Browse Source

Merge pull request #3638 from mshabunin:doc-upgrade

Documentation transition to fresh Doxygen #3638

Merge with https://github.com/opencv/opencv/pull/25042
pull/3695/head
Maksim Shabunin 1 year ago committed by GitHub
parent
commit
1aaf6e1c8b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 51
      modules/bioinspired/include/opencv2/bioinspired/retina.hpp
  2. 24
      modules/bioinspired/samples/default_retina_config.xml
  3. 24
      modules/bioinspired/samples/realistic_retina_config.xml
  4. 12
      modules/bioinspired/tutorials/retina_model/retina_model.markdown
  5. 4
      modules/cannops/include/opencv2/cann.hpp
  6. 4
      modules/cannops/include/opencv2/cann_interface.hpp
  7. 1
      modules/cudaimgproc/include/opencv2/cudaimgproc.hpp
  8. 29
      modules/dnn_superres/tutorials/benchmark/sr_benchmark.markdown
  9. 9
      modules/face/include/opencv2/face/facemark.hpp
  10. 6
      modules/face/include/opencv2/face/facemark_train.hpp
  11. 6
      modules/face/tutorials/face_landmark/face_landmark_trainer.markdown
  12. 2
      modules/hdf/include/opencv2/hdf.hpp
  13. 1
      modules/mcc/include/opencv2/mcc/checker_model.hpp
  14. 7
      modules/rgbd/include/opencv2/rgbd/dynafu.hpp
  15. 5
      modules/sfm/include/opencv2/sfm.hpp
  16. 6
      modules/stereo/include/opencv2/stereo/quasi_dense_stereo.hpp
  17. 1
      modules/text/include/opencv2/text/ocr.hpp
  18. 2
      modules/videostab/include/opencv2/videostab.hpp
  19. 1
      modules/viz/include/opencv2/viz.hpp
  20. 1
      modules/xfeatures2d/include/opencv2/xfeatures2d.hpp
  21. 3
      modules/xfeatures2d/include/opencv2/xfeatures2d/nonfree.hpp
  22. 10
      modules/ximgproc/include/opencv2/ximgproc.hpp
  23. 2
      modules/ximgproc/include/opencv2/ximgproc/color_match.hpp
  24. 2
      modules/ximgproc/include/opencv2/ximgproc/deriche_filter.hpp
  25. 4
      modules/ximgproc/include/opencv2/ximgproc/edgepreserving_filter.hpp
  26. 1
      modules/ximgproc/include/opencv2/ximgproc/fast_hough_transform.hpp
  27. 2
      modules/ximgproc/include/opencv2/ximgproc/paillou_filter.hpp
  28. 2
      modules/ximgproc/include/opencv2/ximgproc/peilin.hpp
  29. 2
      modules/ximgproc/include/opencv2/ximgproc/run_length_morphology.hpp

51
modules/bioinspired/include/opencv2/bioinspired/retina.hpp

@ -94,57 +94,12 @@ enum { @@ -94,57 +94,12 @@ enum {
Here is the default configuration file of the retina module. It gives results such as the first
retina output shown on the top of this page.
@code{xml}
<?xml version="1.0"?>
<opencv_storage>
<OPLandIPLparvo>
<colorMode>1</colorMode>
<normaliseOutput>1</normaliseOutput>
<photoreceptorsLocalAdaptationSensitivity>7.5e-01</photoreceptorsLocalAdaptationSensitivity>
<photoreceptorsTemporalConstant>9.0e-01</photoreceptorsTemporalConstant>
<photoreceptorsSpatialConstant>5.3e-01</photoreceptorsSpatialConstant>
<horizontalCellsGain>0.01</horizontalCellsGain>
<hcellsTemporalConstant>0.5</hcellsTemporalConstant>
<hcellsSpatialConstant>7.</hcellsSpatialConstant>
<ganglionCellsSensitivity>7.5e-01</ganglionCellsSensitivity></OPLandIPLparvo>
<IPLmagno>
<normaliseOutput>1</normaliseOutput>
<parasolCells_beta>0.</parasolCells_beta>
<parasolCells_tau>0.</parasolCells_tau>
<parasolCells_k>7.</parasolCells_k>
<amacrinCellsTemporalCutFrequency>2.0e+00</amacrinCellsTemporalCutFrequency>
<V0CompressionParameter>9.5e-01</V0CompressionParameter>
<localAdaptintegration_tau>0.</localAdaptintegration_tau>
<localAdaptintegration_k>7.</localAdaptintegration_k></IPLmagno>
</opencv_storage>
@endcode
@include default_retina_config.xml
Here is the 'realistic" setup used to obtain the second retina output shown on the top of this page.
@code{xml}
<?xml version="1.0"?>
<opencv_storage>
<OPLandIPLparvo>
<colorMode>1</colorMode>
<normaliseOutput>1</normaliseOutput>
<photoreceptorsLocalAdaptationSensitivity>8.9e-01</photoreceptorsLocalAdaptationSensitivity>
<photoreceptorsTemporalConstant>9.0e-01</photoreceptorsTemporalConstant>
<photoreceptorsSpatialConstant>5.3e-01</photoreceptorsSpatialConstant>
<horizontalCellsGain>0.3</horizontalCellsGain>
<hcellsTemporalConstant>0.5</hcellsTemporalConstant>
<hcellsSpatialConstant>7.</hcellsSpatialConstant>
<ganglionCellsSensitivity>8.9e-01</ganglionCellsSensitivity></OPLandIPLparvo>
<IPLmagno>
<normaliseOutput>1</normaliseOutput>
<parasolCells_beta>0.</parasolCells_beta>
<parasolCells_tau>0.</parasolCells_tau>
<parasolCells_k>7.</parasolCells_k>
<amacrinCellsTemporalCutFrequency>2.0e+00</amacrinCellsTemporalCutFrequency>
<V0CompressionParameter>9.5e-01</V0CompressionParameter>
<localAdaptintegration_tau>0.</localAdaptintegration_tau>
<localAdaptintegration_k>7.</localAdaptintegration_k></IPLmagno>
</opencv_storage>
@endcode
@include realistic_retina_config.xml
*/
struct RetinaParameters{
//! Outer Plexiform Layer (OPL) and Inner Plexiform Layer Parvocellular (IplParvo) parameters

24
modules/bioinspired/samples/default_retina_config.xml

@ -0,0 +1,24 @@ @@ -0,0 +1,24 @@
<?xml version="1.0"?>
<opencv_storage>
<OPLandIPLparvo>
<colorMode>1</colorMode>
<normaliseOutput>1</normaliseOutput>
<photoreceptorsLocalAdaptationSensitivity>7.5e-01</photoreceptorsLocalAdaptationSensitivity>
<photoreceptorsTemporalConstant>9.0e-01</photoreceptorsTemporalConstant>
<photoreceptorsSpatialConstant>5.3e-01</photoreceptorsSpatialConstant>
<horizontalCellsGain>0.01</horizontalCellsGain>
<hcellsTemporalConstant>0.5</hcellsTemporalConstant>
<hcellsSpatialConstant>7.</hcellsSpatialConstant>
<ganglionCellsSensitivity>7.5e-01</ganglionCellsSensitivity>
</OPLandIPLparvo>
<IPLmagno>
<normaliseOutput>1</normaliseOutput>
<parasolCells_beta>0.</parasolCells_beta>
<parasolCells_tau>0.</parasolCells_tau>
<parasolCells_k>7.</parasolCells_k>
<amacrinCellsTemporalCutFrequency>2.0e+00</amacrinCellsTemporalCutFrequency>
<V0CompressionParameter>9.5e-01</V0CompressionParameter>
<localAdaptintegration_tau>0.</localAdaptintegration_tau>
<localAdaptintegration_k>7.</localAdaptintegration_k>
</IPLmagno>
</opencv_storage>

24
modules/bioinspired/samples/realistic_retina_config.xml

@ -0,0 +1,24 @@ @@ -0,0 +1,24 @@
<?xml version="1.0"?>
<opencv_storage>
<OPLandIPLparvo>
<colorMode>1</colorMode>
<normaliseOutput>1</normaliseOutput>
<photoreceptorsLocalAdaptationSensitivity>8.9e-01</photoreceptorsLocalAdaptationSensitivity>
<photoreceptorsTemporalConstant>9.0e-01</photoreceptorsTemporalConstant>
<photoreceptorsSpatialConstant>5.3e-01</photoreceptorsSpatialConstant>
<horizontalCellsGain>0.3</horizontalCellsGain>
<hcellsTemporalConstant>0.5</hcellsTemporalConstant>
<hcellsSpatialConstant>7.</hcellsSpatialConstant>
<ganglionCellsSensitivity>8.9e-01</ganglionCellsSensitivity>
</OPLandIPLparvo>
<IPLmagno>
<normaliseOutput>1</normaliseOutput>
<parasolCells_beta>0.</parasolCells_beta>
<parasolCells_tau>0.</parasolCells_tau>
<parasolCells_k>7.</parasolCells_k>
<amacrinCellsTemporalCutFrequency>2.0e+00</amacrinCellsTemporalCutFrequency>
<V0CompressionParameter>9.5e-01</V0CompressionParameter>
<localAdaptintegration_tau>0.</localAdaptintegration_tau>
<localAdaptintegration_k>7.</localAdaptintegration_k>
</IPLmagno>
</opencv_storage>

12
modules/bioinspired/tutorials/retina_model/retina_model.markdown

@ -1,6 +1,8 @@ @@ -1,6 +1,8 @@
Retina and real-world vision {#tutorial_bioinspired_retina_model}
=============================================================
@tableofcontents
Goal
----
@ -382,7 +384,7 @@ need to know if mean luminance information is required or not. If not, the the r @@ -382,7 +384,7 @@ need to know if mean luminance information is required or not. If not, the the r
significantly reduce its energy thus giving more visibility to higher spatial frequency details.
#### Basic parameters
## Basic parameters
The simplest parameters are as follows :
@ -397,7 +399,7 @@ processing. You can expect much faster processing using gray levels : it would r @@ -397,7 +399,7 @@ processing. You can expect much faster processing using gray levels : it would r
product per pixel for all of the retina processes and it has recently been parallelized for multicore
architectures.
#### Photo-receptors parameters
## Photo-receptors parameters
The following parameters act on the entry point of the retina - photo-receptors - and has impact on all
of the following processes. These sensors are low pass spatio-temporal filters that smooth temporal and
@ -421,7 +423,7 @@ and high frequency noise canceling. @@ -421,7 +423,7 @@ and high frequency noise canceling.
A good compromise for color images is a 0.53 value since such choice won't affect too much the color spectrum.
Higher values would lead to gray and blurred output images.
#### Horizontal cells parameters
## Horizontal cells parameters
This parameter set tunes the neural network connected to the photo-receptors, the horizontal cells.
It modulates photo-receptors sensitivity and completes the processing for final spectral whitening
@ -446,7 +448,7 @@ It modulates photo-receptors sensitivity and completes the processing for final @@ -446,7 +448,7 @@ It modulates photo-receptors sensitivity and completes the processing for final
and luminance is already partly enhanced. The following parameters act on the last processing stages
of the two outing retina signals.
#### Parvo (details channel) dedicated parameter
## Parvo (details channel) dedicated parameter
- **ganglionCellsSensitivity** specifies the strength of the final local adaptation occurring at
the output of this details' dedicated channel. Parameter values remain between 0 and 1. Low value
@ -455,7 +457,7 @@ of the two outing retina signals. @@ -455,7 +457,7 @@ of the two outing retina signals.
**Note :** this parameter can correct eventual burned images by favoring low energetic details of
the visual scene, even in bright areas.
#### IPL Magno (motion/transient channel) parameters
## IPL Magno (motion/transient channel) parameters
Once image's information are cleaned, this channel acts as a high pass temporal filter that
selects only the signals related to transient signals (events, motion, etc.). A low pass spatial filter

4
modules/cannops/include/opencv2/cann.hpp

@ -8,12 +8,12 @@ @@ -8,12 +8,12 @@
#include "opencv2/core.hpp"
/**
@defgroup cann Ascend-accelerated Computer Vision
@defgroup cannops Ascend-accelerated Computer Vision
@{
@defgroup canncore Core part
@{
@defgroup cann_struct Data Structures
@defgroup cann_init Initializeation and Information
@defgroup cann_init Initialization and Information
@}
@}
*/

4
modules/cannops/include/opencv2/cann_interface.hpp

@ -13,9 +13,9 @@ namespace cann @@ -13,9 +13,9 @@ namespace cann
{
/**
@addtogroup cann
@addtogroup cannops
@{
@defgroup cannops Operations for Ascend Backend.
@defgroup cannops_ops Operations for Ascend Backend.
@{
@defgroup cannops_elem Per-element Operations
@defgroup cannops_core Core Operations on Matrices

1
modules/cudaimgproc/include/opencv2/cudaimgproc.hpp

@ -844,7 +844,6 @@ cv::Moments cvMoments = convertSpatialMoments<float>(spatialMoments, order); @@ -844,7 +844,6 @@ cv::Moments cvMoments = convertSpatialMoments<float>(spatialMoments, order);
```
see the \a CUDA_TEST_P(Moments, Async) test inside opencv_contrib_source_code/modules/cudaimgproc/test/test_moments.cpp for an example.
@returns cv::Moments.
@sa cuda::moments, cuda::convertSpatialMoments, cuda::numMoments, cuda::MomentsOrder
*/
CV_EXPORTS_W void spatialMoments(InputArray src, OutputArray moments, const bool binaryImage = false, const MomentsOrder order = MomentsOrder::THIRD_ORDER_MOMENTS, const int momentsType = CV_64F, Stream& stream = Stream::Null());

29
modules/dnn_superres/tutorials/benchmark/sr_benchmark.markdown

@ -50,14 +50,9 @@ Explanation @@ -50,14 +50,9 @@ Explanation
Benchmarking results
-----------
Dataset benchmarking
----
###General100 dataset
<center>
## General100 dataset
#####2x scaling factor
### 2x scaling factor
| | Avg inference time in sec (CPU)| Avg PSNR | Avg SSIM |
@ -70,7 +65,7 @@ Dataset benchmarking @@ -70,7 +65,7 @@ Dataset benchmarking
| Nearest neighbor | 0.000114 | 29.1665 | 0.9049 |
| Lanczos | 0.001094 | 32.4687 | 0.9327 |
#####3x scaling factor
### 3x scaling factor
| | Avg inference time in sec (CPU)| Avg PSNR | Avg SSIM |
| ------------- |:-------------------:| ---------:|--------:|
@ -83,7 +78,7 @@ Dataset benchmarking @@ -83,7 +78,7 @@ Dataset benchmarking
| Lanczos | 0.001012 |25.9115 |0.8706 |
#####4x scaling factor
### 4x scaling factor
| | Avg inference time in sec (CPU)| Avg PSNR | Avg SSIM |
| ------------- |:-------------------:| ---------:|--------:|
@ -96,14 +91,10 @@ Dataset benchmarking @@ -96,14 +91,10 @@ Dataset benchmarking
| Lanczos | 0.001012 |25.9115 |0.8706 |
</center>
Images
----
<center>
## Images
####2x scaling factor
### 2x scaling factor
|Set5: butterfly.png | size: 256x256 | ||
|:-------------:|:-------------------:|:-------------:|:----:|
@ -112,7 +103,7 @@ Images @@ -112,7 +103,7 @@ Images
![ESPCN](images/espcn_butterfly.jpg)| ![FSRCNN](images/fsrcnn_butterfly.jpg) | ![LapSRN](images/lapsrn_butterfly.jpg) | ![EDSR](images/edsr_butterfly.jpg)
|29.0341 / 0.9354 / **0.004157**| 29.0077 / 0.9345 / 0.006325 | 27.8212 / 0.9230 / 0.037937 | **30.0347** / **0.9453** / 2.077280 |
####3x scaling factor
### 3x scaling factor
|Urban100: img_001.png | size: 1024x644 | ||
|:-------------:|:-------------------:|:-------------:|:----:|
@ -122,7 +113,7 @@ Images @@ -122,7 +113,7 @@ Images
|28.0118 / 0.8588 / **0.030748**| 28.0184 / 0.8597 / 0.094173 | | **30.5671** / **0.9019** / 9.517580 |
####4x scaling factor
### 4x scaling factor
|Set14: comic.png | size: 250x361 | ||
|:-------------:|:-------------------:|:-------------:|:----:|
@ -131,7 +122,7 @@ Images @@ -131,7 +122,7 @@ Images
|![ESPCN](images/espcn_comic.jpg)| ![FSRCNN](images/fsrcnn_comic.jpg) | ![LapSRN](images/lapsrn_comic.jpg) | ![EDSR](images/edsr_comic.jpg)
|20.0417 / 0.6302 / **0.001894**| 20.0885 / 0.6384 / 0.002103 | 20.0676 / 0.6339 / 0.061640 | **20.5233** / **0.6901** / 0.665876 |
####8x scaling factor
### 8x scaling factor
|Div2K: 0006.png | size: 1356x2040 | |
|:-------------:|:-------------------:|:-------------:|
@ -139,5 +130,3 @@ Images @@ -139,5 +130,3 @@ Images
|PSRN / SSIM / Speed (CPU)| 26.3139 / **0.8033** / 0.001107| 23.8291 / 0.7340 / **0.000611** |
|![Lanczos interpolation](images/lanczos_div2k.jpg)| ![LapSRN](images/lapsrn_div2k.jpg) | |
|26.1565 / 0.7962 / 0.004782| **26.7046** / 0.7987 / 2.274290 | |
</center>

9
modules/face/include/opencv2/face/facemark.hpp

@ -12,12 +12,6 @@ Mentor: Delia Passalacqua @@ -12,12 +12,6 @@ Mentor: Delia Passalacqua
#ifndef __OPENCV_FACELANDMARK_HPP__
#define __OPENCV_FACELANDMARK_HPP__
/**
@defgroup face Face Analysis
- @ref tutorial_table_of_content_facemark
- The Facemark API
*/
#include "opencv2/core.hpp"
#include <vector>
@ -25,6 +19,8 @@ Mentor: Delia Passalacqua @@ -25,6 +19,8 @@ Mentor: Delia Passalacqua
namespace cv {
namespace face {
//! @addtogroup face
//! @{
/** @brief Abstract base class for all facemark models
@ -88,6 +84,7 @@ CV_EXPORTS_W Ptr<Facemark> createFacemarkLBF(); @@ -88,6 +84,7 @@ CV_EXPORTS_W Ptr<Facemark> createFacemarkLBF();
//! construct a Kazemi facemark detector
CV_EXPORTS_W Ptr<Facemark> createFacemarkKazemi();
//! @}
} // face
} // cv

6
modules/face/include/opencv2/face/facemark_train.hpp

@ -12,12 +12,6 @@ Mentor: Delia Passalacqua @@ -12,12 +12,6 @@ Mentor: Delia Passalacqua
#ifndef __OPENCV_FACELANDMARKTRAIN_HPP__
#define __OPENCV_FACELANDMARKTRAIN_HPP__
/**
@defgroup face Face Analysis
- @ref tutorial_table_of_content_facemark
- The Facemark API
*/
#include "opencv2/face/facemark.hpp"
#include "opencv2/objdetect.hpp"
#include <vector>

6
modules/face/tutorials/face_landmark/face_landmark_trainer.markdown

@ -21,7 +21,7 @@ The above format is similar to HELEN dataset which is used for training the mode @@ -21,7 +21,7 @@ The above format is similar to HELEN dataset which is used for training the mode
./sample_train_landmark_detector -annotations=/home/sukhad/Downloads/code/trainset/ -config=config.xml -face_cascade=lbpcascadefrontalface.xml -model=trained_model.dat -width=460 -height=460
```
### Description of command parameters
## Description of command parameters
> * **annotations** a : (REQUIRED) Path to annotations txt file [example - /data/annotations.txt]
> * **config** c : (REQUIRED) Path to configuration xml file containing parameters for training.[ example - /data/config.xml]
@ -30,7 +30,7 @@ The above format is similar to HELEN dataset which is used for training the mode @@ -30,7 +30,7 @@ The above format is similar to HELEN dataset which is used for training the mode
> * **height** h : (OPTIONAL) The height which you want all images to get to scale the annotations. Large images are slow to process [default = 460]
> * **face_cascade** f (REQUIRED) Path to the face cascade xml file which you want to use as a detector.
### Description of training parameters
## Description of training parameters
The configuration file described above which is used while training contains the training parameters which are required for training.
@ -49,7 +49,7 @@ The configuration file described above which is used while training contains the @@ -49,7 +49,7 @@ The configuration file described above which is used while training contains the
To get more detailed description about the training parameters you can refer to the [Research paper](https://pdfs.semanticscholar.org/d78b/6a5b0dcaa81b1faea5fb0000045a62513567.pdf).
### Understanding code
## Understanding code
![](images/3.jpg)

2
modules/hdf/include/opencv2/hdf.hpp

@ -49,8 +49,6 @@ Hierarchical Data Format version 5 @@ -49,8 +49,6 @@ Hierarchical Data Format version 5
In order to use it, the hdf5 library has to be installed, which
means cmake should find it using `find_package(HDF5)`.
@}
*/

1
modules/mcc/include/opencv2/mcc/checker_model.hpp

@ -116,7 +116,6 @@ public: @@ -116,7 +116,6 @@ public:
virtual ~CCheckerDraw() {}
/** \brief Draws the checker to the given image.
* \param img image in color space BGR
* \return void
*/
CV_WRAP virtual void draw(InputOutputArray img) = 0;
/** \brief Create a new CCheckerDraw object.

7
modules/rgbd/include/opencv2/rgbd/dynafu.hpp

@ -114,7 +114,6 @@ public: @@ -114,7 +114,6 @@ public:
virtual void renderSurface(OutputArray depthImage, OutputArray vertImage, OutputArray normImage, bool warp=true) = 0;
};
//! @}
}
}
#endif
} // dynafu::
} // cv::
#endif // __OPENCV_RGBD_DYNAFU_HPP__

5
modules/sfm/include/opencv2/sfm.hpp

@ -85,18 +85,17 @@ This module has been originally developed as a project for Google Summer of Code @@ -85,18 +85,17 @@ This module has been originally developed as a project for Google Summer of Code
@defgroup triangulation Triangulation
@defgroup reconstruction Reconstruction
@note
- Notice that it is compiled only when Ceres Solver is correctly installed.\n
Check installation instructions in the following tutorial: @ref tutorial_sfm_installation
@defgroup simple_pipeline Simple Pipeline
@note
- Notice that it is compiled only when Ceres Solver is correctly installed.\n
Check installation instructions in the following tutorial: @ref tutorial_sfm_installation
@}
*/
#endif

6
modules/stereo/include/opencv2/stereo/quasi_dense_stereo.hpp

@ -18,6 +18,7 @@ namespace cv @@ -18,6 +18,7 @@ namespace cv
{
namespace stereo
{
/** \addtogroup stereo
* @{
*/
@ -190,9 +191,8 @@ public: @@ -190,9 +191,8 @@ public:
CV_PROP_RW PropagationParameters Param;
};
} //namespace cv
} //namespace stereo
/** @}*/
} //namespace cv
} //namespace stereo
#endif // __OPENCV_QUASI_DENSE_STEREO_H__

1
modules/text/include/opencv2/text/ocr.hpp

@ -363,7 +363,6 @@ CV_EXPORTS_W Ptr<OCRHMMDecoder::ClassifierCallback> loadOCRHMMClassifierCNN(cons @@ -363,7 +363,6 @@ CV_EXPORTS_W Ptr<OCRHMMDecoder::ClassifierCallback> loadOCRHMMClassifierCNN(cons
*/
CV_EXPORTS_W Ptr<OCRHMMDecoder::ClassifierCallback> loadOCRHMMClassifier(const String& filename, int classifier);
//! @}
/** @brief Utility function to create a tailored language model transitions table from a given list of words (lexicon).
*

2
modules/videostab/include/opencv2/videostab.hpp

@ -70,9 +70,7 @@ Both the functions and the classes are available. @@ -70,9 +70,7 @@ Both the functions and the classes are available.
The Fast Marching Method @cite Telea04 is used in of the video stabilization routines to do motion and
color inpainting. The method is implemented is a flexible way and it's made public for other users.
@}
*/
#include "opencv2/videostab/stabilizer.hpp"

1
modules/viz/include/opencv2/viz.hpp

@ -77,7 +77,6 @@ myWindow.showWidget("CloudWidget1", cw); @@ -77,7 +77,6 @@ myWindow.showWidget("CloudWidget1", cw);
// Modify it, and it will be modified in the window.
cw.setColor(viz::Color::yellow());
@endcode
@}
*/

1
modules/xfeatures2d/include/opencv2/xfeatures2d.hpp

@ -58,7 +58,6 @@ known to be patented. You need to set the OPENCV_ENABLE_NONFREE option in cmake @@ -58,7 +58,6 @@ known to be patented. You need to set the OPENCV_ENABLE_NONFREE option in cmake
This section describes the following matching strategies:
- GMS: Grid-based Motion Statistics, @cite Bian2017gms
- LOGOS: Local geometric support for high-outlier spatial verification, @cite Lowry2018LOGOSLG
@}
*/

3
modules/xfeatures2d/include/opencv2/xfeatures2d/nonfree.hpp

@ -50,6 +50,9 @@ namespace cv @@ -50,6 +50,9 @@ namespace cv
namespace xfeatures2d
{
//! @addtogroup xfeatures2d_nonfree
//! @{
/** @brief Class for extracting Speeded Up Robust Features from an image @cite Bay06 .
The algorithm parameters:

10
modules/ximgproc/include/opencv2/ximgproc.hpp

@ -65,7 +65,8 @@ @@ -65,7 +65,8 @@
#include "ximgproc/find_ellipses.hpp"
/** @defgroup ximgproc Extended Image Processing
/**
@defgroup ximgproc Extended Image Processing
@{
@defgroup ximgproc_edge Structured forests for fast edge detection
@ -115,7 +116,6 @@ an additional hysteresis step. @@ -115,7 +116,6 @@ an additional hysteresis step.
The size of the original image is required for compatibility with the imgproc functions when the boundary handling requires that pixel outside the image boundary are
"on".
@}
*/
@ -124,6 +124,9 @@ namespace cv @@ -124,6 +124,9 @@ namespace cv
namespace ximgproc
{
//! @addtogroup ximgproc
//! @{
enum ThinningTypes{
THINNING_ZHANGSUEN = 0, // Thinning technique of Zhang-Suen
THINNING_GUOHALL = 1 // Thinning technique of Guo-Hall
@ -139,9 +142,6 @@ enum LocalBinarizationMethods{ @@ -139,9 +142,6 @@ enum LocalBinarizationMethods{
BINARIZATION_NICK = 3 //!< NICK technique. See @cite Khurshid2009 .
};
//! @addtogroup ximgproc
//! @{
/** @brief Performs thresholding on input images using Niblack's technique or some of the
popular variations it inspired.

2
modules/ximgproc/include/opencv2/ximgproc/color_match.hpp

@ -61,6 +61,8 @@ CV_EXPORTS_W void qdft(InputArray img, OutputArray qimg, int flags, bool sideL @@ -61,6 +61,8 @@ CV_EXPORTS_W void qdft(InputArray img, OutputArray qimg, int flags, bool sideL
*/
CV_EXPORTS_W void colorMatchTemplate(InputArray img, InputArray templ, OutputArray result);
//! @}
}
}
#endif

2
modules/ximgproc/include/opencv2/ximgproc/deriche_filter.hpp

@ -71,6 +71,8 @@ CV_EXPORTS_W void GradientDericheY(InputArray op, OutputArray dst, double alpha, @@ -71,6 +71,8 @@ CV_EXPORTS_W void GradientDericheY(InputArray op, OutputArray dst, double alpha,
*/
CV_EXPORTS_W void GradientDericheX(InputArray op, OutputArray dst, double alpha,double omega);
//! @}
}
}
#endif

4
modules/ximgproc/include/opencv2/ximgproc/edgepreserving_filter.hpp

@ -26,8 +26,8 @@ namespace cv { namespace ximgproc { @@ -26,8 +26,8 @@ namespace cv { namespace ximgproc {
*/
CV_EXPORTS_W void edgePreservingFilter( InputArray src, OutputArray dst, int d, double threshold );
}} // namespace
//! @}
}} // namespace
#endif

1
modules/ximgproc/include/opencv2/ximgproc/fast_hough_transform.hpp

@ -83,7 +83,6 @@ enum AngleRangeOption @@ -83,7 +83,6 @@ enum AngleRangeOption
* is a binary relation that maps elements of the Cartesian product
* @f$ S \times S @f$ to @f$ S @f$:
* @f[ f: S \times S \to S @f]
* @ingroup MinUtils_MathOper
*/
enum HoughOp
{

2
modules/ximgproc/include/opencv2/ximgproc/paillou_filter.hpp

@ -61,6 +61,8 @@ namespace ximgproc { @@ -61,6 +61,8 @@ namespace ximgproc {
CV_EXPORTS void GradientPaillouY(InputArray op, OutputArray _dst, double alpha, double omega);
CV_EXPORTS void GradientPaillouX(InputArray op, OutputArray _dst, double alpha, double omega);
//! @}
}
}
#endif

2
modules/ximgproc/include/opencv2/ximgproc/peilin.hpp

@ -27,6 +27,8 @@ namespace cv { namespace ximgproc { @@ -27,6 +27,8 @@ namespace cv { namespace ximgproc {
/** @overload */
CV_EXPORTS_W void PeiLinNormalization ( InputArray I, OutputArray T );
//! @}
}} // namespace
#endif

2
modules/ximgproc/include/opencv2/ximgproc/run_length_morphology.hpp

@ -113,6 +113,8 @@ CV_EXPORTS void createRLEImage(const std::vector<cv::Point3i>& runs, OutputArray @@ -113,6 +113,8 @@ CV_EXPORTS void createRLEImage(const std::vector<cv::Point3i>& runs, OutputArray
CV_EXPORTS void morphologyEx(InputArray rlSrc, OutputArray rlDest, int op, InputArray rlKernel,
bool bBoundaryOnForErosion = true, Point anchor = Point(0,0));
//! @}
}
}
}

Loading…
Cancel
Save