You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

602 lines
23 KiB

// Copyright 2010-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <string.h>
#include "soc/system_reg.h"
#include "soc/lcd_cam_struct.h"
#include "soc/lcd_cam_reg.h"
#include "soc/gdma_struct.h"
#include "soc/gdma_periph.h"
#include "soc/gdma_reg.h"
#include "hal/clk_gate_ll.h"
#include "esp_private/gdma.h"
#include "ll_cam.h"
#include "cam_hal.h"
#include "esp_rom_gpio.h"
#if (ESP_IDF_VERSION_MAJOR >= 5)
#include "soc/gpio_sig_map.h"
#include "soc/gpio_periph.h"
#include "soc/io_mux_reg.h"
#define gpio_matrix_in(a,b,c) esp_rom_gpio_connect_in_signal(a,b,c)
#define gpio_matrix_out(a,b,c,d) esp_rom_gpio_connect_out_signal(a,b,c,d)
#define ets_delay_us(a) esp_rom_delay_us(a)
#endif
#if !defined(SOC_GDMA_PAIRS_PER_GROUP) && defined(SOC_GDMA_PAIRS_PER_GROUP_MAX)
#define SOC_GDMA_PAIRS_PER_GROUP SOC_GDMA_PAIRS_PER_GROUP_MAX
#endif
static const char *TAG = "s3 ll_cam";
void ll_cam_dma_print_state(cam_obj_t *cam)
{
esp_rom_printf("dma_infifo_status[%u] :\n", cam->dma_num);
esp_rom_printf(" infifo_full_l1 : %lu\n", GDMA.channel[cam->dma_num].in.infifo_status.infifo_full_l1);
esp_rom_printf(" infifo_empty_l1 : %lu\n", GDMA.channel[cam->dma_num].in.infifo_status.infifo_empty_l1);
esp_rom_printf(" infifo_full_l2 : %lu\n", GDMA.channel[cam->dma_num].in.infifo_status.infifo_full_l2);
esp_rom_printf(" infifo_empty_l2 : %lu\n", GDMA.channel[cam->dma_num].in.infifo_status.infifo_empty_l2);
esp_rom_printf(" infifo_full_l3 : %lu\n", GDMA.channel[cam->dma_num].in.infifo_status.infifo_full_l3);
esp_rom_printf(" infifo_empty_l3 : %lu\n", GDMA.channel[cam->dma_num].in.infifo_status.infifo_empty_l3);
esp_rom_printf(" infifo_cnt_l1 : %lu\n", GDMA.channel[cam->dma_num].in.infifo_status.infifo_cnt_l1);
esp_rom_printf(" infifo_cnt_l2 : %lu\n", GDMA.channel[cam->dma_num].in.infifo_status.infifo_cnt_l2);
esp_rom_printf(" infifo_cnt_l3 : %lu\n", GDMA.channel[cam->dma_num].in.infifo_status.infifo_cnt_l3);
esp_rom_printf(" in_remain_under_1b_l3: %lu\n", GDMA.channel[cam->dma_num].in.infifo_status.in_remain_under_1b_l3);
esp_rom_printf(" in_remain_under_2b_l3: %lu\n", GDMA.channel[cam->dma_num].in.infifo_status.in_remain_under_2b_l3);
esp_rom_printf(" in_remain_under_3b_l3: %lu\n", GDMA.channel[cam->dma_num].in.infifo_status.in_remain_under_3b_l3);
esp_rom_printf(" in_remain_under_4b_l3: %lu\n", GDMA.channel[cam->dma_num].in.infifo_status.in_remain_under_4b_l3);
esp_rom_printf(" in_buf_hungry : %lu\n", GDMA.channel[cam->dma_num].in.infifo_status.in_buf_hungry);
esp_rom_printf("dma_state[%u] :\n", cam->dma_num);
esp_rom_printf(" dscr_addr : 0x%lx\n", GDMA.channel[cam->dma_num].in.state.dscr_addr);
esp_rom_printf(" in_dscr_state : %lu\n", GDMA.channel[cam->dma_num].in.state.in_dscr_state);
esp_rom_printf(" in_state : %lu\n", GDMA.channel[cam->dma_num].in.state.in_state);
}
void ll_cam_dma_reset(cam_obj_t *cam)
{
GDMA.channel[cam->dma_num].in.int_clr.val = ~0;
GDMA.channel[cam->dma_num].in.int_ena.val = 0;
GDMA.channel[cam->dma_num].in.conf0.val = 0;
GDMA.channel[cam->dma_num].in.conf0.in_rst = 1;
GDMA.channel[cam->dma_num].in.conf0.in_rst = 0;
//internal SRAM only
if (!cam->psram_mode) {
GDMA.channel[cam->dma_num].in.conf0.indscr_burst_en = 1;
GDMA.channel[cam->dma_num].in.conf0.in_data_burst_en = 1;
}
GDMA.channel[cam->dma_num].in.conf1.in_check_owner = 0;
// GDMA.channel[cam->dma_num].in.conf1.in_ext_mem_bk_size = 2;
GDMA.channel[cam->dma_num].in.peri_sel.sel = 5;
//GDMA.channel[cam->dma_num].in.pri.rx_pri = 1;//rx prio 0-15
//GDMA.channel[cam->dma_num].in.sram_size.in_size = 6;//This register is used to configure the size of L2 Tx FIFO for Rx channel. 0:16 bytes, 1:24 bytes, 2:32 bytes, 3: 40 bytes, 4: 48 bytes, 5:56 bytes, 6: 64 bytes, 7: 72 bytes, 8: 80 bytes.
//GDMA.channel[cam->dma_num].in.wight.rx_weight = 7;//The weight of Rx channel 0-15
}
static void CAMERA_ISR_IRAM_ATTR ll_cam_vsync_isr(void *arg)
{
//DBG_PIN_SET(1);
cam_obj_t *cam = (cam_obj_t *)arg;
BaseType_t HPTaskAwoken = pdFALSE;
typeof(LCD_CAM.lc_dma_int_st) status = LCD_CAM.lc_dma_int_st;
if (status.val == 0) {
return;
}
LCD_CAM.lc_dma_int_clr.val = status.val;
if (status.cam_vsync_int_st) {
ll_cam_send_event(cam, CAM_VSYNC_EVENT, &HPTaskAwoken);
}
if (HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
//DBG_PIN_SET(0);
}
static void CAMERA_ISR_IRAM_ATTR ll_cam_dma_isr(void *arg)
{
cam_obj_t *cam = (cam_obj_t *)arg;
BaseType_t HPTaskAwoken = pdFALSE;
typeof(GDMA.channel[cam->dma_num].in.int_st) status = GDMA.channel[cam->dma_num].in.int_st;
if (status.val == 0) {
return;
}
GDMA.channel[cam->dma_num].in.int_clr.val = status.val;
if (status.in_suc_eof) {
ll_cam_send_event(cam, CAM_IN_SUC_EOF_EVENT, &HPTaskAwoken);
}
if (HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
}
bool IRAM_ATTR ll_cam_stop(cam_obj_t *cam)
{
if (cam->jpeg_mode || !cam->psram_mode) {
GDMA.channel[cam->dma_num].in.int_ena.in_suc_eof = 0;
GDMA.channel[cam->dma_num].in.int_clr.in_suc_eof = 1;
}
GDMA.channel[cam->dma_num].in.link.stop = 1;
return true;
}
bool ll_cam_start(cam_obj_t *cam, int frame_pos)
{
LCD_CAM.cam_ctrl1.cam_start = 0;
if (cam->jpeg_mode || !cam->psram_mode) {
GDMA.channel[cam->dma_num].in.int_clr.in_suc_eof = 1;
GDMA.channel[cam->dma_num].in.int_ena.in_suc_eof = 1;
}
LCD_CAM.cam_ctrl1.cam_reset = 1;
LCD_CAM.cam_ctrl1.cam_reset = 0;
LCD_CAM.cam_ctrl1.cam_afifo_reset = 1;
LCD_CAM.cam_ctrl1.cam_afifo_reset = 0;
GDMA.channel[cam->dma_num].in.conf0.in_rst = 1;
GDMA.channel[cam->dma_num].in.conf0.in_rst = 0;
LCD_CAM.cam_ctrl1.cam_rec_data_bytelen = cam->dma_half_buffer_size - 1; // Ping pong operation
if (!cam->psram_mode) {
GDMA.channel[cam->dma_num].in.link.addr = ((uint32_t)&cam->dma[0]) & 0xfffff;
} else {
GDMA.channel[cam->dma_num].in.link.addr = ((uint32_t)&cam->frames[frame_pos].dma[0]) & 0xfffff;
}
GDMA.channel[cam->dma_num].in.link.start = 1;
LCD_CAM.cam_ctrl.cam_update = 1;
LCD_CAM.cam_ctrl1.cam_start = 1;
return true;
}
esp_err_t ll_cam_deinit(cam_obj_t *cam)
{
if (cam->cam_intr_handle) {
esp_intr_free(cam->cam_intr_handle);
cam->cam_intr_handle = NULL;
}
if (cam->dma_intr_handle) {
esp_intr_free(cam->dma_intr_handle);
cam->dma_intr_handle = NULL;
}
gdma_disconnect(cam->dma_channel_handle);
gdma_del_channel(cam->dma_channel_handle);
cam->dma_channel_handle = NULL;
// GDMA.channel[cam->dma_num].in.link.addr = 0x0;
LCD_CAM.cam_ctrl1.cam_start = 0;
LCD_CAM.cam_ctrl1.cam_reset = 1;
LCD_CAM.cam_ctrl1.cam_reset = 0;
return ESP_OK;
}
static esp_err_t ll_cam_dma_init(cam_obj_t *cam)
{
//alloc rx gdma channel
gdma_channel_alloc_config_t rx_alloc_config = {
.direction = GDMA_CHANNEL_DIRECTION_RX,
};
#if ((ESP_IDF_VERSION_MAJOR == 5 && ESP_IDF_VERSION_MINOR >= 4) || ESP_IDF_VERSION_MAJOR > 5)
esp_err_t ret = gdma_new_ahb_channel(&rx_alloc_config, &cam->dma_channel_handle);
#else
esp_err_t ret = gdma_new_channel(&rx_alloc_config, &cam->dma_channel_handle);
#endif
if (ret != ESP_OK) {
cam_deinit();
ESP_LOGE(TAG, "Can't find available GDMA channel");
return ESP_FAIL;
}
int chan_id = -1;
ret = gdma_get_channel_id(cam->dma_channel_handle, &chan_id);
if (ret != ESP_OK) {
cam_deinit();
ESP_LOGE(TAG, "Can't get GDMA channel number");
return ESP_FAIL;
}
cam->dma_num = chan_id;
ESP_LOGI(TAG, "DMA Channel=%d", cam->dma_num);
// for (int x = (SOC_GDMA_PAIRS_PER_GROUP - 1); x >= 0; x--) {
// if (GDMA.channel[x].in.link.addr == 0x0) {
// cam->dma_num = x;
// ESP_LOGI(TAG, "DMA Channel=%d", cam->dma_num);
// break;
// }
// if (x == 0) {
// cam_deinit();
// ESP_LOGE(TAG, "Can't found available GDMA channel");
// return ESP_FAIL;
// }
// }
if (!periph_ll_periph_enabled(PERIPH_GDMA_MODULE)) {
periph_ll_disable_clk_set_rst(PERIPH_GDMA_MODULE);
periph_ll_enable_clk_clear_rst(PERIPH_GDMA_MODULE);
}
// if (REG_GET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_DMA_CLK_EN) == 0) {
// REG_CLR_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_DMA_CLK_EN);
// REG_SET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_DMA_CLK_EN);
// REG_SET_BIT(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_DMA_RST);
// REG_CLR_BIT(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_DMA_RST);
// }
ll_cam_dma_reset(cam);
return ESP_OK;
}
#if CONFIG_CAMERA_CONVERTER_ENABLED
static esp_err_t ll_cam_converter_config(cam_obj_t *cam, const camera_config_t *config)
{
esp_err_t ret = ESP_OK;
switch (config->conv_mode) {
case YUV422_TO_YUV420:
if (config->pixel_format != PIXFORMAT_YUV422) {
ret = ESP_FAIL;
} else {
ESP_LOGI(TAG, "YUV422 to YUV420 mode");
LCD_CAM.cam_rgb_yuv.cam_conv_yuv2yuv_mode = 1;
LCD_CAM.cam_rgb_yuv.cam_conv_yuv_mode = 0;
LCD_CAM.cam_rgb_yuv.cam_conv_trans_mode = 1;
}
break;
case YUV422_TO_RGB565:
if (config->pixel_format != PIXFORMAT_YUV422) {
ret = ESP_FAIL;
} else {
ESP_LOGI(TAG, "YUV422 to RGB565 mode");
LCD_CAM.cam_rgb_yuv.cam_conv_yuv2yuv_mode = 3;
LCD_CAM.cam_rgb_yuv.cam_conv_yuv_mode = 0;
LCD_CAM.cam_rgb_yuv.cam_conv_trans_mode = 0;
}
break;
default:
break;
}
#if CONFIG_LCD_CAM_CONV_BT709_ENABLED
LCD_CAM.cam_rgb_yuv.cam_conv_protocol_mode = 1;
#else
LCD_CAM.cam_rgb_yuv.cam_conv_protocol_mode = 0;
#endif
#if CONFIG_LCD_CAM_CONV_FULL_RANGE_ENABLED
LCD_CAM.cam_rgb_yuv.cam_conv_data_out_mode = 1;
LCD_CAM.cam_rgb_yuv.cam_conv_data_in_mode = 1;
#else
LCD_CAM.cam_rgb_yuv.cam_conv_data_out_mode = 0;
LCD_CAM.cam_rgb_yuv.cam_conv_data_in_mode = 0;
#endif
LCD_CAM.cam_rgb_yuv.cam_conv_mode_8bits_on = 1;
LCD_CAM.cam_rgb_yuv.cam_conv_bypass = 1;
cam->conv_mode = config->conv_mode;
return ret;
}
#endif
esp_err_t ll_cam_config(cam_obj_t *cam, const camera_config_t *config)
{
esp_err_t ret = ESP_OK;
if (!periph_ll_periph_enabled(PERIPH_LCD_CAM_MODULE)) {
periph_ll_disable_clk_set_rst(PERIPH_LCD_CAM_MODULE);
periph_ll_enable_clk_clear_rst(PERIPH_LCD_CAM_MODULE);
}
// if (REG_GET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_LCD_CAM_CLK_EN) == 0) {
// REG_CLR_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_LCD_CAM_CLK_EN);
// REG_SET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_LCD_CAM_CLK_EN);
// REG_SET_BIT(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_LCD_CAM_RST);
// REG_CLR_BIT(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_LCD_CAM_RST);
// }
LCD_CAM.cam_ctrl.val = 0;
LCD_CAM.cam_ctrl.cam_clkm_div_b = 0;
LCD_CAM.cam_ctrl.cam_clkm_div_a = 0;
LCD_CAM.cam_ctrl.cam_clkm_div_num = 160000000 / config->xclk_freq_hz;
LCD_CAM.cam_ctrl.cam_clk_sel = 3;//Select Camera module source clock. 0: no clock. 1: APLL. 2: CLK160. 3: no clock.
LCD_CAM.cam_ctrl.cam_stop_en = 0;
LCD_CAM.cam_ctrl.cam_vsync_filter_thres = 4; // Filter by LCD_CAM clock
LCD_CAM.cam_ctrl.cam_update = 0;
LCD_CAM.cam_ctrl.cam_byte_order = cam->swap_data;
LCD_CAM.cam_ctrl.cam_bit_order = 0;
LCD_CAM.cam_ctrl.cam_line_int_en = 0;
LCD_CAM.cam_ctrl.cam_vs_eof_en = 0; //1: CAM_VSYNC to generate in_suc_eof. 0: in_suc_eof is controlled by reg_cam_rec_data_cyclelen
LCD_CAM.cam_ctrl1.val = 0;
LCD_CAM.cam_ctrl1.cam_rec_data_bytelen = LCD_CAM_DMA_NODE_BUFFER_MAX_SIZE - 1; // Cannot be assigned to 0, and it is easy to overflow
LCD_CAM.cam_ctrl1.cam_line_int_num = 0; // The number of hsyncs that generate hs interrupts
LCD_CAM.cam_ctrl1.cam_clk_inv = 0;
LCD_CAM.cam_ctrl1.cam_vsync_filter_en = 1;
LCD_CAM.cam_ctrl1.cam_2byte_en = 0;
LCD_CAM.cam_ctrl1.cam_de_inv = 0;
LCD_CAM.cam_ctrl1.cam_hsync_inv = 0;
LCD_CAM.cam_ctrl1.cam_vsync_inv = 0;
LCD_CAM.cam_ctrl1.cam_vh_de_mode_en = 0;
LCD_CAM.cam_rgb_yuv.val = 0;
#if CONFIG_CAMERA_CONVERTER_ENABLED
if (config->conv_mode) {
ret = ll_cam_converter_config(cam, config);
if(ret != ESP_OK) {
return ret;
}
}
#endif
LCD_CAM.cam_ctrl.cam_update = 1;
LCD_CAM.cam_ctrl1.cam_start = 1;
ret = ll_cam_dma_init(cam);
return ret;
}
void ll_cam_vsync_intr_enable(cam_obj_t *cam, bool en)
{
LCD_CAM.lc_dma_int_clr.cam_vsync_int_clr = 1;
if (en) {
LCD_CAM.lc_dma_int_ena.cam_vsync_int_ena = 1;
} else {
LCD_CAM.lc_dma_int_ena.cam_vsync_int_ena = 0;
}
}
esp_err_t ll_cam_set_pin(cam_obj_t *cam, const camera_config_t *config)
{
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_pclk], PIN_FUNC_GPIO);
gpio_set_direction(config->pin_pclk, GPIO_MODE_INPUT);
gpio_set_pull_mode(config->pin_pclk, GPIO_FLOATING);
gpio_matrix_in(config->pin_pclk, CAM_PCLK_IDX, false);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_vsync], PIN_FUNC_GPIO);
gpio_set_direction(config->pin_vsync, GPIO_MODE_INPUT);
gpio_set_pull_mode(config->pin_vsync, GPIO_FLOATING);
gpio_matrix_in(config->pin_vsync, CAM_V_SYNC_IDX, cam->vsync_invert);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_href], PIN_FUNC_GPIO);
gpio_set_direction(config->pin_href, GPIO_MODE_INPUT);
gpio_set_pull_mode(config->pin_href, GPIO_FLOATING);
gpio_matrix_in(config->pin_href, CAM_H_ENABLE_IDX, false);
int data_pins[8] = {
config->pin_d0, config->pin_d1, config->pin_d2, config->pin_d3, config->pin_d4, config->pin_d5, config->pin_d6, config->pin_d7,
};
for (int i = 0; i < 8; i++) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[data_pins[i]], PIN_FUNC_GPIO);
gpio_set_direction(data_pins[i], GPIO_MODE_INPUT);
gpio_set_pull_mode(data_pins[i], GPIO_FLOATING);
gpio_matrix_in(data_pins[i], CAM_DATA_IN0_IDX + i, false);
}
if (config->pin_xclk >= 0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_xclk], PIN_FUNC_GPIO);
gpio_set_direction(config->pin_xclk, GPIO_MODE_OUTPUT);
gpio_set_pull_mode(config->pin_xclk, GPIO_FLOATING);
gpio_matrix_out(config->pin_xclk, CAM_CLK_IDX, false, false);
}
return ESP_OK;
}
esp_err_t ll_cam_init_isr(cam_obj_t *cam)
{
esp_err_t ret = ESP_OK;
ret = esp_intr_alloc_intrstatus(gdma_periph_signals.groups[0].pairs[cam->dma_num].rx_irq_id,
ESP_INTR_FLAG_LOWMED | ESP_INTR_FLAG_SHARED | CAMERA_ISR_IRAM_FLAG,
(uint32_t)&GDMA.channel[cam->dma_num].in.int_st, GDMA_IN_SUC_EOF_CH0_INT_ST_M,
ll_cam_dma_isr, cam, &cam->dma_intr_handle);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "DMA interrupt allocation of camera failed");
return ret;
}
ret = esp_intr_alloc_intrstatus(ETS_LCD_CAM_INTR_SOURCE,
ESP_INTR_FLAG_LOWMED | ESP_INTR_FLAG_SHARED | CAMERA_ISR_IRAM_FLAG,
(uint32_t)&LCD_CAM.lc_dma_int_st.val, LCD_CAM_CAM_VSYNC_INT_ST_M,
ll_cam_vsync_isr, cam, &cam->cam_intr_handle);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "LCD_CAM interrupt allocation of camera failed");
return ret;
}
return ESP_OK;
}
void ll_cam_do_vsync(cam_obj_t *cam)
{
gpio_matrix_in(cam->vsync_pin, CAM_V_SYNC_IDX, !cam->vsync_invert);
ets_delay_us(10);
gpio_matrix_in(cam->vsync_pin, CAM_V_SYNC_IDX, cam->vsync_invert);
}
uint8_t ll_cam_get_dma_align(cam_obj_t *cam)
{
return 16 << GDMA.channel[cam->dma_num].in.conf1.in_ext_mem_bk_size;
}
static bool ll_cam_calc_rgb_dma(cam_obj_t *cam){
size_t node_max = LCD_CAM_DMA_NODE_BUFFER_MAX_SIZE / cam->dma_bytes_per_item;
size_t line_width = cam->width * cam->in_bytes_per_pixel;
size_t node_size = node_max;
size_t nodes_per_line = 1;
size_t lines_per_node = 1;
// Calculate DMA Node Size so that it's divisable by or divisor of the line width
if(line_width >= node_max){
// One or more nodes will be requied for one line
for(size_t i = node_max; i > 0; i=i-1){
if ((line_width % i) == 0) {
node_size = i;
nodes_per_line = line_width / node_size;
break;
}
}
} else {
// One or more lines can fit into one node
for(size_t i = node_max; i > 0; i=i-1){
if ((i % line_width) == 0) {
node_size = i;
lines_per_node = node_size / line_width;
while((cam->height % lines_per_node) != 0){
lines_per_node = lines_per_node - 1;
node_size = lines_per_node * line_width;
}
break;
}
}
}
ESP_LOGI(TAG, "node_size: %4u, nodes_per_line: %u, lines_per_node: %u",
(unsigned) (node_size * cam->dma_bytes_per_item), (unsigned) nodes_per_line, (unsigned) lines_per_node);
cam->dma_node_buffer_size = node_size * cam->dma_bytes_per_item;
size_t dma_half_buffer_max = CONFIG_CAMERA_DMA_BUFFER_SIZE_MAX / 2 / cam->dma_bytes_per_item;
if (line_width > dma_half_buffer_max) {
ESP_LOGE(TAG, "Resolution too high");
return 0;
}
// Calculate minimum EOF size = max(mode_size, line_size)
size_t dma_half_buffer_min = node_size * nodes_per_line;
// Calculate max EOF size divisable by node size
size_t dma_half_buffer = (dma_half_buffer_max / dma_half_buffer_min) * dma_half_buffer_min;
// Adjust EOF size so that height will be divisable by the number of lines in each EOF
size_t lines_per_half_buffer = dma_half_buffer / line_width;
while((cam->height % lines_per_half_buffer) != 0){
dma_half_buffer = dma_half_buffer - dma_half_buffer_min;
lines_per_half_buffer = dma_half_buffer / line_width;
}
// Calculate DMA size
size_t dma_buffer_max = 2 * dma_half_buffer_max;
if (cam->psram_mode) {
dma_buffer_max = cam->recv_size / cam->dma_bytes_per_item;
}
size_t dma_buffer_size = dma_buffer_max;
if (!cam->psram_mode) {
dma_buffer_size =(dma_buffer_max / dma_half_buffer) * dma_half_buffer;
}
ESP_LOGI(TAG, "dma_half_buffer_min: %5u, dma_half_buffer: %5u, lines_per_half_buffer: %2u, dma_buffer_size: %5u",
(unsigned) (dma_half_buffer_min * cam->dma_bytes_per_item), (unsigned) (dma_half_buffer * cam->dma_bytes_per_item),
(unsigned) lines_per_half_buffer, (unsigned) (dma_buffer_size * cam->dma_bytes_per_item));
cam->dma_buffer_size = dma_buffer_size * cam->dma_bytes_per_item;
cam->dma_half_buffer_size = dma_half_buffer * cam->dma_bytes_per_item;
cam->dma_half_buffer_cnt = cam->dma_buffer_size / cam->dma_half_buffer_size;
return 1;
}
bool ll_cam_dma_sizes(cam_obj_t *cam)
{
cam->dma_bytes_per_item = 1;
if (cam->jpeg_mode) {
if (cam->psram_mode) {
cam->dma_buffer_size = cam->recv_size;
cam->dma_half_buffer_size = 1024;
cam->dma_half_buffer_cnt = cam->dma_buffer_size / cam->dma_half_buffer_size;
cam->dma_node_buffer_size = cam->dma_half_buffer_size;
} else {
cam->dma_half_buffer_cnt = 16;
cam->dma_buffer_size = cam->dma_half_buffer_cnt * 1024;
cam->dma_half_buffer_size = cam->dma_buffer_size / cam->dma_half_buffer_cnt;
cam->dma_node_buffer_size = cam->dma_half_buffer_size;
}
} else {
return ll_cam_calc_rgb_dma(cam);
}
return 1;
}
size_t IRAM_ATTR ll_cam_memcpy(cam_obj_t *cam, uint8_t *out, const uint8_t *in, size_t len)
{
// YUV to Grayscale
if (cam->in_bytes_per_pixel == 2 && cam->fb_bytes_per_pixel == 1) {
size_t end = len / 8;
for (size_t i = 0; i < end; ++i) {
out[0] = in[0];
out[1] = in[2];
out[2] = in[4];
out[3] = in[6];
out += 4;
in += 8;
}
return len / 2;
}
// just memcpy
memcpy(out, in, len);
return len;
}
esp_err_t ll_cam_set_sample_mode(cam_obj_t *cam, pixformat_t pix_format, uint32_t xclk_freq_hz, uint16_t sensor_pid)
{
if (pix_format == PIXFORMAT_GRAYSCALE) {
if (sensor_pid == OV3660_PID || sensor_pid == OV5640_PID || sensor_pid == NT99141_PID || sensor_pid == SC031GS_PID || sensor_pid == BF20A6_PID || sensor_pid == GC0308_PID || sensor_pid == HM0360_PID) {
cam->in_bytes_per_pixel = 1; // camera sends Y8
} else {
cam->in_bytes_per_pixel = 2; // camera sends YU/YV
}
cam->fb_bytes_per_pixel = 1; // frame buffer stores Y8
} else if (pix_format == PIXFORMAT_YUV422 || pix_format == PIXFORMAT_RGB565) {
#if CONFIG_CAMERA_CONVERTER_ENABLED
switch (cam->conv_mode) {
case YUV422_TO_YUV420:
cam->in_bytes_per_pixel = 1.5; // for DMA receive
cam->fb_bytes_per_pixel = 1.5; // frame buffer stores YUV420
break;
case YUV422_TO_RGB565:
default:
cam->in_bytes_per_pixel = 2; // for DMA receive
cam->fb_bytes_per_pixel = 2; // frame buffer stores YU/YV/RGB565
break;
}
#else
cam->in_bytes_per_pixel = 2; // for DMA receive
cam->fb_bytes_per_pixel = 2; // frame buffer stores YU/YV/RGB565
#endif
} else if (pix_format == PIXFORMAT_JPEG) {
cam->in_bytes_per_pixel = 1;
cam->fb_bytes_per_pixel = 1;
} else {
ESP_LOGE(TAG, "Requested format is not supported");
return ESP_ERR_NOT_SUPPORTED;
}
return ESP_OK;
}
// implements function from xclk.c to allow dynamic XCLK change
esp_err_t xclk_timer_conf(int ledc_timer, int xclk_freq_hz)
{
LCD_CAM.cam_ctrl.cam_clkm_div_b = 0;
LCD_CAM.cam_ctrl.cam_clkm_div_a = 0;
LCD_CAM.cam_ctrl.cam_clkm_div_num = 160000000 / xclk_freq_hz;
LCD_CAM.cam_ctrl.cam_clk_sel = 3;//Select Camera module source clock. 0: no clock. 1: APLL. 2: CLK160. 3: no clock.
LCD_CAM.cam_ctrl.cam_update = 1;
return ESP_OK;
}