Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

227 lines
6.2 KiB

/*
* Copyright (c) 2025 Renesas Electronics Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/device.h>
#include <zephyr/spinlock.h>
#include <zephyr/drivers/interrupt_controller/gic.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/irq.h>
#include <zephyr/sys_clock.h>
#define DT_DRV_COMPAT renesas_rza2m_ostm
DEVICE_MMIO_TOPLEVEL_STATIC(ostm_base, DT_DRV_INST(0));
/* The interrupt numbers in the device tree are interrupt IDs and need to be converted to SPI
* interrupt numbers
*/
#define OSTM_IRQ_NUM (DT_INST_IRQN(0) - GIC_SPI_INT_BASE)
#if defined(CONFIG_TEST)
const int32_t z_sys_timer_irq_for_test = OSTM_IRQ_NUM;
#endif
#define cycle_diff_t uint32_t
#define CYCLE_DIFF_MAX (~(cycle_diff_t)0)
#define OSTM_REG_ADDR(off) ((mm_reg_t)(DEVICE_MMIO_TOPLEVEL_GET(ostm_base) + (off)))
#define OSTM_CMP_OFFSET 0x0 /* Compare register */
#define OSTM_CNT_OFFSET 0x4 /* Counter register */
#define OSTM_TE_OFFSET 0x10 /* Count enable status register */
#define OSTM_TE_ENABLE BIT(0) /* Timer enabled */
#define OSTM_TS_OFFSET 0x14 /* Count start trigger register */
#define OSTM_TS_START BIT(0) /* Trigger start of the timer */
#define OSTM_TT_OFFSET 0x18 /* Count stop trigger register */
#define OSTM_TT_STOP BIT(0) /* Trigger stop of the timer */
#define OSTM_CTL_OFFSET 0x20 /* Control register */
/*
* Bit 0 of CTL controls enabling/disabling of OSTMnTINT interrupt requests when counting starts
* 0: Disables the interrupts when counting starts
* 1: Enables the interrupts when counting starts
*/
#define OSTM_CTL_TRIG_IRQ_ON_START 1
/*
* Bit 1 of CTL specifies the operating mode for the counter
* 0: Interval timer mode
* 1: Free-running comparison mode
*/
#define OSTM_CTL_INTERVAL 0
#define OSTM_CTL_FREERUN 2
/*
* We have two constraints on the maximum number of cycles we can wait for.
*
* 1) sys_clock_announce() accepts at most INT32_MAX ticks.
*
* 2) The number of cycles between two reports must fit in a cycle_diff_t
* variable before converting it to ticks.
*
* Then:
*
* 3) Pick the smallest between (1) and (2).
*
* 4) Take into account some room for the unavoidable IRQ servicing latency.
* Let's use 3/4 of the max range.
*
* Finally let's add the LSB value to the result so to clear out a bunch of
* consecutive set bits coming from the original max values to produce a
* nicer literal for assembly generation.
*/
#define CYCLES_MAX_1 ((uint64_t)INT32_MAX * (uint64_t)CYC_PER_TICK)
#define CYCLES_MAX_2 ((uint64_t)CYCLE_DIFF_MAX)
#define CYCLES_MAX_3 MIN(CYCLES_MAX_1, CYCLES_MAX_2)
#define CYCLES_MAX_4 (CYCLES_MAX_3 / 2 + CYCLES_MAX_3 / 4)
#define CYCLES_MAX_5 (CYCLES_MAX_4 + LSB_GET(CYCLES_MAX_4))
/* Precompute CYCLES_MAX and CYC_PER_TICK at driver init to avoid runtime double divisions */
static uint64_t cycles_max;
static uint32_t cyc_per_tick;
#define CYCLES_MAX cycles_max
#define CYC_PER_TICK cyc_per_tick
static struct k_spinlock lock;
static uint64_t last_cycle;
static uint64_t last_tick;
static uint32_t last_elapsed;
extern unsigned int z_clock_hw_cycles_per_sec;
static void ostm_irq_handler(const struct device *dev)
{
ARG_UNUSED(dev);
uint32_t delta_cycles = sys_clock_cycle_get_32() - last_cycle;
uint32_t delta_ticks = delta_cycles / CYC_PER_TICK;
last_cycle += (cycle_diff_t)delta_ticks * CYC_PER_TICK;
last_tick += delta_ticks;
last_elapsed = 0;
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
uint32_t next_cycle = last_cycle + CYC_PER_TICK;
sys_write32(next_cycle, OSTM_REG_ADDR(OSTM_CMP_OFFSET));
} else {
irq_disable(OSTM_IRQ_NUM);
}
/* Announce to the kernel */
sys_clock_announce(delta_ticks);
}
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return;
}
if (idle && ticks == K_TICKS_FOREVER) {
return;
}
uint32_t next_cycle;
k_spinlock_key_t key = k_spin_lock(&lock);
if (ticks == K_TICKS_FOREVER) {
next_cycle = last_cycle + CYCLES_MAX;
} else {
next_cycle = (last_tick + last_elapsed + ticks) * CYC_PER_TICK;
if ((next_cycle - last_cycle) > CYCLES_MAX) {
next_cycle = last_cycle + CYCLES_MAX;
}
}
sys_write32(next_cycle, OSTM_REG_ADDR(OSTM_CMP_OFFSET));
irq_enable(OSTM_IRQ_NUM);
k_spin_unlock(&lock, key);
}
uint32_t sys_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
uint32_t delta_cycles = sys_clock_cycle_get_32() - last_cycle;
uint32_t delta_ticks = delta_cycles / CYC_PER_TICK;
last_elapsed = delta_ticks;
return delta_ticks;
}
void sys_clock_disable(void)
{
if ((sys_read8(OSTM_REG_ADDR(OSTM_TE_OFFSET)) & OSTM_TE_ENABLE) != OSTM_TE_ENABLE) {
return;
}
sys_write8(OSTM_TT_STOP, OSTM_REG_ADDR(OSTM_TT_OFFSET));
while ((sys_read8(OSTM_REG_ADDR(OSTM_TE_OFFSET)) & OSTM_TE_ENABLE) == OSTM_TE_ENABLE) {
;
}
}
uint32_t sys_clock_cycle_get_32(void)
{
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t ostm_cnt = sys_read32(OSTM_REG_ADDR(OSTM_CNT_OFFSET));
k_spin_unlock(&lock, key);
return ostm_cnt;
}
static int sys_clock_driver_init(void)
{
int ret;
const struct device *clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(0));
uint32_t clock_subsys = DT_INST_CLOCKS_CELL(0, clk_id);
if (!device_is_ready(clock_dev)) {
return -ENODEV;
}
ret = clock_control_on(clock_dev, (clock_control_subsys_t)&clock_subsys);
if (ret < 0) {
return ret;
}
ret = clock_control_get_rate(clock_dev, (clock_control_subsys_t)&clock_subsys,
&z_clock_hw_cycles_per_sec);
if (ret < 0) {
return ret;
}
last_tick = 0;
last_cycle = 0;
cyc_per_tick = sys_clock_hw_cycles_per_sec() / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
cycles_max = CYCLES_MAX_5;
DEVICE_MMIO_TOPLEVEL_MAP(ostm_base, K_MEM_CACHE_NONE);
IRQ_CONNECT(OSTM_IRQ_NUM, DT_INST_IRQ(0, priority), ostm_irq_handler, NULL,
DT_INST_IRQ(0, flags));
/* Restarting the timer will cause reset of CNT register in free-running mode */
sys_clock_disable();
sys_write32(cyc_per_tick, OSTM_REG_ADDR(OSTM_CMP_OFFSET));
sys_write8(OSTM_CTL_FREERUN, OSTM_REG_ADDR(OSTM_CTL_OFFSET));
sys_write8(OSTM_TS_START, OSTM_REG_ADDR(OSTM_TS_OFFSET));
irq_enable(OSTM_IRQ_NUM);
return 0;
}
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);