAMESIZE_HD)
{
ESP_LOGD(TAG, "Set FRAMESIZE_HD");
ret = write_regs(sensor->slv_addr, sensor_framesize_HD);
ret = _set_pll(sensor, 0, 288, 1, 0, 0, 0, 1, 16);
}
else
{
ESP_LOGD(TAG, "Dont suppost this size, Set FRAMESIZE_VGA");
ret = write_regs(sensor->slv_addr, sensor_framesize_VGA);
}
if (ret == 0)
{
ret = write_reg(sensor->slv_addr, CMU, 0x01) || write_reg(sensor->slv_addr, TGRDCFG, 0x01);
}
return ret;
}
static int set_hmirror(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, RDCFG, 0x02, enable);
if (ret == 0)
{
ESP_LOGD(TAG, "Set hmirror to: %d", enable);
sensor->status.hmirror = enable;
}
return ret;
}
static int set_vflip(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, RDCFG, 0x01, enable);
if (ret == 0)
{
ESP_LOGD(TAG, "Set vflip to: %d", enable);
sensor->status.vflip = enable;
}
return ret;
}
static int set_quality(sensor_t *sensor, int qs)
{
return 0;
}
static int set_colorbar(sensor_t *sensor, int enable)
{
return 0;
}
static int set_gain_ctrl(sensor_t *sensor, int enable)
{
return 0;
}
static int set_exposure_ctrl(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, AEWBCFG, 0x01, enable);
if (ret == 0)
{
ESP_LOGD(TAG, "Set aec to: %d", enable);
sensor->status.aec = enable;
}
return ret;
}
static int set_whitebal(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, AEWBCFG, 0x02, enable);
if (ret == 0)
{
ESP_LOGD(TAG, "Set awb to: %d", enable);
sensor->status.awb = enable;
}
return ret;
}
// Gamma enable
static int set_raw_gma_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, ISPCTRL1, 0x04, enable);
if (ret == 0)
{
ESP_LOGD(TAG, "Set raw_gma to: %d", enable);
sensor->status.raw_gma = enable;
}
return 0;
}
static int set_lenc_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, ISPCTRL3, 0x40, enable);
if (ret == 0)
{
ESP_LOGD(TAG, "Set lenc to: %d", enable);
sensor->status.lenc = enable;
}
return -1;
}
// real gain
static int set_agc_gain(sensor_t *sensor, int gain)
{
int ret = 0;
if (gain < 0 || gain > 7)
{
return -1;
}
ret = write_reg(sensor->slv_addr, AGAIN, gain);
if (ret == 0)
{
ESP_LOGD(TAG, "Set gain to: %d", gain);
sensor->status.agc_gain = gain;
}
return 0;
}
static int set_aec_value(sensor_t *sensor, int value)
{
int ret = 0;
ret = write_reg(sensor->slv_addr, AETARGM, value);
if (ret == 0)
{
ESP_LOGD(TAG, "Set aec_value to: %d", value);
sensor->status.aec_value = value;
}
return 0;
}
static int set_ae_level(sensor_t *sensor, int level)
{
int ret = 0;
if (level < -5 || level > 5)
{
return -1;
}
uint8_t target_level = ((level + 5) * 10) + 5;
uint8_t upper = target_level * 27 / 25;
uint8_t lower = target_level * 23 / 25;
ret = write_reg(sensor->slv_addr, AETARGU, upper) || write_reg(sensor->slv_addr, AETARGL, lower);
if (ret == 0)
{
ESP_LOGD(TAG, "Set ae_level to: %d", level);
sensor->status.ae_level = level;
}
return 0;
}
static int set_brightness(sensor_t *sensor, int level)
{
int ret = 0;
uint8_t ispctrl5 = read_reg(sensor->slv_addr, ISPCTRL5);
uint8_t brightness = 0;
switch (level)
{
case 3:
brightness = 0xFF;
break;
case 2:
brightness = 0xBA;
break;
case 1:
brightness = 0x96;
break;
case 0:
brightness = 0x72;
break;
case -1:
brightness = 0x48;
break;
case -2:
brightness = 0x24;
break;
case -3:
brightness = 0x00;
break;
default: // 0
break;
}
ispctrl5 |= 0x40; // enable brightness
ret = write_reg(sensor->slv_addr, ISPCTRL5, ispctrl5);
ret = write_reg(sensor->slv_addr, BRIGHT, brightness);
if (ret != 0)
{
ESP_LOGD(TAG, "Set brightness to: %d", level);
sensor->status.brightness = level;
}
return ret;
}
static int set_contrast(sensor_t *sensor, int level)
{
int ret = 0;
uint8_t ispctrl5 = read_reg(sensor->slv_addr, ISPCTRL5);
ispctrl5 |= 0x80; // enable contrast
ret = write_reg(sensor->slv_addr, ISPCTRL5, ispctrl5);
ret = write_reg(sensor->slv_addr, ACONTQ, (level * 0x20) & 0xFF);
if (ret == 0)
{
ESP_LOGD(TAG, "Set contrast to: %d", level);
sensor->status.contrast = level;
}
return ret;
}
static int set_saturation(sensor_t *sensor, int level)
{
int ret = 0;
ret = write_reg(sensor->slv_addr, SAT, (level * 0x20) + 0x4A);
if (ret == 0)
{
ESP_LOGD(TAG, "Set saturation to: %d", level);
sensor->status.saturation = level;
}
return ret;
}
static int get_sharpness(sensor_t *sensor)
{
int ret = 0;
int level = 0;
ret = read_reg(sensor->slv_addr, EDGE);
level = (ret - 0x60) / 0x20;
ESP_LOGD(TAG, "Get sharpness: %d", level);
return level;
}
static int set_sharpness(sensor_t *sensor, int level)
{
int ret = 0;
ret = write_reg(sensor->slv_addr, EDGE, (level * 0x20) + 0x60);
if (ret == 0)
{
ESP_LOGD(TAG, "Set sharpness to: %d", level);
sensor->status.sharpness = level;
}
return ret;
}
static int get_denoise(sensor_t *sensor)
{
int ret = 0;
int level = 0;
ret = read_reg(sensor->slv_addr, YDN);
level = (ret - 0x07) / 2;
ESP_LOGD(TAG, "Get denoise: %d", level);
return level;
}
static int set_denoise(sensor_t *sensor, int level)
{
int ret = 0;
uint8_t ispctrl5 = read_reg(sensor->slv_addr, ISPCTRL5);
ispctrl5 |= 0x20; // enable denoise
ret = write_reg(sensor->slv_addr, ISPCTRL5, ispctrl5);
ret = write_reg(sensor->slv_addr, YDN, (level * 2) + 0x07);
if (ret == 0)
{
ESP_LOGD(TAG, "Set denoise to: %d", level);
sensor->status.denoise = level;
}
return ret;
}
static int get_reg(sensor_t *sensor, int reg, int mask)
{
int ret = 0, ret2 = 0;
if (mask > 0xFF)
{
ret = read_reg16(sensor->slv_addr, reg);
if (ret >= 0 && mask > 0xFFFF)
{
ret2 = read_reg(sensor->slv_addr, reg + 2);
if (ret2 >= 0)
{
ret = (ret << 8) | ret2;
}
else
{
ret = ret2;
}
}
}
else
{
ret = read_reg(sensor->slv_addr, reg);
}
if (ret > 0)
{
ret &= mask;
}
return ret;
}
static int set_reg(sensor_t *sensor, int reg, int mask, int value)
{
int ret = 0, ret2 = 0;
if (mask > 0xFF)
{
ret = read_reg16(sensor->slv_addr, reg);
if (ret >= 0 && mask > 0xFFFF)
{
ret2 = read_reg(sensor->slv_addr, reg + 2);
if (ret2 >= 0)
{
ret = (ret << 8) | ret2;
}
else
{
ret = ret2;
}
}
}
else
{
ret = read_reg(sensor->slv_addr, reg);
}
if (ret < 0)
{
return ret;
}
value = (ret & ~mask) | (value & mask);
if (mask > 0xFFFF)
{
ret = write_reg16(sensor->slv_addr, reg, value >> 8);
if (ret >= 0)
{
ret = write_reg(sensor->slv_addr, reg + 2, value & 0xFF);
}
}
else if (mask > 0xFF)
{
ret = write_reg16(sensor->slv_addr, reg, value);
}
else
{
ret = write_reg(sensor->slv_addr, reg, value);
}
return ret;
}
static int set_res_raw(sensor_t *sensor, int startX, int startY, int endX, int endY, int offsetX, int offsetY, int totalX, int totalY, int outputX, int outputY, bool scale, bool binning)
{
return 0;
}
static int _set_pll(sensor_t *sensor, int bypass, int multiplier, int sys_div, int root_2x, int pre_div, int seld5, int pclk_manual, int pclk_div)
{
int ret = 0;
uint8_t ckcfg1 = 0;
uint8_t ckcfg2 = 0;
uint8_t ckcfg3 = 0;
uint8_t pll2 = 0;
if (sensor->xclk_freq_hz <= 6000000)
{
ckcfg2 = 0x00;
}
else if (sensor->xclk_freq_hz <= 12000000)
{
ckcfg2 = 0x20;
}
else if (sensor->xclk_freq_hz <= 18000000)
{
ckcfg2 = 0x40;
}
else if (sensor->xclk_freq_hz <= 24000000)
{
ckcfg2 = 0x60;
}
else if (sensor->xclk_freq_hz <= 30000000)
{
ckcfg2 = 0x80;
}
else if (sensor->xclk_freq_hz <= 36000000)
{
ckcfg2 = 0xA0;
}
else if (sensor->xclk_freq_hz <= 42000000)
{
ckcfg2 = 0xC0;
}
else
{ // max is 48000000
ckcfg2 = 0xE0;
}
if (bypass == 0)
{
switch (multiplier)
{
case 204:
ckcfg2 |= 10;
break;
case 216:
ckcfg2 |= 11;
break;
case 228:
ckcfg2 |= 0x12;
break;
case 240:
ckcfg2 |= 0x13;
break;
case 288:
ckcfg2 |= 0x17;
break;
case 300:
ckcfg2 |= 0x18;
break;
case 312:
ckcfg2 |= 0x19;
break;
case 324:
ckcfg2 |= 0x1A;
break;
case 336:
ckcfg2 |= 0x1B;
break;
case 348:
ckcfg2 |= 0x1C;
break;
case 360:
ckcfg2 |= 0x1D;
break;
default:
ckcfg2 |= 0x17;
break;
}
}
if (pclk_manual > 0)
{
if (pclk_div > 128)
{
pclk_div = 128;
}
if (pclk_div < 1)
{
pclk_div = 1;
}
ckcfg1 |= (pclk_div - 1);
}
if (root_2x > 0)
{
ckcfg3 = 0x00;
}
else
{
ckcfg3 = 0x01;
}
ESP_LOGD(TAG, "ckcfg1 = 0x%02x, ckcfg2 = 0x%02x, ckcfg3 = 0x%02x, pll2 = 0x%02x", ckcfg1, ckcfg2, ckcfg3, pll2);
ret = write_reg(sensor->slv_addr, CKCFG1, ckcfg1);
ret = write_reg(sensor->slv_addr, CKCFG2, ckcfg2);
ret = write_reg(sensor->slv_addr, CKCFG3, ckcfg3);
ret = write_reg(sensor->slv_addr, PLL2, pll2);
return ret;
}
static int set_xclk(sensor_t *sensor, int timer, int xclk)
{
int ret = 0;
sensor->xclk_freq_hz = xclk * 1000000U;
ret = xclk_timer_conf(timer, sensor->xclk_freq_hz);
if (ret == 0)
{
ESP_LOGD(TAG, "Set xclk to %d", xclk);
}
return ret;
}
static int init_status(sensor_t *sensor)
{
(void) write_addr_reg;
sensor->status.brightness = 0;
sensor->status.contrast = 0;
sensor->status.saturation = 0;
sensor->status.sharpness = get_sharpness(sensor);
sensor->status.denoise = get_denoise(sensor);
sensor->status.ae_level = 0;
sensor->status.awb = check_reg_mask(sensor->slv_addr, AEWBCFG, 0x02);
sensor->status.agc = true;
sensor->status.aec = check_reg_mask(sensor->slv_addr, AEWBCFG, 0x04);
sensor->status.hmirror = check_reg_mask(sensor->slv_addr, RDCFG, 0x02);
sensor->status.vflip = check_reg_mask(sensor->slv_addr, RDCFG, 0x01);
sensor->status.lenc = check_reg_mask(sensor->slv_addr, ISPCTRL3, 0x40);
sensor->status.awb_gain = read_reg(sensor->slv_addr, DGAIN);
sensor->status.agc_gain = read_reg(sensor->slv_addr, AGAIN);
sensor->status.aec_value = read_reg(sensor->slv_addr, AETARGM);
return 0;
}
int hm1055_detect(int slv_addr, sensor_id_t *id)
{
if (HM1055_SCCB_ADDR == slv_addr)
{
uint8_t h = SCCB_Read16(slv_addr, IDH);
uint8_t l = SCCB_Read16(slv_addr, IDL);
uint16_t PID = (h << 8) | l;
if (HM1055_PID == PID)
{
id->PID = PID;
return PID;
}
else
{
ESP_LOGD(TAG, "Mismatch PID=0x%x", PID);
}
}
return 0;
}
int hm1055_init(sensor_t *sensor)
{
sensor->reset = reset;
sensor->set_pixformat = set_pixformat;
sensor->set_framesize = set_framesize;
sensor->set_contrast = set_contrast;
sensor->set_brightness = set_brightness;
sensor->set_saturation = set_saturation;
sensor->set_sharpness = set_sharpness;
sensor->set_gainceiling = NULL;
sensor->set_quality = set_quality;
sensor->set_colorbar = set_colorbar;
sensor->set_gain_ctrl = set_gain_ctrl;
sensor->set_exposure_ctrl = set_exposure_ctrl;
sensor->set_whitebal = set_whitebal;
sensor->set_hmirror = set_hmirror;
sensor->set_vflip = set_vflip;
sensor->init_status = init_status;
sensor->set_aec2 = NULL;
sensor->set_aec_value = set_aec_value;
sensor->set_special_effect = NULL;
sensor->set_wb_mode = NULL;
sensor->set_ae_level = set_ae_level;
sensor->set_dcw = NULL;
sensor->set_bpc = NULL;
sensor->set_wpc = NULL;
sensor->set_agc_gain = set_agc_gain;
sensor->set_raw_gma = set_raw_gma_dsp;
sensor->set_lenc = set_lenc_dsp;
sensor->set_denoise = set_denoise;
sensor->get_reg = get_reg;
sensor->set_reg = set_reg;
sensor->set_res_raw = set_res_raw;
sensor->set_pll = _set_pll;
sensor->set_xclk = set_xclk;
return 0;
}

27
sensors/private_include/hm0360.h

@ -0,0 +1,27 @@ @@ -0,0 +1,27 @@
/*
* HM0360 driver.
*/
#ifndef __HM0360_H__
#define __HM0360_H__
#include "sensor.h"
/**
* @brief Detect sensor pid
*
* @param slv_addr SCCB address
* @param id Detection result
* @return
* 0: Can't detect this sensor
* Nonzero: This sensor has been detected
*/
int hm0360_detect(int slv_addr, sensor_id_t *id);
/**
* @brief initialize sensor function pointers
*
* @param sensor pointer of sensor
* @return
* Always 0
*/
int hm0360_init(sensor_t *sensor);
#endif // __HM1055_H__

150
sensors/private_include/hm0360_regs.h

@ -0,0 +1,150 @@ @@ -0,0 +1,150 @@
/*
* HM1055 register definitions.
*/
#ifndef __REG_REGS_H__
#define __REG_REGS_H__
// Sensor ID
#define MODEL_ID_H 0x0000
#define MODEL_ID_L 0x0001
#define SILICON_REV 0x0002
#define FRAME_COUNT_H 0x0005
#define FRAME_COUNT_L 0x0006
#define PIXEL_ODERDER 0x0007
// Snesor mode control
#define MODEL_SELECT 0x0100
#define IMAGE_ORIENTATION 0x0101
#define EMBEDDED_LINE_EN 0x0102
#define SW_RESET 0x0103
#define COMMAND_UPDATE 0x0104
// Sensor exposure gain control
#define INTEGRATION_H 0x0202
#define INTEGRATION_L 0x0203
#define ANALOG_GAIN 0x0205
#define DIGITAL_GAIN_H 0x020E
#define DIGITAL_GAIN_L 0x020F
// clock control
#define PLL1CFG 0x0300
#define PLL2CFG 0x0301
#define PLL3CFG 0x0302
// frame timming control
#define FRAME_LENGTH_LINES_H 0x0340
#define FRAME_LENGTH_LINES_L 0x0341
#define LINE_LENGTH_PCK_H 0x0342
#define LINE_LENGTH_PCK_L 0x0343
// monochrome programming
#define MONO_MODE 0x0370
#define MONO_MODE_ISP 0x0371
#define MONO_MODE_SEL 0x0372
// sub-sampling / binning control
#define H_SUB 0x0380
#define V_SUB 0x0381
#define BINNING_MODE 0x0382
// test pattern control
#define TEST_PATTERN_MODE 0x0601
#define TEST_DATA_BLUE_H 0x0602
#define TEST_DATA_BLUE_L 0x0603
#define TEST_DATA_GB_H 0x0604
#define TEST_DATA_GB_L 0x0605
#define TEST_DATA_GR_H 0x0605
#define TEST_DATA_GR_L 0x0606
#define TEST_DATA_RED_H 0x0608
#define TEST_DATA_RED_L 0x0609
// black level control
#define BLC_TGT 0x1004
#define BLC2_TGT 0x1009
// monochrome programming
#define MONO_CTRL 0x100A
// VSYNC / HSYNC / pixel shift
#define OPFM_CTRL 0x1014
// Tone mapping registers
#define CMPRS_CTRL 0x102F
#define CMPRS_01 0x1030
#define CMPRS_02 0x1031
#define CMPRS_03 0x1032
#define CMPRS_04 0x1033
#define CMPRS_05 0x1034
#define CMPRS_06 0x1035
#define CMPRS_07 0x1036
#define CMPRS_08 0x1037
#define CMPRS_09 0x1038
#define CMPRS_10 0x1039
#define CMPRS_11 0x103A
#define CMPRS_12 0x103B
#define CMPRS_13 0x103C
#define CMPRS_14 0x103D
#define CMPRS_15 0x103E
#define CMPRS_16 0x103F
// automatic exposure programming
#define AE_CTRL 0x2000
#define AE_CTRL1 0x2001
#define CNT_ORG_H_H 0x2002
#define CNT_ORG_H_L 0x2003
#define CNT_ORG_V_H 0x2004
#define CNT_ORG_V_L 0x2005
#define CNT_ST_H_H 0x2006
#define CNT_ST_H_L 0x2007
#define CNT_ST_V_H 0x2008
#define CNT_ST_V_L 0x2009
#define CTRL_PG_SKIPCNT 0x200A
#define BV_WIN_WEIGHT_EN 0x200D
#define MAX_INTG_H 0x2029
#define MAX_INTG_L 0x202A
#define MAX_AGAIN 0x202B
#define MAX_DGAIN_H 0x202C
#define MAX_DGAIN_L 0x202D
#define MIN_INTG 0x202E
#define MIN_AGAIN 0x202F
#define MIN_DGAIN 0x2030
#define T_DAMPING 0x2031
#define N_DAMPING 0x2032
#define ALC_TH 0x2033
#define AE_TARGET_MEAN 0x2034
#define AE_MIN_MEAN 0x2035
#define AE_TARGET_ZONE 0x2036
#define CONVERGE_IN_TH 0x2037
#define CONVERGE_OUT_TH 0x2038
// Interrupt control
#define PULSE_MODE 0x2061
#define PULSE_TH_H 0x2062
#define PULSE_TH_L 0x2063
#define INT_INDIC 0x2064
#define INT_CLEAR 0x2065
// Motion detection control
#define MD_CTRL 0x2080
#define ROI_START_END_V 0x2081
#define ROI_START_END_H 0x2082
#define MD_TH_MIN 0x2083
#define MD_TH_STR_L 0x2084
#define MD_TH_STR_H 0x2085
#define MD_LIGHT_COEF 0x2099
#define MD_BLOCK_NUM_TH 0x209B
#define MD_LATENCY 0x209C
#define MD_LATENCY_TH 0x209D
#define MD_CTRL1 0x209E
// Context switch control registers
#define PMU_CFG_3 0x3024
#define PMU_CFG_4 0x3025
// Operation mode control
#define WIN_MODE 0x3030
// IO and clock control
#define PAD_REGISTER_07 0x3112
#endif //__REG_REGS_H__

549
sensors/private_include/hm0360_settings.h

@ -0,0 +1,549 @@ @@ -0,0 +1,549 @@
#include <stdint.h>
#define REG_DLY 0xffff
#define REGLIST_TAIL 0x0000
static const DRAM_ATTR uint16_t sensor_default_regs[][2] = {
{0x0103, 0x00},
{REG_DLY, 100},
{0x3035, 0x01},
{0x3126, 0x03},
{0x3128, 0x57},
{0x3142, 0x9F},
{0x311C, 0x10},
{0x3115, 0x42},
{0x3116, 0x10},
{0x3117, 0x0A},
{0x310B, 0x10},
{0x3031, 0x01},
{0x312E, 0x00},
{0x30D7, 0x00},
{0x30DC, 0x00},
{0x30E1, 0x00},
{0x30E6, 0x00},
{0x30EB, 0x00},
{0x30F0, 0x00},
{0x30F5, 0x00},
{0x30FA, 0x00},
{0x30FF, 0x00},
{0x3104, 0x00},
{0x30D8, 0xA7},
{0x30DD, 0x27},
{0x30E2, 0x27},
{0x30E7, 0x27},
{0x30EC, 0x27},
{0x30F1, 0xA7},
{0x30F6, 0x27},
{0x30FB, 0x27},
{0x3100, 0x27},
{0x3105, 0x27},
{0x30D9, 0x00}, // 220215
{0x30DE, 0x05},
{0x30E3, 0x05},
{0x30E8, 0x05},
{0x30ED, 0x05},
{0x30F2, 0x00}, // 220215
{0x30F7, 0x05},
{0x30FC, 0x05},
{0x3101, 0x05},
{0x3106, 0x05},
{0x30C4, 0x10},
{0x30C5, 0x01},
{0x30C6, 0x2F}, // 220215
{0x30CB, 0xFF},
{0x30CC, 0xFF},
{0x30CD, 0x7F},
{0x30CE, 0x7F},
{0x30D3, 0x01},
{0x30D4, 0xFF},
{0x311F, 0x0E},
{0x3120, 0x0D},
{0x3121, 0x0F},
{0x3122, 0x00},
{0x3147, 0x18},
{0x314B, 0x01},
{0x3149, 0x28},
{0x3150, 0x50},
{0x3152, 0x00},
{0x3156, 0x2C},
{0x3163, 0x1F},
{0x3165, 0x7F},
{0x312B, 0x41},
{0x3113, 0xA0},
{0x3114, 0x67},
{0x317D, 0x02},
{0x3160, 0x1F},
{0x318C, 0x00},
{0x315C, 0xE0},
{0x311E, 0x0F},
{0x30D5, 0x00},
{0x30DA, 0x01},
{0x30DF, 0x07},
{0x30E4, 0x47},
{0x30E9, 0x87},
{0x30FD, 0x47},
{0x3102, 0x87},
{0x311D, 0x06},
{0x3141, 0x2A},
{0x315A, 0x0A},
{0x30D6, 0x40},
{0x30DB, 0x40},
{0x30E0, 0x40},
{0x30E5, 0x30},
{0x30EA, 0x30},
{0x30EF, 0x40},
{0x30F4, 0x40},
{0x30F9, 0x40},
{0x30FE, 0x30},
{0x3103, 0x30},
{0x3164, 0x7F},
{0x282A, 0x0F},
{0x282E, 0x2F},
{0x282B, 0x08},
{0x312A, 0x11},
{0x1000, 0x43},
{0x1001, 0x80},
{0x0350, 0xE0},
{0x101D, 0xCF},
{0x1021, 0x5D},
// setA VGA
{0x3500, 0x74},
{0x3501, 0x0A},
{0x3502, 0x77},
{0x3503, 0x04},
{0x3504, 0x14},
{0x3505, 0x03},
{0x3506, 0x00},
{0x3507, 0x00},
{0x3508, 0x00},
{0x3509, 0x00},
{0x350A, 0xFF},
{0x350B, 0x00},
{0x350D, 0x01},
{0x350C, 0x00},
{0x350F, 0x00},
{0x3510, 0x01},
{0x3513, 0x00},
{0x351C, 0x00},
{0x3514, 0x00},
{0x3515, 0x01},
{0x3516, 0x00},
{0x3517, 0x02},
{0x3518, 0x00},
{0x3519, 0x7F},
{0x351A, 0x00},
{0x351B, 0x5F},
{0x351D, 0x04},
{0x351E, 0x10},
{0x352A, 0x01},
{0x352B, 0x04},
{0x352C, 0x01},
{0x352D, 0x38},
{0x354B, 0x21},
{0x354C, 0x01},
{0x354D, 0xE0},
{0x354E, 0xF0},
{0x354F, 0x10},
{0x3550, 0x10},
{0x3551, 0x10},
{0x3552, 0x20},
{0x3553, 0x10},
{0x3554, 0x01},
{0x3555, 0x06},
{0x3556, 0x0C},
{0x3557, 0x12},
{0x3558, 0x1C},
{0x3559, 0x30},
{0x3549, 0x04},
{0x354A, 0x35},
// setB QVGA
{0x355A, 0x74},
{0x355B, 0x0A},
{0x355C, 0x77},
{0x355D, 0x04},
{0x355E, 0x14},
{0x355F, 0x03},
{0x3560, 0x00},
{0x3561, 0x01},
{0x3562, 0x01},
{0x3563, 0x00},
{0x3564, 0xFF},
{0x3565, 0x00},
{0x3567, 0x01},
{0x3566, 0x00},
{0x3569, 0x00},
{0x356A, 0x01},
{0x356D, 0x00},
{0x3576, 0x00},
{0x356E, 0x00},
{0x356F, 0x01},
{0x3570, 0x00},
{0x3571, 0x02},
{0x3572, 0x00},
{0x3573, 0x3F},
{0x3574, 0x00},
{0x3575, 0x2F},
{0x3577, 0x04},
{0x3578, 0x10},
{0x3584, 0x01},
{0x3585, 0x04},
{0x3586, 0x01},
{0x3587, 0x38},
{0x3588, 0x02},
{0x3589, 0x12},
{0x358A, 0x04},
{0x358B, 0x24},
{0x358C, 0x06},
{0x358D, 0x36},
{0x35A5, 0x21},
{0x35A6, 0x01},
{0x35A7, 0xE0},
{0x35A8, 0xF0},
{0x35A9, 0x10},
{0x35AA, 0x10},
{0x35AB, 0x10},
{0x35AC, 0x20},
{0x35AD, 0x10},
{0x35AE, 0x01},
{0x35AF, 0x06},
{0x35B0, 0x0C},
{0x35B1, 0x12},
{0x35B2, 0x1C},
{0x35B3, 0x30},
{0x35A3, 0x02},
{0x35A4, 0x03},
// AE_tuning
{0x3512, 0x3F},
{0x351F, 0x04},
{0x3520, 0x03},
{0x3521, 0x00},
{0x3523, 0x60},
{0x3524, 0x08},
{0x3525, 0x19},
{0x3526, 0x08},
{0x3527, 0x10},
{0x356C, 0x3F},
{0x3579, 0x04},
{0x357A, 0x03},
{0x357B, 0x00},
{0x357D, 0x60},
{0x357E, 0x08},
{0x357F, 0x19},
{0x3580, 0x08},
{0x3581, 0x10},
{0x2048, 0x00},
{0x2049, 0x10},
{0x204A, 0x40},
{0x204E, 0x00},
{0x204F, 0x38},
{0x2050, 0xE0},
{0x204B, 0x00},
{0x204C, 0x08},
{0x204D, 0x20},
{0x2051, 0x00},
{0x2052, 0x1C},
{0x2053, 0x70},
{0x2054, 0x00},
{0x2055, 0x1A},
{0x2056, 0xC0},
{0x2057, 0x00},
{0x2058, 0x06},
{0x2059, 0xB0},
// MD tuning
{0x2080, 0x41},
{0x2083, 0x01},
{0x208D, 0x02},
{0x208E, 0x08},
{0x208F, 0x0D},
{0x2090, 0x14},
{0x2091, 0x1D},
{0x2092, 0x30},
{0x2093, 0x08},
{0x2094, 0x0A},
{0x2095, 0x0F},
{0x2096, 0x14},
{0x2097, 0x18},
{0x2098, 0x20},
{0x2099, 0x10},
{0x209A, 0x00},
{0x209B, 0x01},
{0x209C, 0x01},
{0x209D, 0x11},
{0x209E, 0x06},
// Tone mapping
{0x1030, 0x04},
{0x1031, 0x08},
{0x1032, 0x10},
{0x1033, 0x18},
{0x1034, 0x20},
{0x1035, 0x28},
{0x1036, 0x30},
{0x1037, 0x38},
{0x1038, 0x40},
{0x1039, 0x50},
{0x103A, 0x60},
{0x103B, 0x70},
{0x103C, 0x80},
{0x103D, 0xA0},
{0x103E, 0xC0},
{0x103F, 0xE0},
// RESERVED
{0x35B4, 0x74},
{0x35B5, 0x0A},
{0x35B6, 0x77},
{0x35B7, 0x00},
{0x35B8, 0x94},
{0x35B9, 0x03},
{0x35BA, 0x00},
{0x35BB, 0x03},
{0x35BD, 0x00},
{0x35BE, 0xFF},
{0x35BF, 0x00},
{0x35C1, 0x01},
{0x35C0, 0x01},
{0x35C3, 0x00},
{0x35C4, 0x00},
{0x35C6, 0x3F},
{0x35C7, 0x00},
{0x35D0, 0x00},
{0x35D3, 0x04},
{0x35D7, 0x18},
{0x35D8, 0x01},
{0x35D9, 0x20},
{0x35DA, 0x08},
{0x35DB, 0x14},
{0x35DC, 0x70},
{0x35C8, 0x00},
{0x35C9, 0x01},
{0x35CA, 0x00},
{0x35CB, 0x02},
{0x35CC, 0x00},
{0x35CD, 0x0F},
{0x35CE, 0x00},
{0x35CF, 0x0B},
{0x35DE, 0x00},
{0x35DF, 0x01},
{0x35FD, 0x00},
{0x35FE, 0x5E},
// RESERVED
{0x3024, 0x00},
{0x3025, 0x12},
{0x3026, 0x03},
{0x3027, 0x81},
{0x3028, 0x01},
{0x3029, 0x00},
{0x302A, 0x30},
// Interrupt
{0x2061, 0x00},
{0x2062, 0x00},
{0x2063, 0xC8},
// Parallel I/F
{0x1014, 0x00},
{0x102F, 0x08},
{0x309E, 0x05},
{0x309F, 0x02},
{0x30A0, 0x02},
{0x30A1, 0x00},
{0x30A2, 0x08},
{0x30A3, 0x00},
{0x30A4, 0x20},
{0x30A5, 0x04},
{0x30A6, 0x02},
{0x30A7, 0x02},
{0x30A8, 0x01},
{0x30B0, 0x03},
{0x3112, 0x04},
{0x311A, 0x30}, //31:bypass internal ldo 30:internal LDO
// MIPI
{0x2800, 0x00},
// Enable BPC}
{0x0370, 0x00},
{0x0371, 0x00},
{0x0372, 0x01},
{0x100A, 0x05},
{0x2590, 0x01},
{0x0104, 0x01},
{0x0100, 0x01},
{REGLIST_TAIL, 0x00}, // tail
};
static const DRAM_ATTR uint16_t sensor_framesize_VGA[][2] = {
{0x0006, 0x10},
{0x000D, 0x00},
{0x000E, 0x00},
{0x0122, 0xEB},
{0x0125, 0xFF},
{0x0126, 0x70},
{0x05E0, 0XC1},
{0x05E1, 0x00},
{0x05E2, 0xC1},
{0x05E3, 0x00},
{0x05E4, 0x03},
{0x05E5, 0x00},
{0x05E6, 0x82},
{0x05E7, 0x02},
{0x05E8, 0x04},
{0x05E9, 0x00},
{0x05EA, 0xE3},
{0x05EB, 0x01},
{REGLIST_TAIL, 0x00},
};
static const DRAM_ATTR uint16_t sensor_framesize_QVGA[][2] = {
{0x355A, 0x74}, // vt_sys_d
{0x355B, 0x0A}, // op_sys_d
{0x355C, 0x77}, // mclk_div_d
{0x355D, 0x01},
{0x355E, 0x1C},
{0x355F, 0x03},
{0x3560, 0x00},
{0x3561, 0x01},
{0x3562, 0x01},
{0x3563, 0x00},
{0x3564, 0xFF},
{0x3565, 0x00},
{0x3567, 0x01},
{0x3566, 0x00},
{0x3569, 0x00},
{0x356A, 0x01},
{0x356C, 0x7F},
{0x356D, 0x00},
{0x3576, 0x00},
{0x3579, 0x03}, // Max Again
{0x356E, 0x00}, // AE cnt org H HB
{0x356F, 0x01}, // AE cnt org H LB
{0x3570, 0x00}, // AE cnt org V HB
{0x3571, 0x02}, // AE cnt org V LB
{0x3572, 0x00}, // AE cnt st H HB
{0x3573, 0x3F}, // AE cnt st H LB
{0x3574, 0x00}, // AE cnt st V HB
{0x3575, 0x2F}, // AE cnt st V LB
{0x3577, 0x04},
{0x3578, 0x24},
{0x3584, 0x01},
{0x3585, 0x04},
{0x3586, 0x01},
{0x3587, 0x38},
{0x3588, 0x02}, // FR stage 1 H
{0x3589, 0x12}, // FR stage 1 L
{0x358A, 0x04}, // FR stage 2 H
{0x358B, 0x24}, // FR stage 2 L
{0x358C, 0x06}, // FR stage 3 H
{0x358D, 0x36}, // FR stage 3 L
{0x35A5, 0x21}, // [7:1]MD_light_coef [0] MD enable
{0x35A6, 0x01}, // MD_block_num_th
{0x35A7, 0xE0}, // [7:4]md_roi_end_v [3:0]md_roi_start_v
{0x35A8, 0xF0}, // [7:4]md_roi_end_h [3:0]md_roi_start_h
{0x35A9, 0x10}, // [6:0] md_th_str_HCG
{0x35AA, 0x10}, // [5:0] md_th_str_LCG
{0x35AB, 0x10}, // [5:0] md_th_str_HDR
{0x35AC, 0x20}, // md_flick_skip_th_adj_N
{0x35AD, 0x10}, // md_flick_skip_th_adj_P
{0x35AE, 0x01},
{0x35AF, 0x06},
{0x35B0, 0x0C},
{0x35B1, 0x12},
{0x35BC, 0x1C},
{0x35B3, 0x30},
{0x35A3, 0x02}, // full trigger H
{0x35A4, 0x03}, // full trigger L
{REGLIST_TAIL, 0x00},
};
static const DRAM_ATTR uint16_t sensor_framesize_240X240[][2] = {
{0x0006, 0x00},
{0x000D, 0x01},
{0x000E, 0x11},
{0x0122, 0xFB},
{0x0125, 0xFF},
{0x0126, 0x70},
{0x05E0, 0XBE},
{0x05E1, 0x00},
{0x05E2, 0xBE},
{0x05E3, 0x00},
{0x05E4, 0x62},
{0x05E5, 0x00},
{0x05E6, 0x51},
{0x05E7, 0x01},
{0x05E8, 0x04},
{0x05E9, 0x00},
{0x05EA, 0xF3},
{0x05EB, 0x00},
{REGLIST_TAIL, 0x00},
};
static const DRAM_ATTR uint16_t sensor_framesize_QQVGA[][2] = {
{0x355A, 0x74}, // vt_sys_d
{0x355B, 0x0A}, // op_sys_d
{0x355C, 0x77}, // mclk_div_d
{0x355D, 0x00},
{0x355E, 0x8E},
{0x355F, 0x03},
{0x3560, 0x00},
{0x3561, 0x02},
{0x3562, 0x02},
{0x3563, 0x00},
{0x3564, 0xFF},
{0x3565, 0x00},
{0x3567, 0x01},
{0x3566, 0x00},
{0x3569, 0x00},
{0x356A, 0x01},
{0x356C, 0x7F},
{0x356D, 0x00},
{0x3576, 0x00},
{0x3579, 0x03}, // Max Again
{0x356E, 0x00}, // AE cnt org H HB
{0x356F, 0x01}, // AE cnt org H LB
{0x3570, 0x00}, // AE cnt org V HB
{0x3571, 0x02}, // AE cnt org V LB
{0x3572, 0x00}, // AE cnt st H HB
{0x3573, 0x1F}, // AE cnt st H LB
{0x3574, 0x00}, // AE cnt st V HB
{0x3575, 0x17}, // AE cnt st V LB
{0x3577, 0x04},
{0x3578, 0x24},
{0x3584, 0x01},
{0x3585, 0x04},
{0x3586, 0x01},
{0x3587, 0x38},
{0x3588, 0x02}, // FR stage 1 H
{0x3589, 0x12}, // FR stage 1 L
{0x358A, 0x04}, // FR stage 2 H
{0x358B, 0x24}, // FR stage 2 L
{0x358C, 0x06}, // FR stage 3 H
{0x358D, 0x36}, // FR stage 3 L
{0x35A5, 0x21}, // [7:1]MD_light_coef [0] MD enable
{0x35A6, 0x01}, // MD_block_num_th
{0x35A7, 0xD0}, // [7:4]md_roi_end_v [3:0]md_roi_start_v
{0x35A8, 0xF0}, // [7:4]md_roi_end_h [3:0]md_roi_start_h
{0x35A9, 0x10}, // [6:0] md_th_str_HCG
{0x35AA, 0x10}, // [5:0] md_th_str_LCG
{0x35AB, 0x10}, // [5:0] md_th_str_HDR
{0x35AC, 0x20}, // md_flick_skip_th_adj_N
{0x35AD, 0x10}, // md_flick_skip_th_adj_P
{0x35AE, 0x01},
{0x35AF, 0x06},
{0x35B0, 0x0C},
{0x35B1, 0x12},
{0x35B2, 0x1C},
{0x35B3, 0x30},
{0x35A3, 0x00}, // full trigger H
{0x35A4, 0xEA}, // full trigger L
{REGLIST_TAIL, 0x00},
};

27
sensors/private_include/hm1055.h

@ -0,0 +1,27 @@ @@ -0,0 +1,27 @@
/*
* HM1055 driver.
*/
#ifndef __HM1055_H__
#define __HM1055_H__
#include "sensor.h"
/**
* @brief Detect sensor pid
*
* @param slv_addr SCCB address
* @param id Detection result
* @return
* 0: Can't detect this sensor
* Nonzero: This sensor has been detected
*/
int hm1055_detect(int slv_addr, sensor_id_t *id);
/**
* @brief initialize sensor function pointers
*
* @param sensor pointer of sensor
* @return
* Always 0
*/
int hm1055_init(sensor_t *sensor);
#endif // __HM1055_H__

120
sensors/private_include/hm1055_regs.h

@ -0,0 +1,120 @@ @@ -0,0 +1,120 @@
/*
* HM1055 register definitions.
*/
#ifndef __REG_REGS_H__
#define __REG_REGS_H__
// Imager Configuration
#define CMU 0x0000
#define IDH 0x0001
#define IDL 0x0002
#define VID 0x0003
#define PWDCTRL 0x0004
#define TGRDCFG 0x0005
#define RDCFG 0x0006
#define VREAD 0x000D
#define HREAD 0x000E
#define IMG_CFG 0x000F
// Imager Operation
#define BLNKRH 0x0010
#define BLNKRL 0x0011
#define BLNKCCLK 0x0012
#define BLNKC 0x0013
#define INTGH 0x0015
#define INTGL 0x0016
#define AGAIN 0x0018
#define DGAIN 0x001D
// IO and Clock Configuration Setting
#define OPRTCFG 0x0020
#define SFTRST 0x0022 // any value to reset
#define IOCTRLH 0x0023
#define IOCTRLL 0x0024
#define CKCFG1 0x0025
#define CKCFG2 0x0026
#define PORTCTRL 0x0027
#define TESTIMG 0x0028
#define CCIR656 0x0029
#define PLL1 0x002A
#define CKCFG3 0x002B
#define PLL2 0x002C
// Black Level Target
#define BLCTGT 0x0040
#define BLCTGT2 0x0053
// Vertical Arbitrary Window Configuration
#define VAWINSTARTH 0x0078
#define VAWINSTARTL 0x0079
#define VAWINENDH 0x007A
#define VAWINENDL 0x007B
// Image Signal Processing Control
#define CMU_AE 0x0100
#define CMU_AWB 0x0101
#define ISPID 0x0105
#define ISPCTRL1 0x0120
#define ISPCTRL2 0x0121
#define ISPCTRL3 0x0122
#define ISPCTRL4 0x0124
#define ISPCTRL5 0x0125
#define ISPCTRL6 0x0126
// RAW Noise Filter Control
#define RAWNF 0x01E4
#define ARAWNF 0x01E5
#define ARAWNFODEL 0x01E6
// Automatic Exposure Control Registers
#define AEWBCFG 0x0380
#define AETARGU 0x0381
#define AETARGL 0x0382
#define AETARGM 0x0383
// Saturation and Hue Control
#define SAT 0x0480
#define ASAT 0x0481
#define ASATODEL 0x0482
#define HUESIN 0x0486
#define HUECOS 0x0487
#define SCENE 0x0488
// Contrast and Brightness Control
#define CONTM 0x04B0
#define ACONTM 0x04B1
#define CONTQ 0x04B3
#define ACONTQ 0x04B4
#define CONTN 0x04B6
#define CONTP 0x04B9
#define CONTGAIN 0x04BC
#define YMEAN 0x04BD
#define BRIGHT 0x04C0
// Y Denoise Control
#define YDN 0x0580
#define AYDN 0x0581
#define AYDNODEL 0x0582
// Sharpness Control
#define EDGE 0x05A1
// Fade to Black Control
#define F2BMEAN 0x05D0
#define F2BRANGE 0x05D1
// Digital Window Control
#define YUVSCXL 0x05E0
#define YUVSCXH 0x05E1
#define YUVSCYL 0x05E2
#define YUVSCYH 0x05E3
#define WINXSTL 0x05E4
#define WINXSTH 0x05E5
#define WINXEDL 0x05E6
#define WINXEDH 0x05E7
#define WINYSTL 0x05E8
#define WINYSTH 0x05E9
#define WINYEDL 0x05EA
#define WINYEDH 0x05EB
#endif //__REG_REGS_H__

697
sensors/private_include/hm1055_settings.h

@ -0,0 +1,697 @@ @@ -0,0 +1,697 @@
#include <stdint.h>
#define REG_DLY 0xffff
#define REGLIST_TAIL 0xffff
static const DRAM_ATTR uint16_t sensor_default_regs[][2] = {
{0x0022, 0x00}, // RESET
{0x0026, 0x77}, // 24MHz MCLK, 72MHz PCLK
{0x002A, 0x44}, // Modified by Wilson
{0x002B, 0x02},
{0x002C, 0x00}, // Turn off DCC
{0x0025, 0x00}, // PLL on
{0x0020, 0x08},
{0x0027, 0x40}, // FPGA 24 data format
{0x0028, 0xC0}, //
{0x0004, 0x10}, //
{0x0006, 0x00}, // Modified by Brandon. No Flip
{0x0012, 0x0F},
{0x0044, 0x04},
{0x004A, 0x2A},
{0x004B, 0x72},
{0x004E, 0x30},
{0x0070, 0x2A},
{0x0071, 0x57},
{0x0072, 0x55},
{0x0073, 0x30},
{0x0077, 0x04},
{0x0080, 0xC2},
{0x0082, 0xA2},
{0x0083, 0xF0},
{0x0085, 0x11}, // Set ADC power to 100% and Increase Comparator power and reduce ADC swing range(4/19, K.Kim)
{0x0086, 0x22},
{0x0087, 0x08},
{0x0088, 0x6e}, // Temperature config 0x80[7:5]:76C, Minimize CTIA & PGA power and set VCMI to 200mV(4/19, K.Kim)
{0x0089, 0x2A},
{0x008A, 0x2F}, // Set BLC power to 50%(4/19, K.Kim)
{0x008D, 0x20},
{0x008f, 0x77},
{0x0090, 0x01},
{0x0091, 0x02},
{0x0092, 0x03},
{0x0093, 0x04},
{0x0094, 0x14},
{0x0095, 0x09},
{0x0096, 0x0A},
{0x0097, 0x0B},
{0x0098, 0x0C},
{0x0099, 0x04},
{0x009A, 0x14},
{0x009B, 0x34},
{0x00A0, 0x00},
{0x00A1, 0x00},
{0x0B3B, 0x0B},
{0x0040, 0x0A}, // BLC Phase1
{0x0053, 0x0A}, // BLC Phase2
{0x0120, 0x36}, // 36:50Hz, 37:60Hz
{0x0121, 0x80},
{0x0122, 0xEB}, // 122[3] is temperature_control_bit2
{0x0123, 0xCC}, // 123[3:0]maskTH
{0x0124, 0xDE},
{0x0125, 0xDF},
{0x0126, 0x70},
{0x0128, 0x1F},
{0x0129, 0x8F},
{0x0132, 0xF8},
{0x011F, 0x08}, // BPC COLD PIXEL ENABLE if 11F[0] = 1 then on else 0 off
{0x0144, 0x04}, // Hot pixel ratio
{0x0145, 0x00}, // Hot pixel ratio alpha
{0x0146, 0x20}, // Vertical Line TH
{0x0147, 0x20}, // Vertical Line TH alpha
{0x0148, 0x14}, // HD_2line_BPC_TH
{0x0149, 0x14}, // HD_2line_BPC_TH alpha
{0x0156, 0x0C}, // BPC RATIO FOR COLD PIXEL
{0x0157, 0x0C}, // BPC RATIO FOR COLD PIXEL
{0x0158, 0x0A}, // 2 LINE BPC RATIO
{0x0159, 0x0A}, // 2 LINE BPC RATIO
{0x015A, 0x03}, // BPC RATIO FOR COLD PIXEL
{0x015B, 0x40}, // Corner TH
{0x015C, 0x21}, // Corner TH alpha
{0x015E, 0x0F}, // Debug_mode
{0x0168, 0xC8}, // BPC T1
{0x0169, 0xC8}, // BPC T1 ALPHA
{0x016A, 0x96}, // BPC T2
{0x016B, 0x96}, // BPC T2 ALPHA
{0x016C, 0x64}, // BPC T3
{0x016D, 0x64}, // BPC T3 ALPHA
{0x016E, 0x32}, // BPC T4
{0x016F, 0x32}, // BPC T4 ALPHA
{0x01EF, 0xF1}, // BPC Control Byte
{0x0131, 0x44}, //[6] DS_EN, [5] VOFF, [4] EDGEON, [3] SBPI_MODE, [2] RAW_SAHRPNESS_EN, [1]G1G2B_EN
{0x014C, 0x60}, // VSUB
{0x014D, 0x24}, // VSUB ALPHA0
{0x015D, 0x90}, //[7] TG_en// [6:0]:min Tgain
{0x01D8, 0x40}, // NOISE TH
{0x01D9, 0x20}, // NL_V1
{0x01DA, 0x23}, // NL_V2
{0x0150, 0x05}, // NL_INC1
{0x0155, 0x07}, // NL_INC2
{0x0178, 0x10}, // EVDIV
{0x017A, 0x10}, // EVDIVD
{0x01BA, 0x10}, // EVSUB
{0x0176, 0x00}, // EDGE2W
{0x0179, 0x10}, // EVDIV ALPHA0
{0x017B, 0x10}, // EVDIVD ALPHA0
{0x01BB, 0x10}, // EVSUB ALPHA0
{0x0177, 0x00}, // EDGE2W ALPHA0
{0x01E7, 0x20}, // TLTH1
{0x01E8, 0x30}, // TLTH2
{0x01E9, 0x50}, // TLTH3
{0x01E4, 0x18}, // BD STRENGTH
{0x01E5, 0x20}, // BD STRENGTH ALPHA0
{0x01E6, 0x04}, // BD STRENGTH OUTDOOR
{0x0210, 0x21}, // STD
{0x0211, 0x0A}, // STD ALPHA0
{0x0212, 0x21}, // STD OUTDOOR
{0x01DB, 0x04}, // G1G2 STRENGTH
{0x01DC, 0x14}, // SBPI_OFFSET
{0x0151, 0x08},
{0x01F2, 0x18},
{0x01F8, 0x3C},
{0x01FE, 0x24},
{0x0213, 0x03}, // BPC_Control_BYTE_2 // BPC_line_edge_th 3rd bpc
{0x0214, 0x03}, // BPC_Control_BYTE_3 // 3rd bpc strength[4:0] , [7:5] is for 2line bpc temp_control_bit
{0x0215, 0x10}, // BPC_Control_BYTE_4 // 1st bpc strength[4:0]
{0x0216, 0x08}, // BPC_Control_BYTE_5 // 1st br pulse strength[4:0]
{0x0217, 0x05}, // BPC_Control_BYTE_6 // 1st gbgr pulse strengh[4:0]
{0x0218, 0xB8},
{0x0219, 0x01},
{0x021A, 0xB8},
{0x021B, 0x01},
{0x021C, 0xB8},
{0x021D, 0x01},
{0x021E, 0xB8},
{0x021F, 0x01},
{0x0220, 0xF1},
{0x0221, 0x5D},
{0x0222, 0x0A},
{0x0223, 0x80},
{0x0224, 0x50},
{0x0225, 0x09},
{0x0226, 0x80},
{0x022A, 0x56},
{0x022B, 0x13},
{0x022C, 0x80},
{0x022D, 0x11},
{0x022E, 0x08},
{0x022F, 0x11},
{0x0230, 0x08},
{0x0233, 0x11},
{0x0234, 0x08},
{0x0235, 0x88},
{0x0236, 0x02},
{0x0237, 0x88},
{0x0238, 0x02},
{0x023B, 0x88},
{0x023C, 0x02},
{0x023D, 0x68},
{0x023E, 0x01},
{0x023F, 0x68},
{0x0240, 0x01},
{0x0243, 0x68},
{0x0244, 0x01},
{0x0251, 0x0F},
{0x0252, 0x00},
{0x0260, 0x00},
{0x0261, 0x4A},
{0x0262, 0x2C},
{0x0263, 0x68},
{0x0264, 0x40},
{0x0265, 0x2C},
{0x0266, 0x6A},
{0x026A, 0x40},
{0x026B, 0x30},
{0x026C, 0x66},
{0x0278, 0x98},
{0x0279, 0x20},
{0x027A, 0x80},
{0x027B, 0x73},
{0x027C, 0x08},
{0x027D, 0x80},
{0x0280, 0x0D},
{0x0282, 0x1A},
{0x0284, 0x30},
{0x0286, 0x53},
{0x0288, 0x62},
{0x028a, 0x6E},
{0x028c, 0x7A},
{0x028e, 0x83},
{0x0290, 0x8B},
{0x0292, 0x92},
{0x0294, 0x9D},
{0x0296, 0xA8},
{0x0298, 0xBC},
{0x029a, 0xCF},
{0x029c, 0xE2},
{0x029e, 0x2A},
{0x02A0, 0x02},
{0x02C0, 0x7D}, // CCM N
{0x02C1, 0x01},
{0x02C2, 0x7C},
{0x02C3, 0x04},
{0x02C4, 0x01},
{0x02C5, 0x04},
{0x02C6, 0x3E},
{0x02C7, 0x04},
{0x02C8, 0x90},
{0x02C9, 0x01},
{0x02CA, 0x52},
{0x02CB, 0x04},
{0x02CC, 0x04},
{0x02CD, 0x04},
{0x02CE, 0xA9},
{0x02CF, 0x04},
{0x02D0, 0xAD},
{0x02D1, 0x01},
{0x0302, 0x00},
{0x0303, 0x00},
{0x0304, 0x00},
{0x02e0, 0x04}, // CCM by Alpha
{0x02F0, 0x4E}, // CCM A
{0x02F1, 0x04},
{0x02F2, 0xB1},
{0x02F3, 0x00},
{0x02F4, 0x63},
{0x02F5, 0x04},
{0x02F6, 0x28},
{0x02F7, 0x04},
{0x02F8, 0x29},
{0x02F9, 0x04},
{0x02FA, 0x51},
{0x02FB, 0x00},
{0x02FC, 0x64},
{0x02FD, 0x04},
{0x02FE, 0x6B},
{0x02FF, 0x04},
{0x0300, 0xCF},
{0x0301, 0x00},
{0x0305, 0x08},
{0x0306, 0x40},
{0x0307, 0x00},
{0x032D, 0x70},
{0x032E, 0x01},
{0x032F, 0x00},
{0x0330, 0x01},
{0x0331, 0x70},
{0x0332, 0x01},
{0x0333, 0x82}, // AWB channel offset
{0x0334, 0x82},
{0x0335, 0x86},
{0x0340, 0x30}, // AWB
{0x0341, 0x44},
{0x0342, 0x4A},
{0x0343, 0x3C}, // CT1
{0x0344, 0x83}, //
{0x0345, 0x4D}, // CT2
{0x0346, 0x75}, //
{0x0347, 0x56}, // CT3
{0x0348, 0x68}, //
{0x0349, 0x5E}, // CT4
{0x034A, 0x5C}, //
{0x034B, 0x65}, // CT5
{0x034C, 0x52}, //
{0x0350, 0x88},
{0x0352, 0x18},
{0x0354, 0x80},
{0x0355, 0x50},
{0x0356, 0x88},
{0x0357, 0xE0},
{0x0358, 0x00},
{0x035A, 0x00},
{0x035B, 0xAC},
{0x0360, 0x02},
{0x0361, 0x18},
{0x0362, 0x50},
{0x0363, 0x6C},
{0x0364, 0x00},
{0x0365, 0xF0},
{0x0366, 0x08},
{0x036A, 0x10},
{0x036B, 0x18},
{0x036E, 0x10},
{0x0370, 0x10},
{0x0371, 0x18},
{0x0372, 0x0C},
{0x0373, 0x38},
{0x0374, 0x3A},
{0x0375, 0x12},
{0x0376, 0x20},
{0x0380, 0xFF},
{0x0381, 0x44},
{0x0382, 0x34},
{0x038A, 0x80},
{0x038B, 0x0A},
{0x038C, 0xC1},
{0x038E, 0x3C},
{0x038F, 0x09},
{0x0390, 0xE0},
{0x0391, 0x01},
{0x0392, 0x03},
{0x0393, 0x80},
{0x0395, 0x22},
{0x0398, 0x02}, // AE Frame Control
{0x0399, 0xF0},
{0x039A, 0x03},
{0x039B, 0xAC},
{0x039C, 0x04},
{0x039D, 0x68},
{0x039E, 0x05},
{0x039F, 0xE0},
{0x03A0, 0x07},
{0x03A1, 0x58},
{0x03A2, 0x08},
{0x03A3, 0xD0},
{0x03A4, 0x0B},
{0x03A5, 0xC0},
{0x03A6, 0x18},
{0x03A7, 0x1C},
{0x03A8, 0x20},
{0x03A9, 0x24},
{0x03AA, 0x28},
{0x03AB, 0x30},
{0x03AC, 0x24},
{0x03AD, 0x21},
{0x03AE, 0x1C},
{0x03AF, 0x18},
{0x03B0, 0x17},
{0x03B1, 0x13},
{0x03B7, 0x64}, // AEAWB Windowing Step for 7x7
{0x03B8, 0x00},
{0x03B9, 0xB4},
{0x03BA, 0x00},
{0x03bb, 0xff}, // WinWeight 7x7
{0x03bc, 0xff},
{0x03bd, 0xff},
{0x03be, 0xff},
{0x03bf, 0xff},
{0x03c0, 0xff},
{0x03c1, 0x01},
{0x03e0, 0x04},
{0x03e1, 0x11},
{0x03e2, 0x01},
{0x03e3, 0x04},
{0x03e4, 0x10},
{0x03e5, 0x21},
{0x03e6, 0x11},
{0x03e7, 0x00},
{0x03e8, 0x11},
{0x03e9, 0x32},
{0x03ea, 0x12},
{0x03eb, 0x01},
{0x03ec, 0x21},
{0x03ed, 0x33},
{0x03ee, 0x23},
{0x03ef, 0x01},
{0x03f0, 0x11},
{0x03f1, 0x32},
{0x03f2, 0x12},
{0x03f3, 0x01},
{0x03f4, 0x10},
{0x03f5, 0x21},
{0x03f6, 0x11},
{0x03f7, 0x00},
{0x03f8, 0x04},
{0x03f9, 0x11},
{0x03fa, 0x01},
{0x03fb, 0x04},
{0x03DC, 0x47}, // SubWinAE setting, min_dark_cnt=7, exit_dark_cnt=4
{0x03DD, 0x5A}, // AEbl_th=70%
{0x03DE, 0x41}, // enable SubWinAE, bottom 3x5, DM_tol=12.5%
{0x03DF, 0x53}, // limit_ratio=65%
{0x0420, 0x82}, // Digital Gain offset
{0x0421, 0x00},
{0x0422, 0x00},
{0x0423, 0x88},
{0x0430, 0x08}, // ABLC
{0x0431, 0x30},
{0x0432, 0x0c},
{0x0433, 0x04}, // 0A
{0x0435, 0x08}, // 10
{0x0450, 0xFF}, // Alpha
{0x0451, 0xD0},
{0x0452, 0xB8},
{0x0453, 0x88},
{0x0454, 0x00},
{0x0458, 0x80},
{0x0459, 0x03},
{0x045A, 0x00},
{0x045B, 0x50},
{0x045C, 0x00},
{0x045D, 0x90},
{0x0465, 0x02},
{0x0466, 0x14},
{0x047A, 0x00}, // ELOFFNRB
{0x047B, 0x00}, // ELOFFNRY
{0x047C, 0x04},
{0x047D, 0x50},
{0x047E, 0x04},
{0x047F, 0x90},
{0x0480, 0x58},
{0x0481, 0x06},
{0x0482, 0x08}, // Sat outdoor
{0x04B0, 0x50}, // Contrast
{0x04B6, 0x30},
{0x04B9, 0x10},
{0x04B3, 0x00},
{0x04B1, 0x85},
{0x04B4, 0x00},
{0x0540, 0x00}, //
{0x0541, 0xBC}, // 60Hz Flicker
{0x0542, 0x00}, //
{0x0543, 0xE1}, // 50Hz Flicker
{0x0580, 0x04}, // BLUR WEIGHT
{0x0581, 0x0F}, // BLUR WEIGHT ALPHA0
{0x0582, 0x04}, // BLUR WEIGHT OUTDOOR
{0x05A1, 0x0A}, // SHARPNESS STRENGTH
{0x05A2, 0x21}, //[6:4] SHARP_ORE_NEG, [1:0] FIL SELECTION
{0x05A3, 0x84}, //[7]EA_EN, [6] EE_CENTER, [3:0] EDGEDIV
{0x05A4, 0x24}, // SHARP_ORE
{0x05A5, 0xFF}, // ORE_MAX
{0x05A6, 0x00}, // ORE_LOW
{0x05A7, 0x24}, // OUGB_HOT
{0x05A8, 0x24}, // OUGB_COLD
{0x05A9, 0x02}, // EDGE RANGE
{0x05B1, 0x24}, // EDGE SUB
{0x05B2, 0x0C}, //[3] Y_ADJC, [2]CMODE
{0x05B4, 0x1F}, // FIX WEIGHT
{0x05AE, 0x75}, // OAR START
{0x05AF, 0x78}, //[7:5]OAR STEP, [4:0]OAR DECSTR
{0x05B6, 0x00}, // SHARPNESS STRENGTH ALPHA0
{0x05B7, 0x10}, // SHARP_ORE ALPHA0
{0x05BF, 0x20}, // EDGESUB ALPHA0
{0x05C1, 0x06}, // SHARPNESS STRENGTH OUTDOOR
{0x05C2, 0x18}, // SHARP ORE OUTDOOR
{0x05C7, 0x00}, // TFBPI
{0x05CC, 0x04}, // Raw sharpness strength
{0x05CD, 0x00}, // Raw sharpness strength ALPHA0
{0x05CE, 0x03}, // Raw sharpness strength outdoor
{0x05E4, 0x08},
{0x05E5, 0x00},
{0x05E6, 0x07},
{0x05E7, 0x05},
{0x05E8, 0x08},
{0x05E9, 0x00},
{0x05EA, 0xD7},
{0x05EB, 0x02},
{0x0660, 0x00},
{0x0661, 0x16},
{0x0662, 0x07},
{0x0663, 0xf1},
{0x0664, 0x07},
{0x0665, 0xde},
{0x0666, 0x07},
{0x0667, 0xe7},
{0x0668, 0x00},
{0x0669, 0x35},
{0x066a, 0x07},
{0x066b, 0xf9},
{0x066c, 0x07},
{0x066d, 0xb7},
{0x066e, 0x00},
{0x066f, 0x27},
{0x0670, 0x07},
{0x0671, 0xf3},
{0x0672, 0x07},
{0x0673, 0xc5},
{0x0674, 0x07},
{0x0675, 0xee},
{0x0676, 0x00},
{0x0677, 0x16},
{0x0678, 0x01},
{0x0679, 0x80},
{0x067a, 0x00},
{0x067b, 0x85},
{0x067c, 0x07},
{0x067d, 0xe1},
{0x067e, 0x07},
{0x067f, 0xf5},
{0x0680, 0x07},
{0x0681, 0xb9},
{0x0682, 0x00},
{0x0683, 0x31},
{0x0684, 0x07},
{0x0685, 0xe6},
{0x0686, 0x07},
{0x0687, 0xd3},
{0x0688, 0x00},
{0x0689, 0x18},
{0x068a, 0x07},
{0x068b, 0xfa},
{0x068c, 0x07},
{0x068d, 0xd2},
{0x068e, 0x00},
{0x068f, 0x08},
{0x0690, 0x00},
{0x0691, 0x02},
{0xAFD0, 0x03}, // Auto Flicker detection off
{0xAFD3, 0x18},
{0xAFD4, 0x04},
{0xAFD5, 0xB8}, // auto flicker samp time 3188
{0xAFD6, 0x02},
{0xAFD7, 0x44},
{0xAFD8, 0x02},
// QVGA
{0x0006, 0x00},
{0x000D, 0x01},
{0x000E, 0x11},
{0x0122, 0xFB},
{0x0125, 0xFF},
{0x0126, 0x70},
{0x05E0, 0XBE},
{0x05E1, 0x00},
{0x05E2, 0xBE},
{0x05E3, 0x00},
{0x05E4, 0x3A},
{0x05E5, 0x00},
{0x05E6, 0x79},
{0x05E7, 0x01},
{0x05E8, 0x04},
{0x05E9, 0x00},
{0x05EA, 0xF3},
{0x05EB, 0x00},
{0x0000, 0x01},
{0x0100, 0x01},
{0x0101, 0x01},
{REGLIST_TAIL, 0x00}, // tail
};
static const DRAM_ATTR uint16_t sensor_framesize_HD[][2] = {
{0x0006, 0x00},
{0x000D, 0x00},
{0x000E, 0x00},
{0x0122, 0xFB},
{0x0125, 0xDF},
{0x0126, 0x70},
{0x05E4, 0x08},
{0x05E5, 0x00},
{0x05E6, 0x07},
{0x05E7, 0x05},
{0x05E8, 0x08},
{0x05E9, 0x00},
{0x05EA, 0xD7},
{0x05EB, 0x02},
{REGLIST_TAIL, 0x00},
};
static const DRAM_ATTR uint16_t sensor_framesize_SVGA[][2] = {
{0x0006, 0x10},
{0x000D, 0x00},
{0x000E, 0x00},
{0x0122, 0xEB},
{0x0125, 0xDF},
{0x0126, 0x70},
{0x05E4, 0x58},
{0x05E5, 0x00},
{0x05E6, 0x77},
{0x05E7, 0x03},
{0x05E8, 0x42},
{0x05E9, 0x00},
{0x05EA, 0x99},
{0x05EB, 0x02},
{REGLIST_TAIL, 0x00},
};
static const DRAM_ATTR uint16_t sensor_framesize_VGA[][2] = {
{0x0006, 0x10},
{0x000D, 0x00},
{0x000E, 0x00},
{0x0122, 0xEB},
{0x0125, 0xFF},
{0x0126, 0x70},
{0x05E0, 0XC1},
{0x05E1, 0x00},
{0x05E2, 0xC1},
{0x05E3, 0x00},
{0x05E4, 0x03},
{0x05E5, 0x00},
{0x05E6, 0x82},
{0x05E7, 0x02},
{0x05E8, 0x04},
{0x05E9, 0x00},
{0x05EA, 0xE3},
{0x05EB, 0x01},
{REGLIST_TAIL, 0x00},
};
static const DRAM_ATTR uint16_t sensor_framesize_CIF[][2] = {
{0x0006, 0x00},
{0x000D, 0x01},
{0x000E, 0x11},
{0x0122, 0xFB},
{0x0125, 0xFF},
{0x0126, 0x72},
{0x05E0, 0XC0},
{0x05E1, 0x00},
{0x05E2, 0x8F},
{0x05E3, 0x00},
{0x05E4, 0x11},
{0x05E5, 0x00},
{0x05E6, 0xA0},
{0x05E7, 0x01},
{0x05E8, 0x08},
{0x05E9, 0x00},
{0x05EA, 0x2F},
{0x05EB, 0x01},
{REGLIST_TAIL, 0x00},
};
static const DRAM_ATTR uint16_t sensor_framesize_QVGA[][2] = {
{0x0006, 0x00},
{0x000D, 0x01},
{0x000E, 0x11},
{0x0122, 0xFB},
{0x0125, 0xFF},
{0x0126, 0x70},
{0x05E0, 0XBE},
{0x05E1, 0x00},
{0x05E2, 0xBE},
{0x05E3, 0x00},
{0x05E4, 0x3A},
{0x05E5, 0x00},
{0x05E6, 0x79},
{0x05E7, 0x01},
{0x05E8, 0x04},
{0x05E9, 0x00},
{0x05EA, 0xF3},
{0x05EB, 0x00},
{REGLIST_TAIL, 0x00},
};
static const DRAM_ATTR uint16_t sensor_framesize_QCIF[][2] = {
{0x0006, 0x00},
{0x000D, 0x01},
{0x000E, 0x11},
{0x0122, 0xFB},
{0x0125, 0xFF},
{0x0126, 0x72},
{0x05E0, 0X52},
{0x05E1, 0x01},
{0x05E2, 0x38},
{0x05E3, 0x01},
{0x05E4, 0x22},
{0x05E5, 0x00},
{0x05E6, 0xD1},
{0x05E7, 0x00},
{0x05E8, 0x04},
{0x05E9, 0x00},
{0x05EA, 0x93},
{0x05EB, 0x00},
{REGLIST_TAIL, 0x00},
};
static const DRAM_ATTR uint16_t sensor_framesize_240X240[][2] = {
{0x0006, 0x00},
{0x000D, 0x01},
{0x000E, 0x11},
{0x0122, 0xFB},
{0x0125, 0xFF},
{0x0126, 0x70},
{0x05E0, 0XBE},
{0x05E1, 0x00},
{0x05E2, 0xBE},
{0x05E3, 0x00},
{0x05E4, 0x62},
{0x05E5, 0x00},
{0x05E6, 0x51},
{0x05E7, 0x01},
{0x05E8, 0x04},
{0x05E9, 0x00},
{0x05EA, 0xF3},
{0x05EB, 0x00},
{REGLIST_TAIL, 0x00},
};
static const DRAM_ATTR uint16_t sensor_framesize_QQVGA[][2] = {
{0x0006, 0x00},
{0x000D, 0x01},
{0x000E, 0x11},
{0x0122, 0xFB},
{0x0125, 0xFF},
{0x0126, 0x70},
{0x05E0, 0X78},
{0x05E1, 0x01},
{0x05E2, 0x78},
{0x05E3, 0x01},
{0x05E4, 0x1E},
{0x05E5, 0x00},
{0x05E6, 0xBD},
{0x05E7, 0x00},
{0x05E8, 0x03},
{0x05E9, 0x00},
{0x05EA, 0x7A},
{0x05EB, 0x00},
{REGLIST_TAIL, 0x00},
};

2
target/esp32s3/ll_cam.c

@ -557,7 +557,7 @@ size_t IRAM_ATTR ll_cam_memcpy(cam_obj_t *cam, uint8_t *out, const uint8_t *in, @@ -557,7 +557,7 @@ size_t IRAM_ATTR ll_cam_memcpy(cam_obj_t *cam, uint8_t *out, const uint8_t *in,
esp_err_t ll_cam_set_sample_mode(cam_obj_t *cam, pixformat_t pix_format, uint32_t xclk_freq_hz, uint16_t sensor_pid)
{
if (pix_format == PIXFORMAT_GRAYSCALE) {
if (sensor_pid == OV3660_PID || sensor_pid == OV5640_PID || sensor_pid == NT99141_PID || sensor_pid == SC031GS_PID || sensor_pid == BF20A6_PID || sensor_pid == GC0308_PID) {
if (sensor_pid == OV3660_PID || sensor_pid == OV5640_PID || sensor_pid == NT99141_PID || sensor_pid == SC031GS_PID || sensor_pid == BF20A6_PID || sensor_pid == GC0308_PID || sensor_pid == HM0360_PID) {
cam->in_bytes_per_pixel = 1; // camera sends Y8
} else {
cam->in_bytes_per_pixel = 2; // camera sends YU/YV

Loading…
Cancel
Save