Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

191 lines
6.0 KiB

/*
* Copyright (c) 2024 Michael Hope
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT wch_rcc
#include <stdint.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/device.h>
#include <zephyr/devicetree.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/sys/util_macro.h>
#include <hal_ch32fun.h>
#define WCH_RCC_CLOCK_ID_OFFSET(id) (((id) >> 5) & 0xFF)
#define WCH_RCC_CLOCK_ID_BIT(id) ((id) & 0x1F)
#define WCH_RCC_SYSCLK DT_PROP(DT_NODELABEL(cpu0), clock_frequency)
#if DT_NODE_HAS_COMPAT(DT_INST_CLOCKS_CTLR(0), wch_ch32v00x_pll_clock) || \
DT_NODE_HAS_COMPAT(DT_INST_CLOCKS_CTLR(0), wch_ch32v20x_30x_pll_clock)
#define WCH_RCC_SRC_IS_PLL 1
#if DT_NODE_HAS_COMPAT(DT_CLOCKS_CTLR(DT_INST_CLOCKS_CTLR(0)), wch_ch32v00x_hse_clock)
#define WCH_RCC_PLL_SRC_IS_HSE 1
#elif DT_NODE_HAS_COMPAT(DT_CLOCKS_CTLR(DT_INST_CLOCKS_CTLR(0)), wch_ch32v00x_hsi_clock)
#define WCH_RCC_PLL_SRC_IS_HSI 1
#endif
#elif DT_NODE_HAS_COMPAT(DT_INST_CLOCKS_CTLR(0), wch_ch32v00x_hse_clock)
#define WCH_RCC_SRC_IS_HSE 1
#elif DT_NODE_HAS_COMPAT(DT_INST_CLOCKS_CTLR(0), wch_ch32v00x_hsi_clock)
#define WCH_RCC_SRC_IS_HSI 1
#endif
struct clock_control_wch_rcc_config {
RCC_TypeDef *regs;
uint8_t mul;
};
static int clock_control_wch_rcc_on(const struct device *dev, clock_control_subsys_t sys)
{
const struct clock_control_wch_rcc_config *config = dev->config;
RCC_TypeDef *regs = config->regs;
uint8_t id = (uintptr_t)sys;
uint32_t reg = (uint32_t)(&regs->AHBPCENR + WCH_RCC_CLOCK_ID_OFFSET(id));
uint32_t val = sys_read32(reg);
val |= BIT(WCH_RCC_CLOCK_ID_BIT(id));
sys_write32(val, reg);
return 0;
}
static int clock_control_wch_rcc_get_rate(const struct device *dev, clock_control_subsys_t sys,
uint32_t *rate)
{
const struct clock_control_wch_rcc_config *config = dev->config;
RCC_TypeDef *regs = config->regs;
uint32_t cfgr0 = regs->CFGR0;
uint32_t sysclk = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
uint32_t ahbclk = sysclk;
if ((cfgr0 & RCC_HPRE_3) != 0) {
/* The range 0b1000 divides by a power of 2, where 0b1000 is /2, 0b1001 is /4, etc.
*/
ahbclk /= 2 << ((cfgr0 & (RCC_HPRE_0 | RCC_HPRE_1 | RCC_HPRE_2)) >> 4);
} else {
/* The range 0b0nnn divides by n + 1, where 0b0000 is /1, 0b001 is /2, etc. */
ahbclk /= ((cfgr0 & (RCC_HPRE_0 | RCC_HPRE_1 | RCC_HPRE_2)) >> 4) + 1;
}
/* The datasheet says that AHB == APB1 == APB2, but the registers imply that APB1 and APB2
* can be divided from the AHB clock. Assume that the clock tree diagram is correct and
* always return AHB.
*/
*rate = ahbclk;
return 0;
}
static void clock_control_wch_rcc_setup_flash(void)
{
#if defined(FLASH_ACTLR_LATENCY)
uint32_t latency;
#if defined(CONFIG_SOC_CH32V003)
if (WCH_RCC_SYSCLK <= 24000000) {
latency = FLASH_ACTLR_LATENCY_0;
} else {
latency = FLASH_ACTLR_LATENCY_1;
}
#elif defined(CONFIG_SOC_SERIES_CH32V00X)
if (WCH_RCC_SYSCLK <= 15000000) {
latency = FLASH_ACTLR_LATENCY_0;
} else if (WCH_RCC_SYSCLK <= 24000000) {
latency = FLASH_ACTLR_LATENCY_1;
} else {
latency = FLASH_ACTLR_LATENCY_2;
}
#else
#error Unrecognised SOC family
#endif
FLASH->ACTLR = (FLASH->ACTLR & ~FLASH_ACTLR_LATENCY) | latency;
#endif
}
static DEVICE_API(clock_control, clock_control_wch_rcc_api) = {
.on = clock_control_wch_rcc_on,
.get_rate = clock_control_wch_rcc_get_rate,
};
static int clock_control_wch_rcc_init(const struct device *dev)
{
const struct clock_control_wch_rcc_config *config = dev->config;
clock_control_wch_rcc_setup_flash();
if (IS_ENABLED(CONFIG_DT_HAS_WCH_CH32V00X_PLL_CLOCK_ENABLED) ||
IS_ENABLED(CONFIG_DT_HAS_WCH_CH32V20X_30X_PLL_CLOCK_ENABLED)) {
/* Disable the PLL before potentially changing the input clocks. */
RCC->CTLR &= ~RCC_PLLON;
}
/* Always enable the LSI. */
RCC->RSTSCKR |= RCC_LSION;
while ((RCC->RSTSCKR & RCC_LSIRDY) == 0) {
}
if (IS_ENABLED(CONFIG_DT_HAS_WCH_CH32V00X_HSI_CLOCK_ENABLED)) {
RCC->CTLR |= RCC_HSION;
while ((RCC->CTLR & RCC_HSIRDY) == 0) {
}
}
if (IS_ENABLED(CONFIG_DT_HAS_WCH_CH32V00X_HSE_CLOCK_ENABLED)) {
RCC->CTLR |= RCC_HSEON;
while ((RCC->CTLR & RCC_HSERDY) == 0) {
}
}
if (IS_ENABLED(CONFIG_DT_HAS_WCH_CH32V00X_PLL_CLOCK_ENABLED)) {
if (IS_ENABLED(WCH_RCC_PLL_SRC_IS_HSE)) {
RCC->CFGR0 |= RCC_PLLSRC;
} else if (IS_ENABLED(WCH_RCC_PLL_SRC_IS_HSI)) {
RCC->CFGR0 &= ~RCC_PLLSRC;
}
RCC->CTLR |= RCC_PLLON;
while ((RCC->CTLR & RCC_PLLRDY) == 0) {
}
}
if (IS_ENABLED(CONFIG_DT_HAS_WCH_CH32V20X_30X_PLL_CLOCK_ENABLED)) {
if (IS_ENABLED(WCH_RCC_PLL_SRC_IS_HSE)) {
RCC->CFGR0 |= RCC_PLLSRC;
} else if (IS_ENABLED(WCH_RCC_PLL_SRC_IS_HSI)) {
RCC->CFGR0 &= ~RCC_PLLSRC;
}
RCC->CFGR0 |= (config->mul == 18 ? 0xF : (config->mul - 2)) << 0x12;
RCC->CTLR |= RCC_PLLON;
while ((RCC->CTLR & RCC_PLLRDY) == 0) {
}
}
if (IS_ENABLED(WCH_RCC_SRC_IS_HSI)) {
RCC->CFGR0 = (RCC->CFGR0 & ~RCC_SW) | RCC_SW_HSI;
} else if (IS_ENABLED(WCH_RCC_SRC_IS_HSE)) {
RCC->CFGR0 = (RCC->CFGR0 & ~RCC_SW) | RCC_SW_HSE;
} else if (IS_ENABLED(WCH_RCC_SRC_IS_PLL)) {
RCC->CFGR0 = (RCC->CFGR0 & ~RCC_SW) | RCC_SW_PLL;
}
RCC->CTLR |= RCC_CSSON;
/* Clear the interrupt flags. */
RCC->INTR = RCC_CSSC | RCC_PLLRDYC | RCC_HSERDYC | RCC_LSIRDYC;
/* HCLK = SYSCLK = APB1 */
RCC->CFGR0 = (RCC->CFGR0 & ~RCC_HPRE) | RCC_HPRE_DIV1;
return 0;
}
#define CLOCK_CONTROL_WCH_RCC_INIT(idx) \
static const struct clock_control_wch_rcc_config clock_control_wch_rcc_##idx##_config = { \
.regs = (RCC_TypeDef *)DT_INST_REG_ADDR(idx), \
.mul = DT_PROP_OR(DT_INST_CLOCKS_CTLR(idx), mul, 1), \
}; \
DEVICE_DT_INST_DEFINE(idx, clock_control_wch_rcc_init, NULL, NULL, \
&clock_control_wch_rcc_##idx##_config, PRE_KERNEL_1, \
CONFIG_CLOCK_CONTROL_INIT_PRIORITY, &clock_control_wch_rcc_api);
/* There is only ever one RCC */
CLOCK_CONTROL_WCH_RCC_INIT(0)