/* * * HM1055 driver. * */ #include #include #include #include "sccb.h" #include "xclk.h" #include "hm1055.h" #include "hm1055_regs.h" #include "hm1055_settings.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG) #include "esp32-hal-log.h" #else #include "esp_log.h" static const char *TAG = "HM1055"; #endif // #define REG_DEBUG_ON static int _set_pll(sensor_t *sensor, int bypass, int multiplier, int sys_div, int root_2x, int pre_div, int seld5, int pclk_manual, int pclk_div); static int read_reg(uint8_t slv_addr, const uint16_t reg) { int ret = SCCB_Read16(slv_addr, reg); #ifdef REG_DEBUG_ON if (ret < 0) { ESP_LOGE(TAG, "READ REG 0x%04x FAILED: %d", reg, ret); } #endif return ret; } static int check_reg_mask(uint8_t slv_addr, uint16_t reg, uint8_t mask) { return (read_reg(slv_addr, reg) & mask) == mask; } static int read_reg16(uint8_t slv_addr, const uint16_t reg) { int ret = 0, ret2 = 0; ret = read_reg(slv_addr, reg); if (ret >= 0) { ret = (ret & 0xFF) << 8; ret2 = read_reg(slv_addr, reg + 1); if (ret2 < 0) { ret = ret2; } else { ret |= ret2 & 0xFF; } } return ret; } static int write_reg(uint8_t slv_addr, const uint16_t reg, uint8_t value) { int ret = 0; #ifndef REG_DEBUG_ON ret = SCCB_Write16(slv_addr, reg, value); #else int old_value = read_reg(slv_addr, reg); if (old_value < 0) { return old_value; } if ((uint8_t)old_value != value) { ESP_LOGD(TAG, "NEW REG 0x%04x: 0x%02x to 0x%02x", reg, (uint8_t)old_value, value); ret = SCCB_Write16(slv_addr, reg, value); } else { ESP_LOGD(TAG, "OLD REG 0x%04x: 0x%02x", reg, (uint8_t)old_value); ret = SCCB_Write16(slv_addr, reg, value); // maybe not? } if (ret < 0) { ESP_LOGE(TAG, "WRITE REG 0x%04x FAILED: %d", reg, ret); } #endif return ret; } static int set_reg_bits(uint8_t slv_addr, uint16_t reg, uint8_t offset, uint8_t mask, uint8_t value) { int ret = 0; uint8_t c_value, new_value; ret = read_reg(slv_addr, reg); if (ret < 0) { return ret; } c_value = ret; new_value = (c_value & ~(mask << offset)) | ((value & mask) << offset); ret = write_reg(slv_addr, reg, new_value); return ret; } static int write_regs(uint8_t slv_addr, const uint16_t (*regs)[2]) { int i = 0, ret = 0; while (!ret && regs[i][0] != REGLIST_TAIL) { if (regs[i][0] == REG_DLY) { vTaskDelay(regs[i][1] / portTICK_PERIOD_MS); } else { ret = write_reg(slv_addr, regs[i][0], regs[i][1]); } i++; } return ret; } static int write_reg16(uint8_t slv_addr, const uint16_t reg, uint16_t value) { if (write_reg(slv_addr, reg, value >> 8) || write_reg(slv_addr, reg + 1, value)) { return -1; } return 0; } static int write_addr_reg(uint8_t slv_addr, const uint16_t reg, uint16_t x_value, uint16_t y_value) { if (write_reg16(slv_addr, reg, x_value) || write_reg16(slv_addr, reg + 2, y_value)) { return -1; } return 0; } #define write_reg_bits(slv_addr, reg, mask, enable) set_reg_bits(slv_addr, reg, 0, mask, (enable) ? (mask) : 0) static int set_ae_level(sensor_t *sensor, int level); static int reset(sensor_t *sensor) { vTaskDelay(100 / portTICK_PERIOD_MS); int ret = 0; // Software Reset: clear all registers and reset them to their default values ret = write_reg(sensor->slv_addr, SFTRST, 0x55); if (ret) { ESP_LOGE(TAG, "Software Reset FAILED!"); return ret; } vTaskDelay(100 / portTICK_PERIOD_MS); ret = write_regs(sensor->slv_addr, sensor_default_regs); if (ret == 0) { ESP_LOGD(TAG, "Camera defaults loaded"); vTaskDelay(100 / portTICK_PERIOD_MS); set_ae_level(sensor, 0); } return ret; } static int set_pixformat(sensor_t *sensor, pixformat_t pixformat) { int ret = 0; switch (pixformat) { case PIXFORMAT_RAW: ret = write_reg(sensor->slv_addr, PORTCTRL, 0x20); break; case PIXFORMAT_YUV422: ret = write_reg(sensor->slv_addr, PORTCTRL, 0x30); break; case PIXFORMAT_RGB565: case PIXFORMAT_RGB888: ret = write_reg(sensor->slv_addr, PORTCTRL, 0x40); break; case PIXFORMAT_RGB555: ret = write_reg(sensor->slv_addr, PORTCTRL, 0x50); break; case PIXFORMAT_RGB444: ret = write_reg(sensor->slv_addr, PORTCTRL, 0x60); break; default: break; } if (ret == 0) { sensor->pixformat = pixformat; ESP_LOGD(TAG, "Set pixformat: %d", pixformat); } return ret; } static int set_framesize(sensor_t *sensor, framesize_t framesize) { int ret = 0; sensor->status.framesize = framesize; ESP_LOGD(TAG, "Set framesize: %d", framesize); ret = write_regs(sensor->slv_addr, sensor_default_regs); if (framesize == FRAMESIZE_QQVGA) { ESP_LOGD(TAG, "Set FRAMESIZE_QQVGA"); ret = write_regs(sensor->slv_addr, sensor_framesize_QQVGA); } else if (framesize == FRAMESIZE_QCIF) { ESP_LOGD(TAG, "Set FRAMESIZE_QCIF"); ret = write_regs(sensor->slv_addr, sensor_framesize_QCIF); } else if (framesize == FRAMESIZE_240X240) { ESP_LOGD(TAG, "Set FRAMESIZE_240X240"); ret = write_regs(sensor->slv_addr, sensor_framesize_240X240); } else if (framesize == FRAMESIZE_QVGA) { ESP_LOGD(TAG, "Set FRAMESIZE_QVGA"); ret = write_regs(sensor->slv_addr, sensor_framesize_QVGA); } else if (framesize == FRAMESIZE_CIF) { ESP_LOGD(TAG, "Set FRAMESIZE_CIF"); ret = write_regs(sensor->slv_addr, sensor_framesize_CIF); } else if (framesize == FRAMESIZE_VGA) { ESP_LOGD(TAG, "Set FRAMESIZE_VGA"); ret = write_regs(sensor->slv_addr, sensor_framesize_VGA); } else if (framesize == FRAMESIZE_SVGA) { ESP_LOGD(TAG, "Set FRAMESIZE_SVGA"); ret = write_regs(sensor->slv_addr, sensor_framesize_SVGA); } else if (framesize == FRAMESIZE_HD) { ESP_LOGD(TAG, "Set FRAMESIZE_HD"); ret = write_regs(sensor->slv_addr, sensor_framesize_HD); ret = _set_pll(sensor, 0, 288, 1, 0, 0, 0, 1, 16); } else { ESP_LOGD(TAG, "Dont suppost this size, Set FRAMESIZE_VGA"); ret = write_regs(sensor->slv_addr, sensor_framesize_VGA); } if (ret == 0) { ret = write_reg(sensor->slv_addr, CMU, 0x01) || write_reg(sensor->slv_addr, TGRDCFG, 0x01); } return ret; } static int set_hmirror(sensor_t *sensor, int enable) { int ret = 0; ret = write_reg_bits(sensor->slv_addr, RDCFG, 0x02, enable); if (ret == 0) { ESP_LOGD(TAG, "Set hmirror to: %d", enable); sensor->status.hmirror = enable; } return ret; } static int set_vflip(sensor_t *sensor, int enable) { int ret = 0; ret = write_reg_bits(sensor->slv_addr, RDCFG, 0x01, enable); if (ret == 0) { ESP_LOGD(TAG, "Set vflip to: %d", enable); sensor->status.vflip = enable; } return ret; } static int set_quality(sensor_t *sensor, int qs) { return 0; } static int set_colorbar(sensor_t *sensor, int enable) { return 0; } static int set_gain_ctrl(sensor_t *sensor, int enable) { return 0; } static int set_exposure_ctrl(sensor_t *sensor, int enable) { int ret = 0; ret = write_reg_bits(sensor->slv_addr, AEWBCFG, 0x01, enable); if (ret == 0) { ESP_LOGD(TAG, "Set aec to: %d", enable); sensor->status.aec = enable; } return ret; } static int set_whitebal(sensor_t *sensor, int enable) { int ret = 0; ret = write_reg_bits(sensor->slv_addr, AEWBCFG, 0x02, enable); if (ret == 0) { ESP_LOGD(TAG, "Set awb to: %d", enable); sensor->status.awb = enable; } return ret; } // Gamma enable static int set_raw_gma_dsp(sensor_t *sensor, int enable) { int ret = 0; ret = write_reg_bits(sensor->slv_addr, ISPCTRL1, 0x04, enable); if (ret == 0) { ESP_LOGD(TAG, "Set raw_gma to: %d", enable); sensor->status.raw_gma = enable; } return 0; } static int set_lenc_dsp(sensor_t *sensor, int enable) { int ret = 0; ret = write_reg_bits(sensor->slv_addr, ISPCTRL3, 0x40, enable); if (ret == 0) { ESP_LOGD(TAG, "Set lenc to: %d", enable); sensor->status.lenc = enable; } return -1; } // real gain static int set_agc_gain(sensor_t *sensor, int gain) { int ret = 0; if (gain < 0 || gain > 7) { return -1; } ret = write_reg(sensor->slv_addr, AGAIN, gain); if (ret == 0) { ESP_LOGD(TAG, "Set gain to: %d", gain); sensor->status.agc_gain = gain; } return 0; } static int set_aec_value(sensor_t *sensor, int value) { int ret = 0; ret = write_reg(sensor->slv_addr, AETARGM, value); if (ret == 0) { ESP_LOGD(TAG, "Set aec_value to: %d", value); sensor->status.aec_value = value; } return 0; } static int set_ae_level(sensor_t *sensor, int level) { int ret = 0; if (level < -5 || level > 5) { return -1; } uint8_t target_level = ((level + 5) * 10) + 5; uint8_t upper = target_level * 27 / 25; uint8_t lower = target_level * 23 / 25; ret = write_reg(sensor->slv_addr, AETARGU, upper) || write_reg(sensor->slv_addr, AETARGL, lower); if (ret == 0) { ESP_LOGD(TAG, "Set ae_level to: %d", level); sensor->status.ae_level = level; } return 0; } static int set_brightness(sensor_t *sensor, int level) { int ret = 0; uint8_t ispctrl5 = read_reg(sensor->slv_addr, ISPCTRL5); uint8_t brightness = 0; switch (level) { case 3: brightness = 0xFF; break; case 2: brightness = 0xBA; break; case 1: brightness = 0x96; break; case 0: brightness = 0x72; break; case -1: brightness = 0x48; break; case -2: brightness = 0x24; break; case -3: brightness = 0x00; break; default: // 0 break; } ispctrl5 |= 0x40; // enable brightness ret = write_reg(sensor->slv_addr, ISPCTRL5, ispctrl5); ret = write_reg(sensor->slv_addr, BRIGHT, brightness); if (ret != 0) { ESP_LOGD(TAG, "Set brightness to: %d", level); sensor->status.brightness = level; } return ret; } static int set_contrast(sensor_t *sensor, int level) { int ret = 0; uint8_t ispctrl5 = read_reg(sensor->slv_addr, ISPCTRL5); ispctrl5 |= 0x80; // enable contrast ret = write_reg(sensor->slv_addr, ISPCTRL5, ispctrl5); ret = write_reg(sensor->slv_addr, ACONTQ, (level * 0x20) & 0xFF); if (ret == 0) { ESP_LOGD(TAG, "Set contrast to: %d", level); sensor->status.contrast = level; } return ret; } static int set_saturation(sensor_t *sensor, int level) { int ret = 0; ret = write_reg(sensor->slv_addr, SAT, (level * 0x20) + 0x4A); if (ret == 0) { ESP_LOGD(TAG, "Set saturation to: %d", level); sensor->status.saturation = level; } return ret; } static int get_sharpness(sensor_t *sensor) { int ret = 0; int level = 0; ret = read_reg(sensor->slv_addr, EDGE); level = (ret - 0x60) / 0x20; ESP_LOGD(TAG, "Get sharpness: %d", level); return level; } static int set_sharpness(sensor_t *sensor, int level) { int ret = 0; ret = write_reg(sensor->slv_addr, EDGE, (level * 0x20) + 0x60); if (ret == 0) { ESP_LOGD(TAG, "Set sharpness to: %d", level); sensor->status.sharpness = level; } return ret; } static int get_denoise(sensor_t *sensor) { int ret = 0; int level = 0; ret = read_reg(sensor->slv_addr, YDN); level = (ret - 0x07) / 2; ESP_LOGD(TAG, "Get denoise: %d", level); return level; } static int set_denoise(sensor_t *sensor, int level) { int ret = 0; uint8_t ispctrl5 = read_reg(sensor->slv_addr, ISPCTRL5); ispctrl5 |= 0x20; // enable denoise ret = write_reg(sensor->slv_addr, ISPCTRL5, ispctrl5); ret = write_reg(sensor->slv_addr, YDN, (level * 2) + 0x07); if (ret == 0) { ESP_LOGD(TAG, "Set denoise to: %d", level); sensor->status.denoise = level; } return ret; } static int get_reg(sensor_t *sensor, int reg, int mask) { int ret = 0, ret2 = 0; if (mask > 0xFF) { ret = read_reg16(sensor->slv_addr, reg); if (ret >= 0 && mask > 0xFFFF) { ret2 = read_reg(sensor->slv_addr, reg + 2); if (ret2 >= 0) { ret = (ret << 8) | ret2; } else { ret = ret2; } } } else { ret = read_reg(sensor->slv_addr, reg); } if (ret > 0) { ret &= mask; } return ret; } static int set_reg(sensor_t *sensor, int reg, int mask, int value) { int ret = 0, ret2 = 0; if (mask > 0xFF) { ret = read_reg16(sensor->slv_addr, reg); if (ret >= 0 && mask > 0xFFFF) { ret2 = read_reg(sensor->slv_addr, reg + 2); if (ret2 >= 0) { ret = (ret << 8) | ret2; } else { ret = ret2; } } } else { ret = read_reg(sensor->slv_addr, reg); } if (ret < 0) { return ret; } value = (ret & ~mask) | (value & mask); if (mask > 0xFFFF) { ret = write_reg16(sensor->slv_addr, reg, value >> 8); if (ret >= 0) { ret = write_reg(sensor->slv_addr, reg + 2, value & 0xFF); } } else if (mask > 0xFF) { ret = write_reg16(sensor->slv_addr, reg, value); } else { ret = write_reg(sensor->slv_addr, reg, value); } return ret; } static int set_res_raw(sensor_t *sensor, int startX, int startY, int endX, int endY, int offsetX, int offsetY, int totalX, int totalY, int outputX, int outputY, bool scale, bool binning) { return 0; } static int _set_pll(sensor_t *sensor, int bypass, int multiplier, int sys_div, int root_2x, int pre_div, int seld5, int pclk_manual, int pclk_div) { int ret = 0; uint8_t ckcfg1 = 0; uint8_t ckcfg2 = 0; uint8_t ckcfg3 = 0; uint8_t pll2 = 0; if (sensor->xclk_freq_hz <= 6000000) { ckcfg2 = 0x00; } else if (sensor->xclk_freq_hz <= 12000000) { ckcfg2 = 0x20; } else if (sensor->xclk_freq_hz <= 18000000) { ckcfg2 = 0x40; } else if (sensor->xclk_freq_hz <= 24000000) { ckcfg2 = 0x60; } else if (sensor->xclk_freq_hz <= 30000000) { ckcfg2 = 0x80; } else if (sensor->xclk_freq_hz <= 36000000) { ckcfg2 = 0xA0; } else if (sensor->xclk_freq_hz <= 42000000) { ckcfg2 = 0xC0; } else { // max is 48000000 ckcfg2 = 0xE0; } if (bypass == 0) { switch (multiplier) { case 204: ckcfg2 |= 10; break; case 216: ckcfg2 |= 11; break; case 228: ckcfg2 |= 0x12; break; case 240: ckcfg2 |= 0x13; break; case 288: ckcfg2 |= 0x17; break; case 300: ckcfg2 |= 0x18; break; case 312: ckcfg2 |= 0x19; break; case 324: ckcfg2 |= 0x1A; break; case 336: ckcfg2 |= 0x1B; break; case 348: ckcfg2 |= 0x1C; break; case 360: ckcfg2 |= 0x1D; break; default: ckcfg2 |= 0x17; break; } } if (pclk_manual > 0) { if (pclk_div > 128) { pclk_div = 128; } if (pclk_div < 1) { pclk_div = 1; } ckcfg1 |= (pclk_div - 1); } if (root_2x > 0) { ckcfg3 = 0x00; } else { ckcfg3 = 0x01; } ESP_LOGD(TAG, "ckcfg1 = 0x%02x, ckcfg2 = 0x%02x, ckcfg3 = 0x%02x, pll2 = 0x%02x", ckcfg1, ckcfg2, ckcfg3, pll2); ret = write_reg(sensor->slv_addr, CKCFG1, ckcfg1); ret = write_reg(sensor->slv_addr, CKCFG2, ckcfg2); ret = write_reg(sensor->slv_addr, CKCFG3, ckcfg3); ret = write_reg(sensor->slv_addr, PLL2, pll2); return ret; } static int set_xclk(sensor_t *sensor, int timer, int xclk) { int ret = 0; sensor->xclk_freq_hz = xclk * 1000000U; ret = xclk_timer_conf(timer, sensor->xclk_freq_hz); if (ret == 0) { ESP_LOGD(TAG, "Set xclk to %d", xclk); } return ret; } static int init_status(sensor_t *sensor) { (void) write_addr_reg; sensor->status.brightness = 0; sensor->status.contrast = 0; sensor->status.saturation = 0; sensor->status.sharpness = get_sharpness(sensor); sensor->status.denoise = get_denoise(sensor); sensor->status.ae_level = 0; sensor->status.awb = check_reg_mask(sensor->slv_addr, AEWBCFG, 0x02); sensor->status.agc = true; sensor->status.aec = check_reg_mask(sensor->slv_addr, AEWBCFG, 0x04); sensor->status.hmirror = check_reg_mask(sensor->slv_addr, RDCFG, 0x02); sensor->status.vflip = check_reg_mask(sensor->slv_addr, RDCFG, 0x01); sensor->status.lenc = check_reg_mask(sensor->slv_addr, ISPCTRL3, 0x40); sensor->status.awb_gain = read_reg(sensor->slv_addr, DGAIN); sensor->status.agc_gain = read_reg(sensor->slv_addr, AGAIN); sensor->status.aec_value = read_reg(sensor->slv_addr, AETARGM); return 0; } int hm1055_detect(int slv_addr, sensor_id_t *id) { if (HM1055_SCCB_ADDR == slv_addr) { uint8_t h = SCCB_Read16(slv_addr, IDH); uint8_t l = SCCB_Read16(slv_addr, IDL); uint16_t PID = (h << 8) | l; if (HM1055_PID == PID) { id->PID = PID; return PID; } else { ESP_LOGD(TAG, "Mismatch PID=0x%x", PID); } } return 0; } int hm1055_init(sensor_t *sensor) { sensor->reset = reset; sensor->set_pixformat = set_pixformat; sensor->set_framesize = set_framesize; sensor->set_contrast = set_contrast; sensor->set_brightness = set_brightness; sensor->set_saturation = set_saturation; sensor->set_sharpness = set_sharpness; sensor->set_gainceiling = NULL; sensor->set_quality = set_quality; sensor->set_colorbar = set_colorbar; sensor->set_gain_ctrl = set_gain_ctrl; sensor->set_exposure_ctrl = set_exposure_ctrl; sensor->set_whitebal = set_whitebal; sensor->set_hmirror = set_hmirror; sensor->set_vflip = set_vflip; sensor->init_status = init_status; sensor->set_aec2 = NULL; sensor->set_aec_value = set_aec_value; sensor->set_special_effect = NULL; sensor->set_wb_mode = NULL; sensor->set_ae_level = set_ae_level; sensor->set_dcw = NULL; sensor->set_bpc = NULL; sensor->set_wpc = NULL; sensor->set_agc_gain = set_agc_gain; sensor->set_raw_gma = set_raw_gma_dsp; sensor->set_lenc = set_lenc_dsp; sensor->set_denoise = set_denoise; sensor->get_reg = get_reg; sensor->set_reg = set_reg; sensor->set_res_raw = set_res_raw; sensor->set_pll = _set_pll; sensor->set_xclk = set_xclk; return 0; }