You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
394 lines
11 KiB
394 lines
11 KiB
/* |
|
* Copyright (c) 2019 Intel Corporation |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
#include <sys/sys_heap.h> |
|
#include <kernel.h> |
|
#include "heap.h" |
|
|
|
/* White-box sys_heap validation code. Uses internal data structures. |
|
* Not expected to be useful in production apps. This checks every |
|
* header field of every chunk and returns true if the totality of the |
|
* data structure is a valid heap. It doesn't necessarily tell you |
|
* that it is the CORRECT heap given the history of alloc/free calls |
|
* that it can't inspect. In a pathological case, you can imagine |
|
* something scribbling a copy of a previously-valid heap on top of a |
|
* running one and corrupting it. YMMV. |
|
*/ |
|
|
|
static size_t max_chunkid(struct z_heap *h) |
|
{ |
|
return h->len - min_chunk_size(h); |
|
} |
|
|
|
#define VALIDATE(cond) do { if (!(cond)) { return false; } } while (0) |
|
|
|
static bool in_bounds(struct z_heap *h, chunkid_t c) |
|
{ |
|
VALIDATE(c >= right_chunk(h, 0)); |
|
VALIDATE(c <= max_chunkid(h)); |
|
VALIDATE(chunk_size(h, c) < h->len); |
|
return true; |
|
} |
|
|
|
static bool valid_chunk(struct z_heap *h, chunkid_t c) |
|
{ |
|
VALIDATE(chunk_size(h, c) > 0); |
|
VALIDATE(c + chunk_size(h, c) <= h->len); |
|
VALIDATE(in_bounds(h, c)); |
|
VALIDATE(right_chunk(h, left_chunk(h, c)) == c); |
|
VALIDATE(left_chunk(h, right_chunk(h, c)) == c); |
|
if (chunk_used(h, c)) { |
|
VALIDATE(!solo_free_header(h, c)); |
|
} else { |
|
VALIDATE(chunk_used(h, left_chunk(h, c))); |
|
VALIDATE(chunk_used(h, right_chunk(h, c))); |
|
if (!solo_free_header(h, c)) { |
|
VALIDATE(in_bounds(h, prev_free_chunk(h, c))); |
|
VALIDATE(in_bounds(h, next_free_chunk(h, c))); |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
/* Validate multiple state dimensions for the bucket "next" pointer |
|
* and see that they match. Probably should unify the design a |
|
* bit... |
|
*/ |
|
static inline void check_nexts(struct z_heap *h, int bidx) |
|
{ |
|
struct z_heap_bucket *b = &h->buckets[bidx]; |
|
|
|
bool emptybit = (h->avail_buckets & (1 << bidx)) == 0; |
|
bool emptylist = b->next == 0; |
|
bool empties_match = emptybit == emptylist; |
|
|
|
(void)empties_match; |
|
CHECK(empties_match); |
|
|
|
if (b->next != 0) { |
|
CHECK(valid_chunk(h, b->next)); |
|
} |
|
} |
|
|
|
bool sys_heap_validate(struct sys_heap *heap) |
|
{ |
|
struct z_heap *h = heap->heap; |
|
chunkid_t c; |
|
|
|
/* |
|
* Walk through the chunks linearly, verifying sizes and end pointer. |
|
*/ |
|
for (c = right_chunk(h, 0); c <= max_chunkid(h); c = right_chunk(h, c)) { |
|
if (!valid_chunk(h, c)) { |
|
return false; |
|
} |
|
} |
|
if (c != h->len) { |
|
return false; /* Should have exactly consumed the buffer */ |
|
} |
|
|
|
/* Check the free lists: entry count should match, empty bit |
|
* should be correct, and all chunk entries should point into |
|
* valid unused chunks. Mark those chunks USED, temporarily. |
|
*/ |
|
for (int b = 0; b <= bucket_idx(h, h->len); b++) { |
|
chunkid_t c0 = h->buckets[b].next; |
|
uint32_t n = 0; |
|
|
|
check_nexts(h, b); |
|
|
|
for (c = c0; c != 0 && (n == 0 || c != c0); |
|
n++, c = next_free_chunk(h, c)) { |
|
if (!valid_chunk(h, c)) { |
|
return false; |
|
} |
|
set_chunk_used(h, c, true); |
|
} |
|
|
|
bool empty = (h->avail_buckets & (1 << b)) == 0; |
|
bool zero = n == 0; |
|
|
|
if (empty != zero) { |
|
return false; |
|
} |
|
|
|
if (empty && h->buckets[b].next != 0) { |
|
return false; |
|
} |
|
} |
|
|
|
/* |
|
* Walk through the chunks linearly again, verifying that all chunks |
|
* but solo headers are now USED (i.e. all free blocks were found |
|
* during enumeration). Mark all such blocks UNUSED and solo headers |
|
* USED. |
|
*/ |
|
chunkid_t prev_chunk = 0; |
|
for (c = right_chunk(h, 0); c <= max_chunkid(h); c = right_chunk(h, c)) { |
|
if (!chunk_used(h, c) && !solo_free_header(h, c)) { |
|
return false; |
|
} |
|
if (left_chunk(h, c) != prev_chunk) { |
|
return false; |
|
} |
|
prev_chunk = c; |
|
|
|
set_chunk_used(h, c, solo_free_header(h, c)); |
|
} |
|
if (c != h->len) { |
|
return false; /* Should have exactly consumed the buffer */ |
|
} |
|
|
|
/* Go through the free lists again checking that the linear |
|
* pass caught all the blocks and that they now show UNUSED. |
|
* Mark them USED. |
|
*/ |
|
for (int b = 0; b <= bucket_idx(h, h->len); b++) { |
|
chunkid_t c0 = h->buckets[b].next; |
|
int n = 0; |
|
|
|
if (c0 == 0) { |
|
continue; |
|
} |
|
|
|
for (c = c0; n == 0 || c != c0; n++, c = next_free_chunk(h, c)) { |
|
if (chunk_used(h, c)) { |
|
return false; |
|
} |
|
set_chunk_used(h, c, true); |
|
} |
|
} |
|
|
|
/* Now we are valid, but have managed to invert all the in-use |
|
* fields. One more linear pass to fix them up |
|
*/ |
|
for (c = right_chunk(h, 0); c <= max_chunkid(h); c = right_chunk(h, c)) { |
|
set_chunk_used(h, c, !chunk_used(h, c)); |
|
} |
|
return true; |
|
} |
|
|
|
struct z_heap_stress_rec { |
|
void *(*alloc)(void *arg, size_t bytes); |
|
void (*free)(void *arg, void *p); |
|
void *arg; |
|
size_t total_bytes; |
|
struct z_heap_stress_block *blocks; |
|
size_t nblocks; |
|
size_t blocks_alloced; |
|
size_t bytes_alloced; |
|
uint32_t target_percent; |
|
}; |
|
|
|
struct z_heap_stress_block { |
|
void *ptr; |
|
size_t sz; |
|
}; |
|
|
|
/* Very simple LCRNG (from https://nuclear.llnl.gov/CNP/rng/rngman/node4.html) |
|
* |
|
* Here to guarantee cross-platform test repeatability. |
|
*/ |
|
static uint32_t rand32(void) |
|
{ |
|
static uint64_t state = 123456789; /* seed */ |
|
|
|
state = state * 2862933555777941757UL + 3037000493UL; |
|
|
|
return (uint32_t)(state >> 32); |
|
} |
|
|
|
static bool rand_alloc_choice(struct z_heap_stress_rec *sr) |
|
{ |
|
/* Edge cases: no blocks allocated, and no space for a new one */ |
|
if (sr->blocks_alloced == 0) { |
|
return true; |
|
} else if (sr->blocks_alloced >= sr->nblocks) { |
|
return false; |
|
} |
|
|
|
/* The way this works is to scale the chance of choosing to |
|
* allocate vs. free such that it's even odds when the heap is |
|
* at the target percent, with linear tapering on the low |
|
* slope (i.e. we choose to always allocate with an empty |
|
* heap, allocate 50% of the time when the heap is exactly at |
|
* the target, and always free when above the target). In |
|
* practice, the operations aren't quite symmetric (you can |
|
* always free, but your allocation might fail), and the units |
|
* aren't matched (we're doing math based on bytes allocated |
|
* and ignoring the overhead) but this is close enough. And |
|
* yes, the math here is coarse (in units of percent), but |
|
* that's good enough and fits well inside 32 bit quantities. |
|
* (Note precision issue when heap size is above 40MB |
|
* though!). |
|
*/ |
|
__ASSERT(sr->total_bytes < 0xffffffffU / 100, "too big for u32!"); |
|
uint32_t full_pct = (100 * sr->bytes_alloced) / sr->total_bytes; |
|
uint32_t target = sr->target_percent ? sr->target_percent : 1; |
|
uint32_t free_chance = 0xffffffffU; |
|
|
|
if (full_pct < sr->target_percent) { |
|
free_chance = full_pct * (0x80000000U / target); |
|
} |
|
|
|
return rand32() > free_chance; |
|
} |
|
|
|
/* Chooses a size of block to allocate, logarithmically favoring |
|
* smaller blocks (i.e. blocks twice as large are half as frequent |
|
*/ |
|
static size_t rand_alloc_size(struct z_heap_stress_rec *sr) |
|
{ |
|
ARG_UNUSED(sr); |
|
|
|
/* Min scale of 4 means that the half of the requests in the |
|
* smallest size have an average size of 8 |
|
*/ |
|
int scale = 4 + __builtin_clz(rand32()); |
|
|
|
return rand32() & ((1 << scale) - 1); |
|
} |
|
|
|
/* Returns the index of a randomly chosen block to free */ |
|
static size_t rand_free_choice(struct z_heap_stress_rec *sr) |
|
{ |
|
return rand32() % sr->blocks_alloced; |
|
} |
|
|
|
/* General purpose heap stress test. Takes function pointers to allow |
|
* for testing multiple heap APIs with the same rig. The alloc and |
|
* free functions are passed back the argument as a context pointer. |
|
* The "log" function is for readable user output. The total_bytes |
|
* argument should reflect the size of the heap being tested. The |
|
* scratch array is used to store temporary state and should be sized |
|
* about half as large as the heap itself. Returns true on success. |
|
*/ |
|
void sys_heap_stress(void *(*alloc)(void *arg, size_t bytes), |
|
void (*free)(void *arg, void *p), |
|
void *arg, size_t total_bytes, |
|
uint32_t op_count, |
|
void *scratch_mem, size_t scratch_bytes, |
|
int target_percent, |
|
struct z_heap_stress_result *result) |
|
{ |
|
struct z_heap_stress_rec sr = { |
|
.alloc = alloc, |
|
.free = free, |
|
.arg = arg, |
|
.total_bytes = total_bytes, |
|
.blocks = scratch_mem, |
|
.nblocks = scratch_bytes / sizeof(struct z_heap_stress_block), |
|
.target_percent = target_percent, |
|
}; |
|
|
|
*result = (struct z_heap_stress_result) {0}; |
|
|
|
for (uint32_t i = 0; i < op_count; i++) { |
|
if (rand_alloc_choice(&sr)) { |
|
size_t sz = rand_alloc_size(&sr); |
|
void *p = sr.alloc(sr.arg, sz); |
|
|
|
result->total_allocs++; |
|
if (p != NULL) { |
|
result->successful_allocs++; |
|
sr.blocks[sr.blocks_alloced].ptr = p; |
|
sr.blocks[sr.blocks_alloced].sz = sz; |
|
sr.blocks_alloced++; |
|
sr.bytes_alloced += sz; |
|
} |
|
} else { |
|
int b = rand_free_choice(&sr); |
|
void *p = sr.blocks[b].ptr; |
|
size_t sz = sr.blocks[b].sz; |
|
|
|
result->total_frees++; |
|
sr.blocks[b] = sr.blocks[sr.blocks_alloced - 1]; |
|
sr.blocks_alloced--; |
|
sr.bytes_alloced -= sz; |
|
sr.free(sr.arg, p); |
|
} |
|
result->accumulated_in_use_bytes += sr.bytes_alloced; |
|
} |
|
} |
|
|
|
/* |
|
* Print heap info for debugging / analysis purpose |
|
*/ |
|
void heap_print_info(struct z_heap *h, bool dump_chunks) |
|
{ |
|
int i, nb_buckets = bucket_idx(h, h->len) + 1; |
|
size_t free_bytes, allocated_bytes, total, overhead; |
|
|
|
printk("Heap at %p contains %d units in %d buckets\n\n", |
|
chunk_buf(h), h->len, nb_buckets); |
|
|
|
printk(" bucket# min units total largest largest\n" |
|
" threshold chunks (units) (bytes)\n" |
|
" -----------------------------------------------------------\n"); |
|
for (i = 0; i < nb_buckets; i++) { |
|
chunkid_t first = h->buckets[i].next; |
|
size_t largest = 0; |
|
int count = 0; |
|
|
|
if (first) { |
|
chunkid_t curr = first; |
|
do { |
|
count++; |
|
largest = MAX(largest, chunk_size(h, curr)); |
|
curr = next_free_chunk(h, curr); |
|
} while (curr != first); |
|
} |
|
if (count) { |
|
printk("%9d %12d %12d %12zd %12zd\n", |
|
i, (1 << i) - 1 + min_chunk_size(h), count, |
|
largest, largest * CHUNK_UNIT - chunk_header_bytes(h)); |
|
} |
|
} |
|
|
|
if (dump_chunks) { |
|
printk("\nChunk dump:\n"); |
|
} |
|
free_bytes = allocated_bytes = 0; |
|
for (chunkid_t c = 0; ; c = right_chunk(h, c)) { |
|
if (c == 0 || c == h->len) { |
|
/* those are always allocated for internal purposes */ |
|
} else if (chunk_used(h, c)) { |
|
allocated_bytes += chunk_size(h, c) * CHUNK_UNIT |
|
- chunk_header_bytes(h); |
|
} else if (!solo_free_header(h, c)) { |
|
free_bytes += chunk_size(h, c) * CHUNK_UNIT |
|
- chunk_header_bytes(h); |
|
} |
|
if (dump_chunks) { |
|
printk("chunk %4zd: [%c] size=%-4zd left=%-4zd right=%zd\n", |
|
c, |
|
chunk_used(h, c) ? '*' |
|
: solo_free_header(h, c) ? '.' |
|
: '-', |
|
chunk_size(h, c), |
|
left_chunk(h, c), |
|
right_chunk(h, c)); |
|
} |
|
if (c == h->len) { |
|
break; |
|
} |
|
} |
|
|
|
/* |
|
* The final chunk at h->len is just a header serving as a end |
|
* marker. It is part of the overhead. |
|
*/ |
|
total = h->len * CHUNK_UNIT + chunk_header_bytes(h); |
|
overhead = total - free_bytes - allocated_bytes; |
|
printk("\n%zd free bytes, %zd allocated bytes, overhead = %zd bytes (%zd.%zd%%)\n", |
|
free_bytes, allocated_bytes, overhead, |
|
(1000 * overhead + total/2) / total / 10, |
|
(1000 * overhead + total/2) / total % 10); |
|
} |
|
|
|
void sys_heap_print_info(struct sys_heap *heap, bool dump_chunks) |
|
{ |
|
heap_print_info(heap->heap, dump_chunks); |
|
}
|
|
|