Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

436 lines
11 KiB

/*
* Copyright (c) 2024 Nordic Semiconductor ASA
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nordic_nrf_lfclk
#include "clock_control_nrf2_common.h"
#include <zephyr/devicetree.h>
#include <zephyr/drivers/clock_control/nrf_clock_control.h>
#include <hal/nrf_bicr.h>
#include <nrfs_clock.h>
#include <zephyr/logging/log.h>
LOG_MODULE_DECLARE(clock_control_nrf2, CONFIG_CLOCK_CONTROL_LOG_LEVEL);
BUILD_ASSERT(DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT) == 1,
"multiple instances not supported");
#define LFCLK_HFXO_NODE DT_INST_PHANDLE_BY_NAME(0, clocks, hfxo)
#define LFCLK_LFRC_ACCURACY DT_INST_PROP(0, lfrc_accuracy_ppm)
#define LFCLK_HFXO_ACCURACY DT_PROP(LFCLK_HFXO_NODE, accuracy_ppm)
#define LFCLK_LFLPRC_STARTUP_TIME_US DT_INST_PROP(0, lflprc_startup_time_us)
#define LFCLK_LFRC_STARTUP_TIME_US DT_INST_PROP(0, lfrc_startup_time_us)
#define LFCLK_MAX_OPTS 4
#define LFCLK_DEF_OPTS 2
#define NRFS_CLOCK_TIMEOUT K_MSEC(CONFIG_CLOCK_CONTROL_NRF_LFCLK_CLOCK_TIMEOUT_MS)
#define BICR (NRF_BICR_Type *)DT_REG_ADDR(DT_NODELABEL(bicr))
/* Clock options sorted from highest to lowest power consumption.
* - Clock synthesized from a high frequency clock
* - Internal RC oscillator
* - External clock. These are inserted into the list at driver initialization.
* Set to one of the following:
* - XTAL. Low or High precision
* - External sine or square wave
*/
static struct clock_options {
uint16_t accuracy : 15;
uint16_t precision : 1;
nrfs_clock_src_t src;
} clock_options[LFCLK_MAX_OPTS] = {
{
/* NRFS will request FLL16M use HFXO in bypass mode if SYNTH src is used */
.accuracy = LFCLK_HFXO_ACCURACY,
.precision = 1,
.src = NRFS_CLOCK_SRC_LFCLK_SYNTH,
},
{
.accuracy = LFCLK_LFRC_ACCURACY,
.precision = 0,
.src = NRFS_CLOCK_SRC_LFCLK_LFRC,
},
/* Remaining options are populated on lfclk_init */
};
struct lfclk_dev_data {
STRUCT_CLOCK_CONFIG(lfclk, ARRAY_SIZE(clock_options)) clk_cfg;
struct k_timer timer;
uint16_t max_accuracy;
uint8_t clock_options_cnt;
uint32_t hfxo_startup_time_us;
uint32_t lfxo_startup_time_us;
};
struct lfclk_dev_config {
uint32_t fixed_frequency;
};
static int lfosc_get_accuracy(uint16_t *accuracy)
{
switch (nrf_bicr_lfosc_accuracy_get(BICR)) {
case NRF_BICR_LFOSC_ACCURACY_500PPM:
*accuracy = 500U;
break;
case NRF_BICR_LFOSC_ACCURACY_250PPM:
*accuracy = 250U;
break;
case NRF_BICR_LFOSC_ACCURACY_150PPM:
*accuracy = 150U;
break;
case NRF_BICR_LFOSC_ACCURACY_100PPM:
*accuracy = 100U;
break;
case NRF_BICR_LFOSC_ACCURACY_75PPM:
*accuracy = 75U;
break;
case NRF_BICR_LFOSC_ACCURACY_50PPM:
*accuracy = 50U;
break;
case NRF_BICR_LFOSC_ACCURACY_30PPM:
*accuracy = 30U;
break;
case NRF_BICR_LFOSC_ACCURACY_20PPM:
*accuracy = 20U;
break;
default:
return -EINVAL;
}
return 0;
}
static void clock_evt_handler(nrfs_clock_evt_t const *p_evt, void *context)
{
struct lfclk_dev_data *dev_data = context;
int status = 0;
k_timer_stop(&dev_data->timer);
if (p_evt->type == NRFS_CLOCK_EVT_REJECT) {
status = -ENXIO;
}
clock_config_update_end(&dev_data->clk_cfg, status);
}
static void lfclk_update_timeout_handler(struct k_timer *timer)
{
struct lfclk_dev_data *dev_data =
CONTAINER_OF(timer, struct lfclk_dev_data, timer);
clock_config_update_end(&dev_data->clk_cfg, -ETIMEDOUT);
}
static void lfclk_work_handler(struct k_work *work)
{
struct lfclk_dev_data *dev_data =
CONTAINER_OF(work, struct lfclk_dev_data, clk_cfg.work);
uint8_t to_activate_idx;
nrfs_err_t err;
to_activate_idx = clock_config_update_begin(work);
err = nrfs_clock_lfclk_src_set(clock_options[to_activate_idx].src,
dev_data);
if (err != NRFS_SUCCESS) {
clock_config_update_end(&dev_data->clk_cfg, -EIO);
} else {
k_timer_start(&dev_data->timer, NRFS_CLOCK_TIMEOUT, K_NO_WAIT);
}
}
static int lfclk_resolve_spec_to_idx(const struct device *dev,
const struct nrf_clock_spec *req_spec)
{
struct lfclk_dev_data *dev_data = dev->data;
const struct lfclk_dev_config *dev_config = dev->config;
uint16_t req_accuracy;
if (req_spec->frequency > dev_config->fixed_frequency) {
LOG_ERR("invalid frequency");
return -EINVAL;
}
req_accuracy = req_spec->accuracy == NRF_CLOCK_CONTROL_ACCURACY_MAX
? dev_data->max_accuracy
: req_spec->accuracy;
for (int i = dev_data->clock_options_cnt - 1; i >= 0; --i) {
/* Iterate to a more power hungry and accurate clock source
* If the requested accuracy is higher (lower ppm) than what
* the clock source can provide.
*
* In case of an accuracy of 0 (don't care), do not check accuracy.
*/
if ((req_accuracy != 0 && req_accuracy < clock_options[i].accuracy) ||
(req_spec->precision > clock_options[i].precision)) {
continue;
}
return i;
}
LOG_ERR("invalid accuracy or precision");
return -EINVAL;
}
static void lfclk_get_spec_by_idx(const struct device *dev,
uint8_t idx,
struct nrf_clock_spec *spec)
{
const struct lfclk_dev_config *dev_config = dev->config;
spec->frequency = dev_config->fixed_frequency;
spec->accuracy = clock_options[idx].accuracy;
spec->precision = clock_options[idx].precision;
}
static struct onoff_manager *lfclk_get_mgr_by_idx(const struct device *dev, uint8_t idx)
{
struct lfclk_dev_data *dev_data = dev->data;
return &dev_data->clk_cfg.onoff[idx].mgr;
}
static int lfclk_get_startup_time_by_idx(const struct device *dev,
uint8_t idx,
uint32_t *startup_time_us)
{
struct lfclk_dev_data *dev_data = dev->data;
nrfs_clock_src_t src = clock_options[idx].src;
switch (src) {
case NRFS_CLOCK_SRC_LFCLK_LFLPRC:
*startup_time_us = LFCLK_LFLPRC_STARTUP_TIME_US;
return 0;
case NRFS_CLOCK_SRC_LFCLK_LFRC:
*startup_time_us = LFCLK_LFRC_STARTUP_TIME_US;
return 0;
case NRFS_CLOCK_SRC_LFCLK_XO_PIXO:
case NRFS_CLOCK_SRC_LFCLK_XO_PIERCE:
case NRFS_CLOCK_SRC_LFCLK_XO_EXT_SINE:
case NRFS_CLOCK_SRC_LFCLK_XO_EXT_SQUARE:
case NRFS_CLOCK_SRC_LFCLK_XO_PIERCE_HP:
case NRFS_CLOCK_SRC_LFCLK_XO_EXT_SINE_HP:
*startup_time_us = dev_data->lfxo_startup_time_us;
return 0;
case NRFS_CLOCK_SRC_LFCLK_SYNTH:
*startup_time_us = dev_data->hfxo_startup_time_us;
return 0;
default:
break;
}
return -EINVAL;
}
static struct onoff_manager *lfclk_find_mgr_by_spec(const struct device *dev,
const struct nrf_clock_spec *spec)
{
int idx;
if (!spec) {
return lfclk_get_mgr_by_idx(dev, 0);
}
idx = lfclk_resolve_spec_to_idx(dev, spec);
return idx < 0 ? NULL : lfclk_get_mgr_by_idx(dev, idx);
}
static int api_request_lfclk(const struct device *dev,
const struct nrf_clock_spec *spec,
struct onoff_client *cli)
{
struct onoff_manager *mgr = lfclk_find_mgr_by_spec(dev, spec);
if (mgr) {
return clock_config_request(mgr, cli);
}
return -EINVAL;
}
static int api_release_lfclk(const struct device *dev,
const struct nrf_clock_spec *spec)
{
struct onoff_manager *mgr = lfclk_find_mgr_by_spec(dev, spec);
if (mgr) {
return onoff_release(mgr);
}
return -EINVAL;
}
static int api_cancel_or_release_lfclk(const struct device *dev,
const struct nrf_clock_spec *spec,
struct onoff_client *cli)
{
struct onoff_manager *mgr = lfclk_find_mgr_by_spec(dev, spec);
if (mgr) {
return onoff_cancel_or_release(mgr, cli);
}
return -EINVAL;
}
static int api_resolve(const struct device *dev,
const struct nrf_clock_spec *req_spec,
struct nrf_clock_spec *res_spec)
{
int idx;
idx = lfclk_resolve_spec_to_idx(dev, req_spec);
if (idx < 0) {
return -EINVAL;
}
lfclk_get_spec_by_idx(dev, idx, res_spec);
return 0;
}
static int api_get_startup_time(const struct device *dev,
const struct nrf_clock_spec *spec,
uint32_t *startup_time_us)
{
int idx;
idx = lfclk_resolve_spec_to_idx(dev, spec);
if (idx < 0) {
return -EINVAL;
}
return lfclk_get_startup_time_by_idx(dev, idx, startup_time_us);
}
static int api_get_rate_lfclk(const struct device *dev,
clock_control_subsys_t sys,
uint32_t *rate)
{
ARG_UNUSED(sys);
const struct lfclk_dev_config *dev_config = dev->config;
*rate = dev_config->fixed_frequency;
return 0;
}
static int lfclk_init(const struct device *dev)
{
struct lfclk_dev_data *dev_data = dev->data;
nrf_bicr_lfosc_mode_t lfosc_mode;
nrfs_err_t res;
res = nrfs_clock_init(clock_evt_handler);
if (res != NRFS_SUCCESS) {
return -EIO;
}
dev_data->clock_options_cnt = LFCLK_DEF_OPTS;
lfosc_mode = nrf_bicr_lfosc_mode_get(BICR);
if (lfosc_mode == NRF_BICR_LFOSC_MODE_UNCONFIGURED ||
lfosc_mode == NRF_BICR_LFOSC_MODE_DISABLED) {
dev_data->max_accuracy = LFCLK_HFXO_ACCURACY;
} else {
int ret;
ret = lfosc_get_accuracy(&dev_data->max_accuracy);
if (ret < 0) {
LOG_ERR("LFOSC enabled with invalid accuracy");
return ret;
}
switch (lfosc_mode) {
case NRF_BICR_LFOSC_MODE_CRYSTAL:
clock_options[LFCLK_MAX_OPTS - 1].accuracy = dev_data->max_accuracy;
clock_options[LFCLK_MAX_OPTS - 1].precision = 0;
clock_options[LFCLK_MAX_OPTS - 1].src = NRFS_CLOCK_SRC_LFCLK_XO_PIERCE;
clock_options[LFCLK_MAX_OPTS - 2].accuracy = dev_data->max_accuracy;
clock_options[LFCLK_MAX_OPTS - 2].precision = 1;
clock_options[LFCLK_MAX_OPTS - 2].src = NRFS_CLOCK_SRC_LFCLK_XO_PIERCE_HP;
dev_data->clock_options_cnt += 2;
break;
case NRF_BICR_LFOSC_MODE_EXTSINE:
clock_options[LFCLK_MAX_OPTS - 1].accuracy = dev_data->max_accuracy;
clock_options[LFCLK_MAX_OPTS - 1].precision = 0;
clock_options[LFCLK_MAX_OPTS - 1].src = NRFS_CLOCK_SRC_LFCLK_XO_EXT_SINE;
clock_options[LFCLK_MAX_OPTS - 2].accuracy = dev_data->max_accuracy;
clock_options[LFCLK_MAX_OPTS - 2].precision = 1;
clock_options[LFCLK_MAX_OPTS - 2].src = NRFS_CLOCK_SRC_LFCLK_XO_EXT_SINE_HP;
dev_data->clock_options_cnt += 2;
break;
case NRF_BICR_LFOSC_MODE_EXTSQUARE:
clock_options[LFCLK_MAX_OPTS - 2].accuracy = dev_data->max_accuracy;
clock_options[LFCLK_MAX_OPTS - 2].precision = 0;
clock_options[LFCLK_MAX_OPTS - 2].src = NRFS_CLOCK_SRC_LFCLK_XO_EXT_SQUARE;
dev_data->clock_options_cnt += 1;
break;
default:
LOG_ERR("Unexpected LFOSC mode");
return -EINVAL;
}
dev_data->lfxo_startup_time_us = nrf_bicr_lfosc_startup_time_ms_get(BICR)
* USEC_PER_MSEC;
if (dev_data->lfxo_startup_time_us == NRF_BICR_LFOSC_STARTUP_TIME_UNCONFIGURED) {
LOG_ERR("BICR LFXO startup time invalid");
return -ENODEV;
}
}
dev_data->hfxo_startup_time_us = nrf_bicr_hfxo_startup_time_us_get(BICR);
if (dev_data->hfxo_startup_time_us == NRF_BICR_HFXO_STARTUP_TIME_UNCONFIGURED) {
LOG_ERR("BICR HFXO startup time invalid");
return -ENODEV;
}
k_timer_init(&dev_data->timer, lfclk_update_timeout_handler, NULL);
return clock_config_init(&dev_data->clk_cfg,
ARRAY_SIZE(dev_data->clk_cfg.onoff),
lfclk_work_handler);
}
static DEVICE_API(nrf_clock_control, lfclk_drv_api) = {
.std_api = {
.on = api_nosys_on_off,
.off = api_nosys_on_off,
.get_rate = api_get_rate_lfclk,
},
.request = api_request_lfclk,
.release = api_release_lfclk,
.cancel_or_release = api_cancel_or_release_lfclk,
.resolve = api_resolve,
.get_startup_time = api_get_startup_time,
};
static struct lfclk_dev_data lfclk_data;
static const struct lfclk_dev_config lfclk_config = {
.fixed_frequency = DT_INST_PROP(0, clock_frequency),
};
DEVICE_DT_INST_DEFINE(0, lfclk_init, NULL,
&lfclk_data, &lfclk_config,
PRE_KERNEL_1, CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
&lfclk_drv_api);