/* * Copyright (c) 2025 STMicroelectronics * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include #include /* Macros to fill up prescaler values */ #define ahb_prescaler(v) CONCAT(LL_RCC_HCLK_SYSCLK_DIV_, v) #define apb1_prescaler(v) CONCAT(LL_RCC_APB1_HCLK_DIV_, v) #define apb2_prescaler(v) CONCAT(LL_RCC_APB2_HCLK_DIV_, v) #define apb3_prescaler(v) CONCAT(LL_RCC_APB3_HCLK_DIV_, v) static uint32_t get_msis_frequency(void) { uint32_t frequency = MSIRC1_VALUE; if (LL_RCC_MSIS_GetClockSource() == LL_RCC_MSIS_CLOCK_SOURCE_RC0) { frequency = MSIRC0_VALUE; } switch (LL_RCC_MSIS_GetClockDivision()) { case LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_2: return frequency / 2U; case LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_4: return frequency / 4U; case LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_8: return frequency / 8U; case LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_1: return frequency; default: return 0; } } static uint32_t get_msik_frequency(void) { uint32_t frequency = MSIRC1_VALUE; if (LL_RCC_MSIK_GetClockSource() == LL_RCC_MSIK_CLOCK_SOURCE_RC0) { frequency = MSIRC0_VALUE; } switch (LL_RCC_MSIK_GetClockDivision()) { case LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_2: return frequency / 2U; case LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_4: return frequency / 4U; case LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_8: return frequency / 8U; case LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_1: return frequency; default: return 0; } } static uint32_t get_startup_frequency(void) { switch (LL_RCC_GetSysClkSource()) { case LL_RCC_SYS_CLKSOURCE_STATUS_MSIS: return get_msis_frequency(); case LL_RCC_SYS_CLKSOURCE_STATUS_HSI16: return STM32_HSI_FREQ; case LL_RCC_SYS_CLKSOURCE_STATUS_HSE: return STM32_HSE_FREQ; default: __ASSERT(0, "Unexpected startup freq"); return 0; } } static uint32_t get_sysclk_frequency(void) { #if defined(STM32_SYSCLK_SRC_MSIS) return get_msis_frequency(); #elif defined(STM32_SYSCLK_SRC_HSE) return STM32_HSE_FREQ; #elif defined(STM32_SYSCLK_SRC_HSI) return STM32_HSI_FREQ; #else __ASSERT(0, "No SYSCLK Source configured"); return 0; #endif } /** @brief Verifies clock is part of active clock configuration */ static int enabled_clock(uint32_t src_clk) { if ((src_clk == STM32_SRC_SYSCLK) || (src_clk == STM32_SRC_HCLK) || (src_clk == STM32_SRC_PCLK1) || (src_clk == STM32_SRC_PCLK2) || (src_clk == STM32_SRC_PCLK3) || ((src_clk == STM32_SRC_HSE) && IS_ENABLED(STM32_HSE_ENABLED)) || ((src_clk == STM32_SRC_HSI16) && IS_ENABLED(STM32_HSI_ENABLED)) || ((src_clk == STM32_SRC_HSI48) && IS_ENABLED(STM32_HSI48_ENABLED)) || ((src_clk == STM32_SRC_LSE) && IS_ENABLED(STM32_LSE_ENABLED)) || ((src_clk == STM32_SRC_LSI) && IS_ENABLED(STM32_LSI_ENABLED)) || ((src_clk == STM32_SRC_MSIS) && IS_ENABLED(STM32_MSIS_ENABLED)) || ((src_clk == STM32_SRC_MSIK) && IS_ENABLED(STM32_MSIK_ENABLED))) { return 0; } return -ENOTSUP; } static int stm32_clock_control_on(const struct device *dev, clock_control_subsys_t sub_system) { struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system; volatile int temp; ARG_UNUSED(dev); if (!IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX)) { /* Attempt to toggle a wrong periph clock bit */ return -ENOTSUP; } sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus, pclken->enr); /* Delay after enabling the clock, to allow it to become active */ temp = sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus); UNUSED(temp); return 0; } static int stm32_clock_control_off(const struct device *dev, clock_control_subsys_t sub_system) { struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system; ARG_UNUSED(dev); if (!IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX)) { /* Attempt to toggle a wrong periph clock bit */ return -ENOTSUP; } sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus, pclken->enr); return 0; } static int stm32_clock_control_configure(const struct device *dev, clock_control_subsys_t sub_system, void *data) { struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system; int err; ARG_UNUSED(dev); ARG_UNUSED(data); err = enabled_clock(pclken->bus); if (err < 0) { /* Attempt to configure a src clock not available or not valid */ return err; } sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_DT_CLKSEL_REG_GET(pclken->enr), STM32_DT_CLKSEL_MASK_GET(pclken->enr) << STM32_DT_CLKSEL_SHIFT_GET(pclken->enr)); sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_DT_CLKSEL_REG_GET(pclken->enr), STM32_DT_CLKSEL_VAL_GET(pclken->enr) << STM32_DT_CLKSEL_SHIFT_GET(pclken->enr)); return 0; } static int stm32_clock_control_get_subsys_rate(const struct device *dev, clock_control_subsys_t sys, uint32_t *rate) { struct stm32_pclken *pclken = (struct stm32_pclken *)sys; /* * Get AHB Clock (= SystemCoreClock = SYSCLK/prescaler) * SystemCoreClock is preferred to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC * since it will be updated after clock configuration and hence * more likely to contain actual clock speed */ uint32_t ahb_clock = SystemCoreClock; uint32_t apb1_clock = ahb_clock / STM32_APB1_PRESCALER; uint32_t apb2_clock = ahb_clock / STM32_APB2_PRESCALER; uint32_t apb3_clock = ahb_clock / STM32_APB3_PRESCALER; ARG_UNUSED(dev); switch (pclken->bus) { case STM32_CLOCK_BUS_AHB1: case STM32_CLOCK_BUS_AHB1_2: case STM32_CLOCK_BUS_AHB2: case STM32_CLOCK_BUS_AHB2_2: case STM32_SRC_HCLK: *rate = ahb_clock; break; case STM32_CLOCK_BUS_APB1: case STM32_CLOCK_BUS_APB1_2: case STM32_SRC_PCLK1: *rate = apb1_clock; break; case STM32_CLOCK_BUS_APB2: case STM32_SRC_PCLK2: *rate = apb2_clock; break; case STM32_CLOCK_BUS_APB3: case STM32_SRC_PCLK3: *rate = apb3_clock; break; case STM32_SRC_SYSCLK: *rate = get_sysclk_frequency(); break; #if defined(STM32_HSI_ENABLED) case STM32_SRC_HSI16: *rate = STM32_HSI_FREQ; break; #endif /* STM32_HSI_ENABLED */ #if defined(STM32_MSIS_ENABLED) case STM32_SRC_MSIS: *rate = get_msis_frequency(); break; #endif /* STM32_MSIS_ENABLED */ #if defined(STM32_MSIK_ENABLED) case STM32_SRC_MSIK: *rate = get_msik_frequency(); break; #endif /* STM32_MSIK_ENABLED */ #if defined(STM32_HSE_ENABLED) case STM32_SRC_HSE: *rate = STM32_HSE_FREQ; break; #endif /* STM32_HSE_ENABLED */ #if defined(STM32_LSE_ENABLED) case STM32_SRC_LSE: *rate = STM32_LSE_FREQ; break; #endif /* STM32_LSE_ENABLED */ #if defined(STM32_LSI_ENABLED) case STM32_SRC_LSI: *rate = STM32_LSI_FREQ; break; #endif /* STM32_LSI_ENABLED */ #if defined(STM32_HSI48_ENABLED) case STM32_SRC_HSI48: *rate = STM32_HSI48_FREQ; break; #endif /* STM32_HSI48_ENABLED */ default: return -ENOTSUP; } if (pclken->div) { *rate /= pclken->div + 1; } return 0; } static enum clock_control_status stm32_clock_control_get_status(const struct device *dev, clock_control_subsys_t sub_system) { struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system; ARG_UNUSED(dev); if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX)) { /* Gated clocks */ if ((sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus) & pclken->enr) == pclken->enr) { return CLOCK_CONTROL_STATUS_ON; } else { return CLOCK_CONTROL_STATUS_OFF; } } else { /* Domain clock sources */ if (enabled_clock(pclken->bus) == 0) { return CLOCK_CONTROL_STATUS_ON; } else { return CLOCK_CONTROL_STATUS_OFF; } } } static DEVICE_API(clock_control, stm32_clock_control_api) = { .on = stm32_clock_control_on, .off = stm32_clock_control_off, .get_rate = stm32_clock_control_get_subsys_rate, .get_status = stm32_clock_control_get_status, .configure = stm32_clock_control_configure, }; static void set_regu_voltage(uint32_t hclk_freq) { if (hclk_freq < MHZ(48)) { LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE2); } else { LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1); } } static void enable_epod_booster(void) { LL_RCC_SetEPODBoosterClkSource(LL_RCC_EPODBOOSTCLKSRCE_MSIS); LL_RCC_SetEPODBoosterClkPrescaler(LL_RCC_EPODBOOSTCLKPRESCAL_1); LL_PWR_EnableEPODBooster(); while (LL_PWR_IsActiveFlag_BOOST() == 0) { } } static void configure_clock_with_calibration(int range) { LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSIS); /* Wait till System clock is ready */ while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_MSIS) { } LL_RCC_SetAHBPrescaler(LL_RCC_HCLK_SYSCLK_DIV_1); LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_HCLK_DIV_1); LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_HCLK_DIV_1); LL_RCC_SetAPB3Prescaler(LL_RCC_APB3_HCLK_DIV_1); BUILD_ASSERT(STM32_LSE_ENABLED || !IS_ENABLED(STM32_MSIK_ENABLED), "MSIK requires LSE clock to be enabled for auto-calibration"); BUILD_ASSERT(STM32_LSE_ENABLED || !IS_ENABLED(STM32_MSIS_ENABLED), "MSIS requires LSE clock to be enabled for auto-calibration"); if (IN_RANGE(range, 0, 3)) { /* * LSE or HSE must be enabled and ready before selecting * this oscillator as MSIRC0 input clock for Range [0 3] */ if (LL_RCC_LSE_IsEnabled() != 0U && LL_RCC_LSE_IsReady() != 0U) { LL_RCC_MSI_RC0_SetPLLInputClk(LL_RCC_MSIPLL0SEL_LSE); } else if (LL_RCC_HSE_IsEnabled() != 0U && LL_RCC_HSE_IsReady() != 0U) { LL_RCC_MSI_RC0_SetPLLInputClk(LL_RCC_MSIPLL0SEL_HSE_OR_HSEDIV2); } LL_RCC_MSI_RC0_PLLmode_Enable(); while (LL_RCC_MSI_RC0_PLLmode_IsEnabled() == 0U) { } } else { /* * LSE or HSE must be enabled and ready before selecting * this oscillator as MSIRC1 input clock for Range [4 7] */ if (LL_RCC_LSE_IsEnabled() != 0U && LL_RCC_LSE_IsReady() != 0U) { LL_RCC_MSI_RC1_SetPLLInputClk(LL_RCC_MSIPLL1SEL_LSE); } else if (LL_RCC_HSE_IsEnabled() != 0U && LL_RCC_HSE_IsReady() != 0U) { LL_RCC_MSI_RC1_SetPLLInputClk(LL_RCC_MSIPLL1SEL_HSE_OR_HSEDIV2); } LL_RCC_MSI_RC1_PLLmode_Enable(); while (LL_RCC_MSI_RC1_PLLmode_IsEnabled() == 0U) { } } } static void set_up_fixed_clock_sources(void) { if (IS_ENABLED(STM32_HSE_ENABLED)) { /* Check if need to enable HSE bypass feature or not */ if (IS_ENABLED(STM32_HSE_BYPASS)) { LL_RCC_HSE_EnableBypass(); } else { LL_RCC_HSE_DisableBypass(); } /* Enable HSE */ LL_RCC_HSE_Enable(); while (LL_RCC_HSE_IsReady() == 0) { /* Wait for HSE ready */ } } if (IS_ENABLED(STM32_HSI_ENABLED)) { /* Enable HSI if not enabled */ if (LL_RCC_HSI_IsReady() == 0) { /* Enable HSI */ LL_RCC_HSI_Enable(); while (LL_RCC_HSI_IsReady() == 0) { /* Wait for HSI ready */ } } } if (IS_ENABLED(STM32_LSE_ENABLED)) { /* N.B.: PWR clock has been enabled by SoC init hook */ stm32_backup_domain_enable_access(); /* Configure driving capability */ LL_RCC_LSE_SetDriveCapability(STM32_LSE_DRIVING << RCC_BDCR_LSEDRV_Pos); if (IS_ENABLED(STM32_LSE_BYPASS)) { /* Configure LSE bypass */ LL_RCC_LSE_EnableBypass(); } /* Enable LSE Oscillator */ LL_RCC_LSE_Enable(); /* Wait for LSE ready */ while (LL_RCC_LSE_IsReady() == 0U) { } /* Enable LSESYS additionally */ LL_RCC_LSE_EnablePropagation(); /* Enforce BackUp domain access is disabled after clock initialization */ while (LL_RCC_LSE_IsPropagationReady() == 0U) { } stm32_backup_domain_disable_access(); } if (IS_ENABLED(STM32_MSIS_ENABLED)) { /* Set MSIS Range */ LL_FLASH_SetLatency(LL_FLASH_LATENCY_2); while (LL_FLASH_GetLatency() != LL_FLASH_LATENCY_2) { } if (IN_RANGE(STM32_MSIS_RANGE, 0, 3)) { LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1); } else { LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE2); } enable_epod_booster(); if (IN_RANGE(STM32_MSIS_RANGE, 0, 3)) { /* Range 0-3 uses RC0 as the clock source */ LL_RCC_MSIS_SetClockSource(LL_RCC_MSIS_CLOCK_SOURCE_RC0); switch (STM32_MSIS_RANGE) { case 0: LL_RCC_MSIS_SetClockDivision(LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_1); break; case 1: LL_RCC_MSIS_SetClockDivision(LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_2); break; case 2: LL_RCC_MSIS_SetClockDivision(LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_4); break; case 3: LL_RCC_MSIS_SetClockDivision(LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_8); break; default: break; } } else { /* Range 4-7 uses RC1 as the clock source */ LL_RCC_MSIS_SetClockSource(LL_RCC_MSIS_CLOCK_SOURCE_RC1); switch (STM32_MSIS_RANGE) { case 4: LL_RCC_MSIS_SetClockDivision(LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_1); break; case 5: LL_RCC_MSIS_SetClockDivision(LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_2); break; case 6: LL_RCC_MSIS_SetClockDivision(LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_4); break; case 7: LL_RCC_MSIS_SetClockDivision(LL_RCC_MSIS_CLOCK_SOURCE_RC_DIV_8); break; default: break; } } LL_RCC_MSI_SetMSIxClockRange(); /* * For stm32u3 LSE or HSE must be enabled and ready before * selecting this oscillator as MSIRC0/MSIRC1 input clock. */ /* Enable MSIS */ LL_RCC_MSIS_Enable(); while (LL_RCC_MSIS_IsReady() == 0U) { } configure_clock_with_calibration(STM32_MSIS_RANGE); } if (IS_ENABLED(STM32_MSIK_ENABLED)) { /* Set MSIK Range */ LL_FLASH_SetLatency(LL_FLASH_LATENCY_2); while (LL_FLASH_GetLatency() != LL_FLASH_LATENCY_2) { } if (IN_RANGE(STM32_MSIK_RANGE, 0, 3)) { LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1); } else { LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE2); } enable_epod_booster(); if (IN_RANGE(STM32_MSIK_RANGE, 0, 3)) { /* Range 0-3 uses RC0 as the clock source */ LL_RCC_MSIK_SetClockSource(LL_RCC_MSIK_CLOCK_SOURCE_RC0); switch (STM32_MSIK_RANGE) { case 0: LL_RCC_MSIK_SetClockDivision(LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_1); break; case 1: LL_RCC_MSIK_SetClockDivision(LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_2); break; case 2: LL_RCC_MSIK_SetClockDivision(LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_4); break; case 3: LL_RCC_MSIK_SetClockDivision(LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_8); break; default: break; } } else { /* Range 4-7 uses RC1 as the clock source */ LL_RCC_MSIK_SetClockSource(LL_RCC_MSIK_CLOCK_SOURCE_RC1); switch (STM32_MSIK_RANGE) { case 4: LL_RCC_MSIK_SetClockDivision(LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_1); break; case 5: LL_RCC_MSIK_SetClockDivision(LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_2); break; case 6: LL_RCC_MSIK_SetClockDivision(LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_4); break; case 7: LL_RCC_MSIK_SetClockDivision(LL_RCC_MSIK_CLOCK_SOURCE_RC_DIV_8); break; default: break; } } LL_RCC_MSI_SetMSIxClockRange(); /* * For stm32u3 LSE or HSE must be enabled and ready before * selecting this oscillator as MSIRC0/MSIRC1 input clock. */ LL_RCC_MSIK_Enable(); while (LL_RCC_MSIK_IsReady() == 0U) { } configure_clock_with_calibration(STM32_MSIK_RANGE); } if (IS_ENABLED(STM32_LSI_ENABLED)) { stm32_backup_domain_enable_access(); /* Enable LSI oscillator */ LL_RCC_LSI_Enable(); while (LL_RCC_LSI_IsReady() == 0) { } stm32_backup_domain_disable_access(); } if (IS_ENABLED(STM32_HSI48_ENABLED)) { LL_RCC_HSI48_Enable(); while (LL_RCC_HSI48_IsReady() == 0) { } } } int stm32_clock_control_init(const struct device *dev) { uint32_t old_hclk_freq; ARG_UNUSED(dev); /* Current hclk value */ old_hclk_freq = __LL_RCC_CALC_HCLK_FREQ(get_startup_frequency(), LL_RCC_GetAHBPrescaler()); /* Set voltage regulator to comply with targeted system frequency */ set_regu_voltage(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC); /* Set flash latency */ /* If freq increases, set flash latency before any clock setting */ if (old_hclk_freq < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) { LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC); } /* Set up individual enabled clocks */ set_up_fixed_clock_sources(); /* Set peripheral buses prescalers */ LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_AHB_PRESCALER)); LL_RCC_SetAPB1Prescaler(apb1_prescaler(STM32_APB1_PRESCALER)); LL_RCC_SetAPB2Prescaler(apb2_prescaler(STM32_APB2_PRESCALER)); LL_RCC_SetAPB3Prescaler(apb3_prescaler(STM32_APB3_PRESCALER)); #ifdef STM32_SYSCLK_SRC_HSE /* Set HSE as SYSCLCK source */ LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE); while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSE) { } #elif defined(STM32_SYSCLK_SRC_MSIS) /* Set MSIS as SYSCLCK source */ LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSIS); while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSIS) { } #elif defined(STM32_SYSCLK_SRC_HSI) /* Set HSI as SYSCLCK source */ LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI16); while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI16) { } #else return -ENOTSUP; #endif /* Set FLASH latency */ /* If freq not increased, set flash latency after all clock setting */ if (old_hclk_freq >= CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) { LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC); } /* Update CMSIS variable */ SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC; return 0; } /** * @brief RCC device, note that priority is intentionally set to 1 so * that the device init runs just after SOC init */ DEVICE_DT_DEFINE(DT_NODELABEL(rcc), stm32_clock_control_init, NULL, NULL, NULL, PRE_KERNEL_1, CONFIG_CLOCK_CONTROL_INIT_PRIORITY, &stm32_clock_control_api);