Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

640 lines
17 KiB

/*
* Copyright (c) 2025 STMicroelectronics
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <soc.h>
#include <stm32_ll_bus.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_utils.h>
#include <stm32_ll_system.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/sys/util.h>
#include <stm32_backup_domain.h>
/* Macros to fill up prescaler values */
#define ahb_prescaler(v) CONCAT(LL_RCC_HCLK_SYSCLK_DIV_, v)
#define apb1_prescaler(v) CONCAT(LL_RCC_APB1_HCLK_DIV_, v)
#define apb2_prescaler(v) CONCAT(LL_RCC_APB2_HCLK_DIV_, v)
#define apb3_prescaler(v) CONCAT(LL_RCC_APB3_HCLK_DIV_, v)
static uint32_t get_msis_frequency(void)
{
uint32_t frequency = MSIRC1_VALUE;
if (LL_RCC_MSIS_GetClockSource() == LL_RCC_MSIS_CLOCK_SOURCE_RC0) {
frequency = MSIRC0_VALUE;
}
switch (LL_RCC_MSIS_GetClockDivision()) {
case LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_2:
return frequency / 2U;
case LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_4:
return frequency / 4U;
case LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_8:
return frequency / 8U;
case LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_1:
return frequency;
default:
return 0;
}
}
static uint32_t get_msik_frequency(void)
{
uint32_t frequency = MSIRC1_VALUE;
if (LL_RCC_MSIK_GetClockSource() == LL_RCC_MSIK_CLOCK_SOURCE_RC0) {
frequency = MSIRC0_VALUE;
}
switch (LL_RCC_MSIK_GetClockDivision()) {
case LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_2:
return frequency / 2U;
case LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_4:
return frequency / 4U;
case LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_8:
return frequency / 8U;
case LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_1:
return frequency;
default:
return 0;
}
}
static uint32_t get_startup_frequency(void)
{
switch (LL_RCC_GetSysClkSource()) {
case LL_RCC_SYS_CLKSOURCE_STATUS_MSIS:
return get_msis_frequency();
case LL_RCC_SYS_CLKSOURCE_STATUS_HSI16:
return STM32_HSI_FREQ;
case LL_RCC_SYS_CLKSOURCE_STATUS_HSE:
return STM32_HSE_FREQ;
default:
__ASSERT(0, "Unexpected startup freq");
return 0;
}
}
static uint32_t get_sysclk_frequency(void)
{
#if defined(STM32_SYSCLK_SRC_MSIS)
return get_msis_frequency();
#elif defined(STM32_SYSCLK_SRC_HSE)
return STM32_HSE_FREQ;
#elif defined(STM32_SYSCLK_SRC_HSI)
return STM32_HSI_FREQ;
#else
__ASSERT(0, "No SYSCLK Source configured");
return 0;
#endif
}
/** @brief Verifies clock is part of active clock configuration */
static int enabled_clock(uint32_t src_clk)
{
if ((src_clk == STM32_SRC_SYSCLK) ||
(src_clk == STM32_SRC_HCLK) ||
(src_clk == STM32_SRC_PCLK1) ||
(src_clk == STM32_SRC_PCLK2) ||
(src_clk == STM32_SRC_PCLK3) ||
((src_clk == STM32_SRC_HSE) && IS_ENABLED(STM32_HSE_ENABLED)) ||
((src_clk == STM32_SRC_HSI16) && IS_ENABLED(STM32_HSI_ENABLED)) ||
((src_clk == STM32_SRC_HSI48) && IS_ENABLED(STM32_HSI48_ENABLED)) ||
((src_clk == STM32_SRC_LSE) && IS_ENABLED(STM32_LSE_ENABLED)) ||
((src_clk == STM32_SRC_LSI) && IS_ENABLED(STM32_LSI_ENABLED)) ||
((src_clk == STM32_SRC_MSIS) && IS_ENABLED(STM32_MSIS_ENABLED)) ||
((src_clk == STM32_SRC_MSIK) && IS_ENABLED(STM32_MSIK_ENABLED))) {
return 0;
}
return -ENOTSUP;
}
static int stm32_clock_control_on(const struct device *dev, clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system;
volatile int temp;
ARG_UNUSED(dev);
if (!IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX)) {
/* Attempt to toggle a wrong periph clock bit */
return -ENOTSUP;
}
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus, pclken->enr);
/* Delay after enabling the clock, to allow it to become active */
temp = sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus);
UNUSED(temp);
return 0;
}
static int stm32_clock_control_off(const struct device *dev, clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system;
ARG_UNUSED(dev);
if (!IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX)) {
/* Attempt to toggle a wrong periph clock bit */
return -ENOTSUP;
}
sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus, pclken->enr);
return 0;
}
static int stm32_clock_control_configure(const struct device *dev,
clock_control_subsys_t sub_system,
void *data)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system;
int err;
ARG_UNUSED(dev);
ARG_UNUSED(data);
err = enabled_clock(pclken->bus);
if (err < 0) {
/* Attempt to configure a src clock not available or not valid */
return err;
}
sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_DT_CLKSEL_REG_GET(pclken->enr),
STM32_DT_CLKSEL_MASK_GET(pclken->enr) <<
STM32_DT_CLKSEL_SHIFT_GET(pclken->enr));
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_DT_CLKSEL_REG_GET(pclken->enr),
STM32_DT_CLKSEL_VAL_GET(pclken->enr) <<
STM32_DT_CLKSEL_SHIFT_GET(pclken->enr));
return 0;
}
static int stm32_clock_control_get_subsys_rate(const struct device *dev,
clock_control_subsys_t sys,
uint32_t *rate)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)sys;
/*
* Get AHB Clock (= SystemCoreClock = SYSCLK/prescaler)
* SystemCoreClock is preferred to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC
* since it will be updated after clock configuration and hence
* more likely to contain actual clock speed
*/
uint32_t ahb_clock = SystemCoreClock;
uint32_t apb1_clock = ahb_clock / STM32_APB1_PRESCALER;
uint32_t apb2_clock = ahb_clock / STM32_APB2_PRESCALER;
uint32_t apb3_clock = ahb_clock / STM32_APB3_PRESCALER;
ARG_UNUSED(dev);
switch (pclken->bus) {
case STM32_CLOCK_BUS_AHB1:
case STM32_CLOCK_BUS_AHB1_2:
case STM32_CLOCK_BUS_AHB2:
case STM32_CLOCK_BUS_AHB2_2:
case STM32_SRC_HCLK:
*rate = ahb_clock;
break;
case STM32_CLOCK_BUS_APB1:
case STM32_CLOCK_BUS_APB1_2:
case STM32_SRC_PCLK1:
*rate = apb1_clock;
break;
case STM32_CLOCK_BUS_APB2:
case STM32_SRC_PCLK2:
*rate = apb2_clock;
break;
case STM32_CLOCK_BUS_APB3:
case STM32_SRC_PCLK3:
*rate = apb3_clock;
break;
case STM32_SRC_SYSCLK:
*rate = get_sysclk_frequency();
break;
#if defined(STM32_HSI_ENABLED)
case STM32_SRC_HSI16:
*rate = STM32_HSI_FREQ;
break;
#endif /* STM32_HSI_ENABLED */
#if defined(STM32_MSIS_ENABLED)
case STM32_SRC_MSIS:
*rate = get_msis_frequency();
break;
#endif /* STM32_MSIS_ENABLED */
#if defined(STM32_MSIK_ENABLED)
case STM32_SRC_MSIK:
*rate = get_msik_frequency();
break;
#endif /* STM32_MSIK_ENABLED */
#if defined(STM32_HSE_ENABLED)
case STM32_SRC_HSE:
*rate = STM32_HSE_FREQ;
break;
#endif /* STM32_HSE_ENABLED */
#if defined(STM32_LSE_ENABLED)
case STM32_SRC_LSE:
*rate = STM32_LSE_FREQ;
break;
#endif /* STM32_LSE_ENABLED */
#if defined(STM32_LSI_ENABLED)
case STM32_SRC_LSI:
*rate = STM32_LSI_FREQ;
break;
#endif /* STM32_LSI_ENABLED */
#if defined(STM32_HSI48_ENABLED)
case STM32_SRC_HSI48:
*rate = STM32_HSI48_FREQ;
break;
#endif /* STM32_HSI48_ENABLED */
default:
return -ENOTSUP;
}
if (pclken->div) {
*rate /= pclken->div + 1;
}
return 0;
}
static enum clock_control_status stm32_clock_control_get_status(const struct device *dev,
clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system;
ARG_UNUSED(dev);
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX)) {
/* Gated clocks */
if ((sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus) & pclken->enr)
== pclken->enr) {
return CLOCK_CONTROL_STATUS_ON;
} else {
return CLOCK_CONTROL_STATUS_OFF;
}
} else {
/* Domain clock sources */
if (enabled_clock(pclken->bus) == 0) {
return CLOCK_CONTROL_STATUS_ON;
} else {
return CLOCK_CONTROL_STATUS_OFF;
}
}
}
static DEVICE_API(clock_control, stm32_clock_control_api) = {
.on = stm32_clock_control_on,
.off = stm32_clock_control_off,
.get_rate = stm32_clock_control_get_subsys_rate,
.get_status = stm32_clock_control_get_status,
.configure = stm32_clock_control_configure,
};
static void set_regu_voltage(uint32_t hclk_freq)
{
if (hclk_freq < MHZ(48)) {
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE2);
} else {
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1);
}
}
static void enable_epod_booster(void)
{
LL_RCC_SetEPODBoosterClkSource(LL_RCC_EPODBOOSTCLKSRCE_MSIS);
LL_RCC_SetEPODBoosterClkPrescaler(LL_RCC_EPODBOOSTCLKPRESCAL_1);
LL_PWR_EnableEPODBooster();
while (LL_PWR_IsActiveFlag_BOOST() == 0) {
}
}
static void configure_clock_with_calibration(int range)
{
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSIS);
/* Wait till System clock is ready */
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_MSIS) {
}
LL_RCC_SetAHBPrescaler(LL_RCC_HCLK_SYSCLK_DIV_1);
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_HCLK_DIV_1);
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_HCLK_DIV_1);
LL_RCC_SetAPB3Prescaler(LL_RCC_APB3_HCLK_DIV_1);
BUILD_ASSERT(STM32_LSE_ENABLED || !IS_ENABLED(STM32_MSIK_ENABLED),
"MSIK requires LSE clock to be enabled for auto-calibration");
BUILD_ASSERT(STM32_LSE_ENABLED || !IS_ENABLED(STM32_MSIS_ENABLED),
"MSIS requires LSE clock to be enabled for auto-calibration");
if (IN_RANGE(range, 0, 3)) {
/*
* LSE or HSE must be enabled and ready before selecting
* this oscillator as MSIRC0 input clock for Range [0 3]
*/
if (LL_RCC_LSE_IsEnabled() != 0U && LL_RCC_LSE_IsReady() != 0U) {
LL_RCC_MSI_RC0_SetPLLInputClk(LL_RCC_MSIPLL0SEL_LSE);
} else if (LL_RCC_HSE_IsEnabled() != 0U && LL_RCC_HSE_IsReady() != 0U) {
LL_RCC_MSI_RC0_SetPLLInputClk(LL_RCC_MSIPLL0SEL_HSE_OR_HSEDIV2);
}
LL_RCC_MSI_RC0_PLLmode_Enable();
while (LL_RCC_MSI_RC0_PLLmode_IsEnabled() == 0U) {
}
} else {
/*
* LSE or HSE must be enabled and ready before selecting
* this oscillator as MSIRC1 input clock for Range [4 7]
*/
if (LL_RCC_LSE_IsEnabled() != 0U && LL_RCC_LSE_IsReady() != 0U) {
LL_RCC_MSI_RC1_SetPLLInputClk(LL_RCC_MSIPLL1SEL_LSE);
} else if (LL_RCC_HSE_IsEnabled() != 0U && LL_RCC_HSE_IsReady() != 0U) {
LL_RCC_MSI_RC1_SetPLLInputClk(LL_RCC_MSIPLL1SEL_HSE_OR_HSEDIV2);
}
LL_RCC_MSI_RC1_PLLmode_Enable();
while (LL_RCC_MSI_RC1_PLLmode_IsEnabled() == 0U) {
}
}
}
static void set_up_fixed_clock_sources(void)
{
if (IS_ENABLED(STM32_HSE_ENABLED)) {
/* Check if need to enable HSE bypass feature or not */
if (IS_ENABLED(STM32_HSE_BYPASS)) {
LL_RCC_HSE_EnableBypass();
} else {
LL_RCC_HSE_DisableBypass();
}
/* Enable HSE */
LL_RCC_HSE_Enable();
while (LL_RCC_HSE_IsReady() == 0) {
/* Wait for HSE ready */
}
}
if (IS_ENABLED(STM32_HSI_ENABLED)) {
/* Enable HSI if not enabled */
if (LL_RCC_HSI_IsReady() == 0) {
/* Enable HSI */
LL_RCC_HSI_Enable();
while (LL_RCC_HSI_IsReady() == 0) {
/* Wait for HSI ready */
}
}
}
if (IS_ENABLED(STM32_LSE_ENABLED)) {
/* N.B.: PWR clock has been enabled by SoC init hook */
stm32_backup_domain_enable_access();
/* Configure driving capability */
LL_RCC_LSE_SetDriveCapability(STM32_LSE_DRIVING << RCC_BDCR_LSEDRV_Pos);
if (IS_ENABLED(STM32_LSE_BYPASS)) {
/* Configure LSE bypass */
LL_RCC_LSE_EnableBypass();
}
/* Enable LSE Oscillator */
LL_RCC_LSE_Enable();
/* Wait for LSE ready */
while (LL_RCC_LSE_IsReady() == 0U) {
}
/* Enable LSESYS additionally */
LL_RCC_LSE_EnablePropagation();
/* Enforce BackUp domain access is disabled after clock initialization */
while (LL_RCC_LSE_IsPropagationReady() == 0U) {
}
stm32_backup_domain_disable_access();
}
if (IS_ENABLED(STM32_MSIS_ENABLED)) {
/* Set MSIS Range */
LL_FLASH_SetLatency(LL_FLASH_LATENCY_2);
while (LL_FLASH_GetLatency() != LL_FLASH_LATENCY_2) {
}
if (IN_RANGE(STM32_MSIS_RANGE, 0, 3)) {
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1);
} else {
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE2);
}
enable_epod_booster();
if (IN_RANGE(STM32_MSIS_RANGE, 0, 3)) {
/* Range 0-3 uses RC0 as the clock source */
LL_RCC_MSIS_SetClockSource(LL_RCC_MSIS_CLOCK_SOURCE_RC0);
switch (STM32_MSIS_RANGE) {
case 0:
LL_RCC_MSIS_SetClockDivision(LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_1);
break;
case 1:
LL_RCC_MSIS_SetClockDivision(LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_2);
break;
case 2:
LL_RCC_MSIS_SetClockDivision(LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_4);
break;
case 3:
LL_RCC_MSIS_SetClockDivision(LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_8);
break;
default:
break;
}
} else {
/* Range 4-7 uses RC1 as the clock source */
LL_RCC_MSIS_SetClockSource(LL_RCC_MSIS_CLOCK_SOURCE_RC1);
switch (STM32_MSIS_RANGE) {
case 4:
LL_RCC_MSIS_SetClockDivision(LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_1);
break;
case 5:
LL_RCC_MSIS_SetClockDivision(LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_2);
break;
case 6:
LL_RCC_MSIS_SetClockDivision(LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_4);
break;
case 7:
LL_RCC_MSIS_SetClockDivision(LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_8);
break;
default:
break;
}
}
LL_RCC_MSI_SetMSIxClockRange();
/*
* For stm32u3 LSE or HSE must be enabled and ready before
* selecting this oscillator as MSIRC0/MSIRC1 input clock.
*/
/* Enable MSIS */
LL_RCC_MSIS_Enable();
while (LL_RCC_MSIS_IsReady() == 0U) {
}
configure_clock_with_calibration(STM32_MSIS_RANGE);
}
if (IS_ENABLED(STM32_MSIK_ENABLED)) {
/* Set MSIK Range */
LL_FLASH_SetLatency(LL_FLASH_LATENCY_2);
while (LL_FLASH_GetLatency() != LL_FLASH_LATENCY_2) {
}
if (IN_RANGE(STM32_MSIK_RANGE, 0, 3)) {
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1);
} else {
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE2);
}
enable_epod_booster();
if (IN_RANGE(STM32_MSIK_RANGE, 0, 3)) {
/* Range 0-3 uses RC0 as the clock source */
LL_RCC_MSIK_SetClockSource(LL_RCC_MSIK_CLOCK_SOURCE_RC0);
switch (STM32_MSIK_RANGE) {
case 0:
LL_RCC_MSIK_SetClockDivision(LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_1);
break;
case 1:
LL_RCC_MSIK_SetClockDivision(LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_2);
break;
case 2:
LL_RCC_MSIK_SetClockDivision(LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_4);
break;
case 3:
LL_RCC_MSIK_SetClockDivision(LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_8);
break;
default:
break;
}
} else {
/* Range 4-7 uses RC1 as the clock source */
LL_RCC_MSIK_SetClockSource(LL_RCC_MSIK_CLOCK_SOURCE_RC1);
switch (STM32_MSIK_RANGE) {
case 4:
LL_RCC_MSIK_SetClockDivision(LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_1);
break;
case 5:
LL_RCC_MSIK_SetClockDivision(LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_2);
break;
case 6:
LL_RCC_MSIK_SetClockDivision(LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_4);
break;
case 7:
LL_RCC_MSIK_SetClockDivision(LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_8);
break;
default:
break;
}
}
LL_RCC_MSI_SetMSIxClockRange();
/*
* For stm32u3 LSE or HSE must be enabled and ready before
* selecting this oscillator as MSIRC0/MSIRC1 input clock.
*/
LL_RCC_MSIK_Enable();
while (LL_RCC_MSIK_IsReady() == 0U) {
}
configure_clock_with_calibration(STM32_MSIK_RANGE);
}
if (IS_ENABLED(STM32_LSI_ENABLED)) {
stm32_backup_domain_enable_access();
/* Enable LSI oscillator */
LL_RCC_LSI_Enable();
while (LL_RCC_LSI_IsReady() == 0) {
}
stm32_backup_domain_disable_access();
}
if (IS_ENABLED(STM32_HSI48_ENABLED)) {
LL_RCC_HSI48_Enable();
while (LL_RCC_HSI48_IsReady() == 0) {
}
}
}
int stm32_clock_control_init(const struct device *dev)
{
uint32_t old_hclk_freq;
ARG_UNUSED(dev);
/* Current hclk value */
old_hclk_freq = __LL_RCC_CALC_HCLK_FREQ(get_startup_frequency(), LL_RCC_GetAHBPrescaler());
/* Set voltage regulator to comply with targeted system frequency */
set_regu_voltage(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
/* Set flash latency */
/* If freq increases, set flash latency before any clock setting */
if (old_hclk_freq < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) {
LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
}
/* Set up individual enabled clocks */
set_up_fixed_clock_sources();
/* Set peripheral buses prescalers */
LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_AHB_PRESCALER));
LL_RCC_SetAPB1Prescaler(apb1_prescaler(STM32_APB1_PRESCALER));
LL_RCC_SetAPB2Prescaler(apb2_prescaler(STM32_APB2_PRESCALER));
LL_RCC_SetAPB3Prescaler(apb3_prescaler(STM32_APB3_PRESCALER));
#ifdef STM32_SYSCLK_SRC_HSE
/* Set HSE as SYSCLCK source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSE) {
}
#elif defined(STM32_SYSCLK_SRC_MSIS)
/* Set MSIS as SYSCLCK source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSIS);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSIS) {
}
#elif defined(STM32_SYSCLK_SRC_HSI)
/* Set HSI as SYSCLCK source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI16);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI16) {
}
#else
return -ENOTSUP;
#endif
/* Set FLASH latency */
/* If freq not increased, set flash latency after all clock setting */
if (old_hclk_freq >= CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) {
LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
}
/* Update CMSIS variable */
SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
return 0;
}
/**
* @brief RCC device, note that priority is intentionally set to 1 so
* that the device init runs just after SOC init
*/
DEVICE_DT_DEFINE(DT_NODELABEL(rcc),
stm32_clock_control_init,
NULL,
NULL, NULL,
PRE_KERNEL_1,
CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
&stm32_clock_control_api);