You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

829 lines
19 KiB

/*
*
* HM1055 driver.
*
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "sccb.h"
#include "xclk.h"
#include "hm1055.h"
#include "hm1055_regs.h"
#include "hm1055_settings.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#else
#include "esp_log.h"
static const char *TAG = "HM1055";
#endif
// #define REG_DEBUG_ON
static int _set_pll(sensor_t *sensor, int bypass, int multiplier, int sys_div, int root_2x, int pre_div, int seld5, int pclk_manual, int pclk_div);
static int read_reg(uint8_t slv_addr, const uint16_t reg)
{
int ret = SCCB_Read16(slv_addr, reg);
#ifdef REG_DEBUG_ON
if (ret < 0)
{
ESP_LOGE(TAG, "READ REG 0x%04x FAILED: %d", reg, ret);
}
#endif
return ret;
}
static int check_reg_mask(uint8_t slv_addr, uint16_t reg, uint8_t mask)
{
return (read_reg(slv_addr, reg) & mask) == mask;
}
static int read_reg16(uint8_t slv_addr, const uint16_t reg)
{
int ret = 0, ret2 = 0;
ret = read_reg(slv_addr, reg);
if (ret >= 0)
{
ret = (ret & 0xFF) << 8;
ret2 = read_reg(slv_addr, reg + 1);
if (ret2 < 0)
{
ret = ret2;
}
else
{
ret |= ret2 & 0xFF;
}
}
return ret;
}
static int write_reg(uint8_t slv_addr, const uint16_t reg, uint8_t value)
{
int ret = 0;
#ifndef REG_DEBUG_ON
ret = SCCB_Write16(slv_addr, reg, value);
#else
int old_value = read_reg(slv_addr, reg);
if (old_value < 0)
{
return old_value;
}
if ((uint8_t)old_value != value)
{
ESP_LOGD(TAG, "NEW REG 0x%04x: 0x%02x to 0x%02x", reg, (uint8_t)old_value, value);
ret = SCCB_Write16(slv_addr, reg, value);
}
else
{
ESP_LOGD(TAG, "OLD REG 0x%04x: 0x%02x", reg, (uint8_t)old_value);
ret = SCCB_Write16(slv_addr, reg, value); // maybe not?
}
if (ret < 0)
{
ESP_LOGE(TAG, "WRITE REG 0x%04x FAILED: %d", reg, ret);
}
#endif
return ret;
}
static int set_reg_bits(uint8_t slv_addr, uint16_t reg, uint8_t offset, uint8_t mask, uint8_t value)
{
int ret = 0;
uint8_t c_value, new_value;
ret = read_reg(slv_addr, reg);
if (ret < 0)
{
return ret;
}
c_value = ret;
new_value = (c_value & ~(mask << offset)) | ((value & mask) << offset);
ret = write_reg(slv_addr, reg, new_value);
return ret;
}
static int write_regs(uint8_t slv_addr, const uint16_t (*regs)[2])
{
int i = 0, ret = 0;
while (!ret && regs[i][0] != REGLIST_TAIL)
{
if (regs[i][0] == REG_DLY)
{
vTaskDelay(regs[i][1] / portTICK_PERIOD_MS);
}
else
{
ret = write_reg(slv_addr, regs[i][0], regs[i][1]);
}
i++;
}
return ret;
}
static int write_reg16(uint8_t slv_addr, const uint16_t reg, uint16_t value)
{
if (write_reg(slv_addr, reg, value >> 8) || write_reg(slv_addr, reg + 1, value))
{
return -1;
}
return 0;
}
static int write_addr_reg(uint8_t slv_addr, const uint16_t reg, uint16_t x_value, uint16_t y_value)
{
if (write_reg16(slv_addr, reg, x_value) || write_reg16(slv_addr, reg + 2, y_value))
{
return -1;
}
return 0;
}
#define write_reg_bits(slv_addr, reg, mask, enable) set_reg_bits(slv_addr, reg, 0, mask, (enable) ? (mask) : 0)
static int set_ae_level(sensor_t *sensor, int level);
static int reset(sensor_t *sensor)
{
vTaskDelay(100 / portTICK_PERIOD_MS);
int ret = 0;
// Software Reset: clear all registers and reset them to their default values
ret = write_reg(sensor->slv_addr, SFTRST, 0x55);
if (ret)
{
ESP_LOGE(TAG, "Software Reset FAILED!");
return ret;
}
vTaskDelay(100 / portTICK_PERIOD_MS);
ret = write_regs(sensor->slv_addr, sensor_default_regs);
if (ret == 0)
{
ESP_LOGD(TAG, "Camera defaults loaded");
vTaskDelay(100 / portTICK_PERIOD_MS);
set_ae_level(sensor, 0);
}
return ret;
}
static int set_pixformat(sensor_t *sensor, pixformat_t pixformat)
{
int ret = 0;
switch (pixformat)
{
case PIXFORMAT_RAW:
ret = write_reg(sensor->slv_addr, PORTCTRL, 0x20);
break;
case PIXFORMAT_YUV422:
ret = write_reg(sensor->slv_addr, PORTCTRL, 0x30);
break;
case PIXFORMAT_RGB565:
case PIXFORMAT_RGB888:
ret = write_reg(sensor->slv_addr, PORTCTRL, 0x40);
break;
case PIXFORMAT_RGB555:
ret = write_reg(sensor->slv_addr, PORTCTRL, 0x50);
break;
case PIXFORMAT_RGB444:
ret = write_reg(sensor->slv_addr, PORTCTRL, 0x60);
break;
default:
break;
}
if (ret == 0)
{
sensor->pixformat = pixformat;
ESP_LOGD(TAG, "Set pixformat: %d", pixformat);
}
return ret;
}
static int set_framesize(sensor_t *sensor, framesize_t framesize)
{
int ret = 0;
sensor->status.framesize = framesize;
ESP_LOGD(TAG, "Set framesize: %d", framesize);
ret = write_regs(sensor->slv_addr, sensor_default_regs);
if (framesize == FRAMESIZE_QQVGA)
{
ESP_LOGD(TAG, "Set FRAMESIZE_QQVGA");
ret = write_regs(sensor->slv_addr, sensor_framesize_QQVGA);
}
else if (framesize == FRAMESIZE_QCIF)
{
ESP_LOGD(TAG, "Set FRAMESIZE_QCIF");
ret = write_regs(sensor->slv_addr, sensor_framesize_QCIF);
}
else if (framesize == FRAMESIZE_240X240)
{
ESP_LOGD(TAG, "Set FRAMESIZE_240X240");
ret = write_regs(sensor->slv_addr, sensor_framesize_240X240);
}
else if (framesize == FRAMESIZE_QVGA)
{
ESP_LOGD(TAG, "Set FRAMESIZE_QVGA");
ret = write_regs(sensor->slv_addr, sensor_framesize_QVGA);
}
else if (framesize == FRAMESIZE_CIF)
{
ESP_LOGD(TAG, "Set FRAMESIZE_CIF");
ret = write_regs(sensor->slv_addr, sensor_framesize_CIF);
}
else if (framesize == FRAMESIZE_VGA)
{
ESP_LOGD(TAG, "Set FRAMESIZE_VGA");
ret = write_regs(sensor->slv_addr, sensor_framesize_VGA);
}
else if (framesize == FRAMESIZE_SVGA)
{
ESP_LOGD(TAG, "Set FRAMESIZE_SVGA");
ret = write_regs(sensor->slv_addr, sensor_framesize_SVGA);
}
else if (framesize == FRAMESIZE_HD)
{
ESP_LOGD(TAG, "Set FRAMESIZE_HD");
ret = write_regs(sensor->slv_addr, sensor_framesize_HD);
ret = _set_pll(sensor, 0, 288, 1, 0, 0, 0, 1, 16);
}
else
{
ESP_LOGD(TAG, "Dont suppost this size, Set FRAMESIZE_VGA");
ret = write_regs(sensor->slv_addr, sensor_framesize_VGA);
}
if (ret == 0)
{
ret = write_reg(sensor->slv_addr, CMU, 0x01) || write_reg(sensor->slv_addr, TGRDCFG, 0x01);
}
return ret;
}
static int set_hmirror(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, RDCFG, 0x02, enable);
if (ret == 0)
{
ESP_LOGD(TAG, "Set hmirror to: %d", enable);
sensor->status.hmirror = enable;
}
return ret;
}
static int set_vflip(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, RDCFG, 0x01, enable);
if (ret == 0)
{
ESP_LOGD(TAG, "Set vflip to: %d", enable);
sensor->status.vflip = enable;
}
return ret;
}
static int set_quality(sensor_t *sensor, int qs)
{
return 0;
}
static int set_colorbar(sensor_t *sensor, int enable)
{
return 0;
}
static int set_gain_ctrl(sensor_t *sensor, int enable)
{
return 0;
}
static int set_exposure_ctrl(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, AEWBCFG, 0x01, enable);
if (ret == 0)
{
ESP_LOGD(TAG, "Set aec to: %d", enable);
sensor->status.aec = enable;
}
return ret;
}
static int set_whitebal(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, AEWBCFG, 0x02, enable);
if (ret == 0)
{
ESP_LOGD(TAG, "Set awb to: %d", enable);
sensor->status.awb = enable;
}
return ret;
}
// Gamma enable
static int set_raw_gma_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, ISPCTRL1, 0x04, enable);
if (ret == 0)
{
ESP_LOGD(TAG, "Set raw_gma to: %d", enable);
sensor->status.raw_gma = enable;
}
return 0;
}
static int set_lenc_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, ISPCTRL3, 0x40, enable);
if (ret == 0)
{
ESP_LOGD(TAG, "Set lenc to: %d", enable);
sensor->status.lenc = enable;
}
return -1;
}
// real gain
static int set_agc_gain(sensor_t *sensor, int gain)
{
int ret = 0;
if (gain < 0 || gain > 7)
{
return -1;
}
ret = write_reg(sensor->slv_addr, AGAIN, gain);
if (ret == 0)
{
ESP_LOGD(TAG, "Set gain to: %d", gain);
sensor->status.agc_gain = gain;
}
return 0;
}
static int set_aec_value(sensor_t *sensor, int value)
{
int ret = 0;
ret = write_reg(sensor->slv_addr, AETARGM, value);
if (ret == 0)
{
ESP_LOGD(TAG, "Set aec_value to: %d", value);
sensor->status.aec_value = value;
}
return 0;
}
static int set_ae_level(sensor_t *sensor, int level)
{
int ret = 0;
if (level < -5 || level > 5)
{
return -1;
}
uint8_t target_level = ((level + 5) * 10) + 5;
uint8_t upper = target_level * 27 / 25;
uint8_t lower = target_level * 23 / 25;
ret = write_reg(sensor->slv_addr, AETARGU, upper) || write_reg(sensor->slv_addr, AETARGL, lower);
if (ret == 0)
{
ESP_LOGD(TAG, "Set ae_level to: %d", level);
sensor->status.ae_level = level;
}
return 0;
}
static int set_brightness(sensor_t *sensor, int level)
{
int ret = 0;
uint8_t ispctrl5 = read_reg(sensor->slv_addr, ISPCTRL5);
uint8_t brightness = 0;
switch (level)
{
case 3:
brightness = 0xFF;
break;
case 2:
brightness = 0xBA;
break;
case 1:
brightness = 0x96;
break;
case 0:
brightness = 0x72;
break;
case -1:
brightness = 0x48;
break;
case -2:
brightness = 0x24;
break;
case -3:
brightness = 0x00;
break;
default: // 0
break;
}
ispctrl5 |= 0x40; // enable brightness
ret = write_reg(sensor->slv_addr, ISPCTRL5, ispctrl5);
ret = write_reg(sensor->slv_addr, BRIGHT, brightness);
if (ret != 0)
{
ESP_LOGD(TAG, "Set brightness to: %d", level);
sensor->status.brightness = level;
}
return ret;
}
static int set_contrast(sensor_t *sensor, int level)
{
int ret = 0;
uint8_t ispctrl5 = read_reg(sensor->slv_addr, ISPCTRL5);
ispctrl5 |= 0x80; // enable contrast
ret = write_reg(sensor->slv_addr, ISPCTRL5, ispctrl5);
ret = write_reg(sensor->slv_addr, ACONTQ, (level * 0x20) & 0xFF);
if (ret == 0)
{
ESP_LOGD(TAG, "Set contrast to: %d", level);
sensor->status.contrast = level;
}
return ret;
}
static int set_saturation(sensor_t *sensor, int level)
{
int ret = 0;
ret = write_reg(sensor->slv_addr, SAT, (level * 0x20) + 0x4A);
if (ret == 0)
{
ESP_LOGD(TAG, "Set saturation to: %d", level);
sensor->status.saturation = level;
}
return ret;
}
static int get_sharpness(sensor_t *sensor)
{
int ret = 0;
int level = 0;
ret = read_reg(sensor->slv_addr, EDGE);
level = (ret - 0x60) / 0x20;
ESP_LOGD(TAG, "Get sharpness: %d", level);
return level;
}
static int set_sharpness(sensor_t *sensor, int level)
{
int ret = 0;
ret = write_reg(sensor->slv_addr, EDGE, (level * 0x20) + 0x60);
if (ret == 0)
{
ESP_LOGD(TAG, "Set sharpness to: %d", level);
sensor->status.sharpness = level;
}
return ret;
}
static int get_denoise(sensor_t *sensor)
{
int ret = 0;
int level = 0;
ret = read_reg(sensor->slv_addr, YDN);
level = (ret - 0x07) / 2;
ESP_LOGD(TAG, "Get denoise: %d", level);
return level;
}
static int set_denoise(sensor_t *sensor, int level)
{
int ret = 0;
uint8_t ispctrl5 = read_reg(sensor->slv_addr, ISPCTRL5);
ispctrl5 |= 0x20; // enable denoise
ret = write_reg(sensor->slv_addr, ISPCTRL5, ispctrl5);
ret = write_reg(sensor->slv_addr, YDN, (level * 2) + 0x07);
if (ret == 0)
{
ESP_LOGD(TAG, "Set denoise to: %d", level);
sensor->status.denoise = level;
}
return ret;
}
static int get_reg(sensor_t *sensor, int reg, int mask)
{
int ret = 0, ret2 = 0;
if (mask > 0xFF)
{
ret = read_reg16(sensor->slv_addr, reg);
if (ret >= 0 && mask > 0xFFFF)
{
ret2 = read_reg(sensor->slv_addr, reg + 2);
if (ret2 >= 0)
{
ret = (ret << 8) | ret2;
}
else
{
ret = ret2;
}
}
}
else
{
ret = read_reg(sensor->slv_addr, reg);
}
if (ret > 0)
{
ret &= mask;
}
return ret;
}
static int set_reg(sensor_t *sensor, int reg, int mask, int value)
{
int ret = 0, ret2 = 0;
if (mask > 0xFF)
{
ret = read_reg16(sensor->slv_addr, reg);
if (ret >= 0 && mask > 0xFFFF)
{
ret2 = read_reg(sensor->slv_addr, reg + 2);
if (ret2 >= 0)
{
ret = (ret << 8) | ret2;
}
else
{
ret = ret2;
}
}
}
else
{
ret = read_reg(sensor->slv_addr, reg);
}
if (ret < 0)
{
return ret;
}
value = (ret & ~mask) | (value & mask);
if (mask > 0xFFFF)
{
ret = write_reg16(sensor->slv_addr, reg, value >> 8);
if (ret >= 0)
{
ret = write_reg(sensor->slv_addr, reg + 2, value & 0xFF);
}
}
else if (mask > 0xFF)
{
ret = write_reg16(sensor->slv_addr, reg, value);
}
else
{
ret = write_reg(sensor->slv_addr, reg, value);
}
return ret;
}
static int set_res_raw(sensor_t *sensor, int startX, int startY, int endX, int endY, int offsetX, int offsetY, int totalX, int totalY, int outputX, int outputY, bool scale, bool binning)
{
return 0;
}
static int _set_pll(sensor_t *sensor, int bypass, int multiplier, int sys_div, int root_2x, int pre_div, int seld5, int pclk_manual, int pclk_div)
{
int ret = 0;
uint8_t ckcfg1 = 0;
uint8_t ckcfg2 = 0;
uint8_t ckcfg3 = 0;
uint8_t pll2 = 0;
if (sensor->xclk_freq_hz <= 6000000)
{
ckcfg2 = 0x00;
}
else if (sensor->xclk_freq_hz <= 12000000)
{
ckcfg2 = 0x20;
}
else if (sensor->xclk_freq_hz <= 18000000)
{
ckcfg2 = 0x40;
}
else if (sensor->xclk_freq_hz <= 24000000)
{
ckcfg2 = 0x60;
}
else if (sensor->xclk_freq_hz <= 30000000)
{
ckcfg2 = 0x80;
}
else if (sensor->xclk_freq_hz <= 36000000)
{
ckcfg2 = 0xA0;
}
else if (sensor->xclk_freq_hz <= 42000000)
{
ckcfg2 = 0xC0;
}
else
{ // max is 48000000
ckcfg2 = 0xE0;
}
if (bypass == 0)
{
switch (multiplier)
{
case 204:
ckcfg2 |= 10;
break;
case 216:
ckcfg2 |= 11;
break;
case 228:
ckcfg2 |= 0x12;
break;
case 240:
ckcfg2 |= 0x13;
break;
case 288:
ckcfg2 |= 0x17;
break;
case 300:
ckcfg2 |= 0x18;
break;
case 312:
ckcfg2 |= 0x19;
break;
case 324:
ckcfg2 |= 0x1A;
break;
case 336:
ckcfg2 |= 0x1B;
break;
case 348:
ckcfg2 |= 0x1C;
break;
case 360:
ckcfg2 |= 0x1D;
break;
default:
ckcfg2 |= 0x17;
break;
}
}
if (pclk_manual > 0)
{
if (pclk_div > 128)
{
pclk_div = 128;
}
if (pclk_div < 1)
{
pclk_div = 1;
}
ckcfg1 |= (pclk_div - 1);
}
if (root_2x > 0)
{
ckcfg3 = 0x00;
}
else
{
ckcfg3 = 0x01;
}
ESP_LOGD(TAG, "ckcfg1 = 0x%02x, ckcfg2 = 0x%02x, ckcfg3 = 0x%02x, pll2 = 0x%02x", ckcfg1, ckcfg2, ckcfg3, pll2);
ret = write_reg(sensor->slv_addr, CKCFG1, ckcfg1);
ret = write_reg(sensor->slv_addr, CKCFG2, ckcfg2);
ret = write_reg(sensor->slv_addr, CKCFG3, ckcfg3);
ret = write_reg(sensor->slv_addr, PLL2, pll2);
return ret;
}
static int set_xclk(sensor_t *sensor, int timer, int xclk)
{
int ret = 0;
sensor->xclk_freq_hz = xclk * 1000000U;
ret = xclk_timer_conf(timer, sensor->xclk_freq_hz);
if (ret == 0)
{
ESP_LOGD(TAG, "Set xclk to %d", xclk);
}
return ret;
}
static int init_status(sensor_t *sensor)
{
(void) write_addr_reg;
sensor->status.brightness = 0;
sensor->status.contrast = 0;
sensor->status.saturation = 0;
sensor->status.sharpness = get_sharpness(sensor);
sensor->status.denoise = get_denoise(sensor);
sensor->status.ae_level = 0;
sensor->status.awb = check_reg_mask(sensor->slv_addr, AEWBCFG, 0x02);
sensor->status.agc = true;
sensor->status.aec = check_reg_mask(sensor->slv_addr, AEWBCFG, 0x04);
sensor->status.hmirror = check_reg_mask(sensor->slv_addr, RDCFG, 0x02);
sensor->status.vflip = check_reg_mask(sensor->slv_addr, RDCFG, 0x01);
sensor->status.lenc = check_reg_mask(sensor->slv_addr, ISPCTRL3, 0x40);
sensor->status.awb_gain = read_reg(sensor->slv_addr, DGAIN);
sensor->status.agc_gain = read_reg(sensor->slv_addr, AGAIN);
sensor->status.aec_value = read_reg(sensor->slv_addr, AETARGM);
return 0;
}
int hm1055_detect(int slv_addr, sensor_id_t *id)
{
if (HM1055_SCCB_ADDR == slv_addr)
{
uint8_t h = SCCB_Read16(slv_addr, IDH);
uint8_t l = SCCB_Read16(slv_addr, IDL);
uint16_t PID = (h << 8) | l;
if (HM1055_PID == PID)
{
id->PID = PID;
return PID;
}
else
{
ESP_LOGD(TAG, "Mismatch PID=0x%x", PID);
}
}
return 0;
}
int hm1055_init(sensor_t *sensor)
{
sensor->reset = reset;
sensor->set_pixformat = set_pixformat;
sensor->set_framesize = set_framesize;
sensor->set_contrast = set_contrast;
sensor->set_brightness = set_brightness;
sensor->set_saturation = set_saturation;
sensor->set_sharpness = set_sharpness;
sensor->set_gainceiling = NULL;
sensor->set_quality = set_quality;
sensor->set_colorbar = set_colorbar;
sensor->set_gain_ctrl = set_gain_ctrl;
sensor->set_exposure_ctrl = set_exposure_ctrl;
sensor->set_whitebal = set_whitebal;
sensor->set_hmirror = set_hmirror;
sensor->set_vflip = set_vflip;
sensor->init_status = init_status;
sensor->set_aec2 = NULL;
sensor->set_aec_value = set_aec_value;
sensor->set_special_effect = NULL;
sensor->set_wb_mode = NULL;
sensor->set_ae_level = set_ae_level;
sensor->set_dcw = NULL;
sensor->set_bpc = NULL;
sensor->set_wpc = NULL;
sensor->set_agc_gain = set_agc_gain;
sensor->set_raw_gma = set_raw_gma_dsp;
sensor->set_lenc = set_lenc_dsp;
sensor->set_denoise = set_denoise;
sensor->get_reg = get_reg;
sensor->set_reg = set_reg;
sensor->set_res_raw = set_res_raw;
sensor->set_pll = _set_pll;
sensor->set_xclk = set_xclk;
return 0;
}