You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
651 lines
19 KiB
651 lines
19 KiB
/* |
|
* Copyright (c) 2018 Foundries.io Ltd |
|
* Copyright (c) 2019 STMicroelectronics |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
#include <zephyr/init.h> |
|
#include <soc.h> |
|
#include <stm32_ll_lptim.h> |
|
#include <stm32_ll_bus.h> |
|
#include <stm32_ll_rcc.h> |
|
#include <stm32_ll_pwr.h> |
|
#include <stm32_ll_system.h> |
|
#include <zephyr/drivers/clock_control.h> |
|
#include <zephyr/drivers/clock_control/stm32_clock_control.h> |
|
#include <zephyr/drivers/timer/system_timer.h> |
|
#include <zephyr/sys_clock.h> |
|
#include <zephyr/irq.h> |
|
#include <zephyr/drivers/counter.h> |
|
#include <zephyr/pm/policy.h> |
|
|
|
#include <zephyr/spinlock.h> |
|
|
|
#define DT_DRV_COMPAT st_stm32_lptim |
|
|
|
#if DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT) > 1 |
|
#error Only one LPTIM instance should be enabled |
|
#endif |
|
|
|
#define LPTIM (LPTIM_TypeDef *) DT_INST_REG_ADDR(0) |
|
|
|
#if DT_INST_NUM_CLOCKS(0) == 1 |
|
#warning Kconfig for LPTIM source clock (LSI/LSE) is deprecated, use device tree. |
|
static const struct stm32_pclken lptim_clk[] = { |
|
STM32_CLOCK_INFO(0, DT_DRV_INST(0)), |
|
/* Use Kconfig to configure source clocks fields */ |
|
/* Fortunately, values are consistent across enabled series */ |
|
#ifdef CONFIG_STM32_LPTIM_CLOCK_LSI |
|
{.bus = STM32_SRC_LSI, .enr = LPTIM1_SEL(1)} |
|
#else |
|
{.bus = STM32_SRC_LSE, .enr = LPTIM1_SEL(3)} |
|
#endif |
|
}; |
|
#else |
|
static const struct stm32_pclken lptim_clk[] = STM32_DT_INST_CLOCKS(0); |
|
#endif |
|
|
|
static const struct device *const clk_ctrl = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); |
|
|
|
/* |
|
* Assumptions and limitations: |
|
* |
|
* - system clock based on an LPTIM instance, clocked by LSI or LSE |
|
* - prescaler is set to a 2^value from 1 (division of the LPTIM source clock by 1) |
|
* to 128 (division of the LPTIM source clock by 128) |
|
* - using LPTIM AutoReload capability to trig the IRQ (timeout irq) |
|
* - when timeout irq occurs the counter is already reset |
|
* - the maximum timeout duration is reached with the lptim_time_base value |
|
* - with prescaler of 1, the max timeout (LPTIM_TIMEBASE) is 2 seconds: |
|
* 0xFFFF / (LSE freq (32768Hz) / 1) |
|
* - with prescaler of 128, the max timeout (LPTIM_TIMEBASE) is 256 seconds: |
|
* 0xFFFF / (LSE freq (32768Hz) / 128) |
|
*/ |
|
|
|
static int32_t lptim_time_base; |
|
static uint32_t lptim_clock_freq = CONFIG_STM32_LPTIM_CLOCK; |
|
/* The prescaler given by the DTS and to apply to the lptim_clock_freq */ |
|
static uint32_t lptim_clock_presc = DT_PROP(DT_DRV_INST(0), st_prescaler); |
|
|
|
/* Minimum nb of clock cycles to have to set autoreload register correctly */ |
|
#define LPTIM_GUARD_VALUE 2 |
|
|
|
/* A 32bit value cannot exceed 0xFFFFFFFF/LPTIM_TIMEBASE counting cycles. |
|
* This is for example about of 65000 x 2000ms when clocked by LSI |
|
*/ |
|
static uint32_t accumulated_lptim_cnt; |
|
/* Next autoreload value to set */ |
|
static uint32_t autoreload_next; |
|
/* Indicate if the autoreload register is ready for a write */ |
|
static bool autoreload_ready = true; |
|
|
|
static struct k_spinlock lock; |
|
|
|
#ifdef CONFIG_STM32_LPTIM_STDBY_TIMER |
|
|
|
#define CURRENT_CPU \ |
|
(COND_CODE_1(CONFIG_SMP, (arch_curr_cpu()->id), (_current_cpu->id))) |
|
|
|
#define cycle_t uint32_t |
|
|
|
/* This local variable indicates that the timeout was set right before |
|
* entering standby state. |
|
* |
|
* It is used for chips that has to use a separate standby timer in such |
|
* case because the LPTIM is not clocked in some low power mode state. |
|
*/ |
|
static bool timeout_stdby; |
|
|
|
/* Cycle counter before entering the standby state. */ |
|
static cycle_t lptim_cnt_pre_stdby; |
|
|
|
/* Standby timer value before entering the standby state. */ |
|
static uint32_t stdby_timer_pre_stdby; |
|
|
|
/* Standby timer used for timer while entering the standby state */ |
|
static const struct device *stdby_timer = DEVICE_DT_GET(DT_CHOSEN(st_lptim_stdby_timer)); |
|
|
|
#endif /* CONFIG_STM32_LPTIM_STDBY_TIMER */ |
|
|
|
static inline bool arrm_state_get(void) |
|
{ |
|
return (LL_LPTIM_IsActiveFlag_ARRM(LPTIM) && LL_LPTIM_IsEnabledIT_ARRM(LPTIM)); |
|
} |
|
|
|
static void lptim_irq_handler(const struct device *unused) |
|
{ |
|
|
|
ARG_UNUSED(unused); |
|
|
|
uint32_t autoreload = LL_LPTIM_GetAutoReload(LPTIM); |
|
|
|
if ((LL_LPTIM_IsActiveFlag_ARROK(LPTIM) != 0) |
|
&& LL_LPTIM_IsEnabledIT_ARROK(LPTIM) != 0) { |
|
LL_LPTIM_ClearFlag_ARROK(LPTIM); |
|
if ((autoreload_next > 0) && (autoreload_next != autoreload)) { |
|
/* the new autoreload value change, we set it */ |
|
autoreload_ready = false; |
|
LL_LPTIM_SetAutoReload(LPTIM, autoreload_next); |
|
} else { |
|
autoreload_ready = true; |
|
} |
|
} |
|
|
|
if (arrm_state_get()) { |
|
k_spinlock_key_t key = k_spin_lock(&lock); |
|
|
|
/* do not change ARR yet, sys_clock_announce will do */ |
|
LL_LPTIM_ClearFLAG_ARRM(LPTIM); |
|
|
|
/* increase the total nb of autoreload count |
|
* used in the sys_clock_cycle_get_32() function. |
|
*/ |
|
autoreload++; |
|
|
|
accumulated_lptim_cnt += autoreload; |
|
|
|
k_spin_unlock(&lock, key); |
|
|
|
/* announce the elapsed time in ms (count register is 16bit) */ |
|
uint32_t dticks = (autoreload |
|
* CONFIG_SYS_CLOCK_TICKS_PER_SEC) |
|
/ lptim_clock_freq; |
|
|
|
sys_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) |
|
? dticks : (dticks > 0)); |
|
} |
|
} |
|
|
|
static void lptim_set_autoreload(uint32_t arr) |
|
{ |
|
/* Update autoreload register */ |
|
autoreload_next = arr; |
|
|
|
if (!autoreload_ready) { |
|
return; |
|
} |
|
|
|
/* The ARR register ready, we could set it directly */ |
|
if ((arr > 0) && (arr != LL_LPTIM_GetAutoReload(LPTIM))) { |
|
/* The new autoreload value change, we set it */ |
|
autoreload_ready = false; |
|
LL_LPTIM_ClearFlag_ARROK(LPTIM); |
|
LL_LPTIM_SetAutoReload(LPTIM, arr); |
|
} |
|
} |
|
|
|
static inline uint32_t z_clock_lptim_getcounter(void) |
|
{ |
|
uint32_t lp_time; |
|
uint32_t lp_time_prev_read; |
|
|
|
/* It should be noted that to read reliably the content |
|
* of the LPTIM_CNT register, two successive read accesses |
|
* must be performed and compared |
|
*/ |
|
lp_time = LL_LPTIM_GetCounter(LPTIM); |
|
do { |
|
lp_time_prev_read = lp_time; |
|
lp_time = LL_LPTIM_GetCounter(LPTIM); |
|
} while (lp_time != lp_time_prev_read); |
|
return lp_time; |
|
} |
|
|
|
void sys_clock_set_timeout(int32_t ticks, bool idle) |
|
{ |
|
/* new LPTIM AutoReload value to set (aligned on Kernel ticks) */ |
|
uint32_t next_arr = 0; |
|
int err; |
|
|
|
ARG_UNUSED(idle); |
|
|
|
#ifdef CONFIG_STM32_LPTIM_STDBY_TIMER |
|
const struct pm_state_info *next; |
|
|
|
next = pm_policy_next_state(CURRENT_CPU, ticks); |
|
|
|
/* Check if STANBY or STOP3 is requested */ |
|
timeout_stdby = false; |
|
if ((next != NULL) && idle) { |
|
#ifdef CONFIG_PM_S2RAM |
|
if (next->state == PM_STATE_SUSPEND_TO_RAM) { |
|
timeout_stdby = true; |
|
} |
|
#endif |
|
#ifdef CONFIG_STM32_STOP3_LP_MODE |
|
if ((next->state == PM_STATE_SUSPEND_TO_IDLE) && (next->substate_id == 4)) { |
|
timeout_stdby = true; |
|
} |
|
#endif |
|
} |
|
|
|
if (timeout_stdby) { |
|
uint64_t timeout_us = |
|
((uint64_t)ticks * USEC_PER_SEC) / CONFIG_SYS_CLOCK_TICKS_PER_SEC; |
|
|
|
struct counter_alarm_cfg cfg = { |
|
.callback = NULL, |
|
.ticks = counter_us_to_ticks(stdby_timer, timeout_us), |
|
.user_data = NULL, |
|
.flags = 0, |
|
}; |
|
|
|
/* Set the alarm using timer that runs the standby. |
|
* Needed rump-up/setting time, lower accurency etc. should be |
|
* included in the exit-latency in the power state definition. |
|
*/ |
|
counter_cancel_channel_alarm(stdby_timer, 0); |
|
counter_set_channel_alarm(stdby_timer, 0, &cfg); |
|
|
|
/* Store current values to calculate a difference in |
|
* measurements after exiting the standby state. |
|
*/ |
|
counter_get_value(stdby_timer, &stdby_timer_pre_stdby); |
|
lptim_cnt_pre_stdby = z_clock_lptim_getcounter(); |
|
|
|
LL_LPTIM_DisableIT_ARROK(LPTIM); |
|
LL_LPTIM_ClearFlag_ARROK(LPTIM); |
|
NVIC_ClearPendingIRQ(DT_INST_IRQN(0)); |
|
/* Stop clocks for LPTIM, since RTC is used instead */ |
|
clock_control_off(clk_ctrl, (clock_control_subsys_t) &lptim_clk[0]); |
|
|
|
return; |
|
} |
|
#endif /* CONFIG_STM32_LPTIM_STDBY_TIMER */ |
|
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
|
return; |
|
} |
|
|
|
/* |
|
* When CONFIG_SYSTEM_CLOCK_SLOPPY_IDLE = y, ticks equals to -1 |
|
* is treated as a lptim off ; never waking up ; lptim not clocked anymore |
|
*/ |
|
if (ticks == K_TICKS_FOREVER) { |
|
clock_control_off(clk_ctrl, (clock_control_subsys_t) &lptim_clk[0]); |
|
return; |
|
} |
|
/* |
|
* When CONFIG_SYSTEM_CLOCK_SLOPPY_IDLE = n, ticks equals to INT_MAX |
|
* is treated as a maximum possible value LPTIM_MAX_TIMEBASE (16bit counter) |
|
*/ |
|
|
|
/* if LPTIM clock was previously stopped, it must now be restored */ |
|
err = clock_control_on(clk_ctrl, (clock_control_subsys_t) &lptim_clk[0]); |
|
|
|
if (err < 0) { |
|
return; |
|
} |
|
/* passing ticks==1 means "announce the next tick", |
|
* ticks value of zero (or even negative) is legal and |
|
* treated identically: it simply indicates the kernel would like the |
|
* next tick announcement as soon as possible. |
|
*/ |
|
ticks = CLAMP(ticks - 1, 1, lptim_time_base); |
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock); |
|
|
|
/* read current counter value (cannot exceed 16bit) */ |
|
|
|
uint32_t lp_time = z_clock_lptim_getcounter(); |
|
|
|
uint32_t autoreload = LL_LPTIM_GetAutoReload(LPTIM); |
|
|
|
if (LL_LPTIM_IsActiveFlag_ARRM(LPTIM) |
|
|| ((autoreload - lp_time) < LPTIM_GUARD_VALUE)) { |
|
/* interrupt happens or happens soon. |
|
* It's impossible to set autoreload value. |
|
*/ |
|
k_spin_unlock(&lock, key); |
|
return; |
|
} |
|
|
|
/* calculate the next arr value (cannot exceed 16bit) |
|
* adjust the next ARR match value to align on Ticks |
|
* from the current counter value to first next Tick |
|
*/ |
|
next_arr = (((lp_time * CONFIG_SYS_CLOCK_TICKS_PER_SEC) |
|
/ lptim_clock_freq) + 1) * lptim_clock_freq |
|
/ (CONFIG_SYS_CLOCK_TICKS_PER_SEC); |
|
next_arr = next_arr + ((uint32_t)(ticks) * lptim_clock_freq) |
|
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC; |
|
/* if the lptim_clock_freq < one ticks/sec, then next_arr must be > 0 */ |
|
|
|
/* maximise to TIMEBASE */ |
|
if (next_arr > lptim_time_base) { |
|
next_arr = lptim_time_base; |
|
} |
|
/* The new autoreload value must be LPTIM_GUARD_VALUE clock cycles |
|
* after current lptim to make sure we don't miss |
|
* an autoreload interrupt |
|
*/ |
|
else if (next_arr < (lp_time + LPTIM_GUARD_VALUE)) { |
|
next_arr = lp_time + LPTIM_GUARD_VALUE; |
|
} |
|
/* with slow lptim_clock_freq, LPTIM_GUARD_VALUE of 1 is enough */ |
|
next_arr = next_arr - 1; |
|
|
|
/* Update autoreload register */ |
|
lptim_set_autoreload(next_arr); |
|
|
|
k_spin_unlock(&lock, key); |
|
} |
|
|
|
static uint32_t sys_clock_lp_time_get(void) |
|
{ |
|
uint32_t lp_time; |
|
|
|
do { |
|
/* In case of counter roll-over, add the autoreload value, |
|
* because the irq has not yet been handled |
|
*/ |
|
if (arrm_state_get()) { |
|
lp_time = LL_LPTIM_GetAutoReload(LPTIM) + 1; |
|
lp_time += z_clock_lptim_getcounter(); |
|
break; |
|
} |
|
|
|
lp_time = z_clock_lptim_getcounter(); |
|
|
|
/* Check if the flag ARRM wasn't be set during the process */ |
|
} while (arrm_state_get()); |
|
|
|
return lp_time; |
|
} |
|
|
|
|
|
uint32_t sys_clock_elapsed(void) |
|
{ |
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
|
return 0; |
|
} |
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock); |
|
|
|
uint32_t lp_time = sys_clock_lp_time_get(); |
|
|
|
k_spin_unlock(&lock, key); |
|
|
|
/* gives the value of LPTIM counter (ms) |
|
* since the previous 'announce' |
|
*/ |
|
uint64_t ret = ((uint64_t)lp_time * CONFIG_SYS_CLOCK_TICKS_PER_SEC) / lptim_clock_freq; |
|
|
|
return (uint32_t)(ret); |
|
} |
|
|
|
uint32_t sys_clock_cycle_get_32(void) |
|
{ |
|
/* just gives the accumulated count in a number of hw cycles */ |
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock); |
|
|
|
uint32_t lp_time = sys_clock_lp_time_get(); |
|
|
|
lp_time += accumulated_lptim_cnt; |
|
|
|
/* convert lptim count in a nb of hw cycles with precision */ |
|
uint64_t ret = ((uint64_t)lp_time * sys_clock_hw_cycles_per_sec()) / lptim_clock_freq; |
|
|
|
k_spin_unlock(&lock, key); |
|
|
|
/* convert in hw cycles (keeping 32bit value) */ |
|
return (uint32_t)(ret); |
|
} |
|
|
|
/* Wait for the IER register of the stm32U5 ready, after any bit write operation */ |
|
void stm32_lptim_wait_ready(void) |
|
{ |
|
#ifdef CONFIG_SOC_SERIES_STM32U5X |
|
while (LL_LPTIM_IsActiveFlag_DIEROK(LPTIM) == 0) { |
|
} |
|
LL_LPTIM_ClearFlag_DIEROK(LPTIM); |
|
#else |
|
/* Empty : not relevant */ |
|
#endif |
|
} |
|
|
|
static int sys_clock_driver_init(void) |
|
{ |
|
uint32_t count_per_tick; |
|
int err; |
|
|
|
if (!device_is_ready(clk_ctrl)) { |
|
return -ENODEV; |
|
} |
|
|
|
/* Enable LPTIM bus clock */ |
|
err = clock_control_on(clk_ctrl, (clock_control_subsys_t) &lptim_clk[0]); |
|
if (err < 0) { |
|
return -EIO; |
|
} |
|
|
|
#if defined(LL_SRDAMR_GRP1_PERIPH_LPTIM1AMEN) |
|
LL_SRDAMR_GRP1_EnableAutonomousClock(LL_SRDAMR_GRP1_PERIPH_LPTIM1AMEN); |
|
#endif |
|
|
|
/* Enable LPTIM clock source */ |
|
err = clock_control_configure(clk_ctrl, |
|
(clock_control_subsys_t) &lptim_clk[1], |
|
NULL); |
|
if (err < 0) { |
|
return -EIO; |
|
} |
|
|
|
/* Get LPTIM clock freq */ |
|
err = clock_control_get_rate(clk_ctrl, (clock_control_subsys_t) &lptim_clk[1], |
|
&lptim_clock_freq); |
|
|
|
if (err < 0) { |
|
return -EIO; |
|
} |
|
#if defined(CONFIG_SOC_SERIES_STM32L0X) |
|
/* Driver only supports freqs up to 32768Hz. On L0, LSI freq is 37KHz, |
|
* which will overflow the LPTIM counter. |
|
* Previous LPTIM configuration using device tree was doing forcing this |
|
* with a Kconfig default. Impact is that time is 1.13 faster than reality. |
|
* Following lines reproduce this behavior in order not to change behavior. |
|
* This issue will be fixed by implementation LPTIM prescaler support. |
|
*/ |
|
if (lptim_clk[1].bus == STM32_SRC_LSI) { |
|
lptim_clock_freq = KHZ(32); |
|
} |
|
#endif |
|
|
|
#if DT_INST_NODE_HAS_PROP(0, st_timeout) |
|
/* |
|
* Check if prescaler corresponding to the DT_INST_PROP(0, st_timeout) |
|
* is matching the lptim_clock_presc calculated one from the lptim_clock_freq |
|
* max lptim period is 0xFFFF/(lptim_clock_freq/lptim_clock_presc) |
|
*/ |
|
if (DT_INST_PROP(0, st_timeout) > |
|
(lptim_clock_presc / lptim_clock_freq) * 0xFFFF) { |
|
return -EIO; |
|
} |
|
|
|
/* |
|
* LPTIM is counting DT_INST_PROP(0, st_timeout), |
|
* seconds at lptim_clock_freq divided lptim_clock_presc) Hz", |
|
* lptim_time_base is the autoreload counter |
|
*/ |
|
lptim_time_base = 2 * (lptim_clock_freq * |
|
(uint32_t)DT_INST_PROP(0, st_timeout)) |
|
/ lptim_clock_presc; |
|
#else |
|
/* Set LPTIM time base based on clock source freq */ |
|
if (lptim_clock_freq == KHZ(32)) { |
|
lptim_time_base = 0xF9FF; |
|
} else if (lptim_clock_freq == 32768) { |
|
lptim_time_base = 0xFFFF; |
|
} else { |
|
return -EIO; |
|
} |
|
|
|
#endif /* st_timeout */ |
|
|
|
#if !defined(CONFIG_STM32_LPTIM_TICK_FREQ_RATIO_OVERRIDE) |
|
/* |
|
* Check coherency between CONFIG_SYS_CLOCK_TICKS_PER_SEC |
|
* and the lptim_clock_freq which is the CONFIG_STM32_LPTIM_CLOCK reduced |
|
* by the lptim_clock_presc |
|
*/ |
|
if (lptim_clock_presc <= 8) { |
|
__ASSERT(CONFIG_STM32_LPTIM_CLOCK / 8 >= CONFIG_SYS_CLOCK_TICKS_PER_SEC, |
|
"It is recommended to set SYS_CLOCK_TICKS_PER_SEC to CONFIG_STM32_LPTIM_CLOCK/8"); |
|
} else { |
|
__ASSERT(CONFIG_STM32_LPTIM_CLOCK / lptim_clock_presc >= |
|
CONFIG_SYS_CLOCK_TICKS_PER_SEC, |
|
"Set SYS_CLOCK_TICKS_PER_SEC to CONFIG_STM32_LPTIM_CLOCK/lptim_clock_presc"); |
|
} |
|
#endif /* !CONFIG_STM32_LPTIM_TICK_FREQ_RATIO_OVERRIDE */ |
|
|
|
/* Actual lptim clock freq when the clock source is reduced by the prescaler */ |
|
lptim_clock_freq = lptim_clock_freq / lptim_clock_presc; |
|
|
|
/* Clear the event flag and possible pending interrupt */ |
|
IRQ_CONNECT(DT_INST_IRQN(0), |
|
DT_INST_IRQ(0, priority), |
|
lptim_irq_handler, 0, 0); |
|
irq_enable(DT_INST_IRQN(0)); |
|
|
|
#ifdef CONFIG_SOC_SERIES_STM32WLX |
|
/* Enable the LPTIM wakeup EXTI line */ |
|
LL_EXTI_EnableIT_0_31(LL_EXTI_LINE_29); |
|
#endif |
|
|
|
/* configure the LPTIM counter */ |
|
LL_LPTIM_SetClockSource(LPTIM, LL_LPTIM_CLK_SOURCE_INTERNAL); |
|
/* the LPTIM clock freq is affected by the prescaler */ |
|
LL_LPTIM_SetPrescaler(LPTIM, (__CLZ(__RBIT(lptim_clock_presc)) << LPTIM_CFGR_PRESC_Pos)); |
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32U5X) || defined(CONFIG_SOC_SERIES_STM32H5X) || \ |
|
defined(CONFIG_SOC_SERIES_STM32WBAX) || defined(CONFIG_SOC_SERIES_STM32U0X) |
|
LL_LPTIM_OC_SetPolarity(LPTIM, LL_LPTIM_CHANNEL_CH1, LL_LPTIM_OUTPUT_POLARITY_REGULAR); |
|
#else |
|
LL_LPTIM_SetPolarity(LPTIM, LL_LPTIM_OUTPUT_POLARITY_REGULAR); |
|
#endif |
|
LL_LPTIM_SetUpdateMode(LPTIM, LL_LPTIM_UPDATE_MODE_IMMEDIATE); |
|
LL_LPTIM_SetCounterMode(LPTIM, LL_LPTIM_COUNTER_MODE_INTERNAL); |
|
LL_LPTIM_DisableTimeout(LPTIM); |
|
/* counting start is initiated by software */ |
|
LL_LPTIM_TrigSw(LPTIM); |
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32U5X) || defined(CONFIG_SOC_SERIES_STM32H5X) || \ |
|
defined(CONFIG_SOC_SERIES_STM32WBAX) || defined(CONFIG_SOC_SERIES_STM32U0X) |
|
/* Enable the LPTIM before proceeding with configuration */ |
|
LL_LPTIM_Enable(LPTIM); |
|
|
|
LL_LPTIM_DisableIT_CC1(LPTIM); |
|
stm32_lptim_wait_ready(); |
|
LL_LPTIM_ClearFLAG_CC1(LPTIM); |
|
#else |
|
/* LPTIM interrupt set-up before enabling */ |
|
/* no Compare match Interrupt */ |
|
LL_LPTIM_DisableIT_CMPM(LPTIM); |
|
LL_LPTIM_ClearFLAG_CMPM(LPTIM); |
|
#endif |
|
|
|
/* Autoreload match Interrupt */ |
|
LL_LPTIM_EnableIT_ARRM(LPTIM); |
|
stm32_lptim_wait_ready(); |
|
LL_LPTIM_ClearFLAG_ARRM(LPTIM); |
|
|
|
/* ARROK bit validates the write operation to ARR register */ |
|
autoreload_ready = true; |
|
LL_LPTIM_EnableIT_ARROK(LPTIM); |
|
stm32_lptim_wait_ready(); |
|
LL_LPTIM_ClearFlag_ARROK(LPTIM); |
|
|
|
#if !defined(CONFIG_SOC_SERIES_STM32U5X) && \ |
|
!defined(CONFIG_SOC_SERIES_STM32H5X) && \ |
|
!defined(CONFIG_SOC_SERIES_STM32WBAX) |
|
/* Enable the LPTIM counter */ |
|
LL_LPTIM_Enable(LPTIM); |
|
#endif |
|
|
|
/* Set the Autoreload value once the timer is enabled */ |
|
if (IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
|
/* LPTIM is triggered on a LPTIM_TIMEBASE period */ |
|
lptim_set_autoreload(lptim_time_base); |
|
} else { |
|
/* nb of LPTIM counter unit per kernel tick (depends on lptim clock prescaler) */ |
|
count_per_tick = (lptim_clock_freq / CONFIG_SYS_CLOCK_TICKS_PER_SEC); |
|
/* LPTIM is triggered on a Tick period */ |
|
lptim_set_autoreload(count_per_tick - 1); |
|
} |
|
|
|
/* Start the LPTIM counter in continuous mode */ |
|
LL_LPTIM_StartCounter(LPTIM, LL_LPTIM_OPERATING_MODE_CONTINUOUS); |
|
|
|
#ifdef CONFIG_DEBUG |
|
/* stop LPTIM during DEBUG */ |
|
#if defined(LL_DBGMCU_APB1_GRP1_LPTIM1_STOP) |
|
LL_DBGMCU_APB1_GRP1_FreezePeriph(LL_DBGMCU_APB1_GRP1_LPTIM1_STOP); |
|
#elif defined(LL_DBGMCU_APB3_GRP1_LPTIM1_STOP) |
|
LL_DBGMCU_APB3_GRP1_FreezePeriph(LL_DBGMCU_APB3_GRP1_LPTIM1_STOP); |
|
#endif |
|
|
|
#endif |
|
return 0; |
|
} |
|
|
|
void stm32_clock_control_standby_exit(void) |
|
{ |
|
#ifdef CONFIG_STM32_LPTIM_STDBY_TIMER |
|
if (clock_control_get_status(clk_ctrl, |
|
(clock_control_subsys_t) &lptim_clk[0]) |
|
!= CLOCK_CONTROL_STATUS_ON) { |
|
sys_clock_driver_init(); |
|
} |
|
#endif /* CONFIG_STM32_LPTIM_STDBY_TIMER */ |
|
} |
|
|
|
void sys_clock_idle_exit(void) |
|
{ |
|
#ifdef CONFIG_STM32_LPTIM_STDBY_TIMER |
|
if (timeout_stdby) { |
|
cycle_t missed_lptim_cnt; |
|
uint32_t stdby_timer_diff, stdby_timer_post, dticks; |
|
uint64_t stdby_timer_us; |
|
|
|
/* Get current value for standby timer and reset LPTIM counter value |
|
* to start anew. |
|
*/ |
|
LL_LPTIM_ResetCounter(LPTIM); |
|
counter_get_value(stdby_timer, &stdby_timer_post); |
|
|
|
/* Calculate how much time has passed since last measurement for standby timer */ |
|
/* Check IDLE timer overflow */ |
|
if (stdby_timer_pre_stdby > stdby_timer_post) { |
|
stdby_timer_diff = |
|
(counter_get_top_value(stdby_timer) - stdby_timer_pre_stdby) + |
|
stdby_timer_post + 1; |
|
|
|
} else { |
|
stdby_timer_diff = stdby_timer_post - stdby_timer_pre_stdby; |
|
} |
|
stdby_timer_us = counter_ticks_to_us(stdby_timer, stdby_timer_diff); |
|
|
|
/* Convert standby time in LPTIM cnt */ |
|
missed_lptim_cnt = (CONFIG_STM32_LPTIM_CLOCK * stdby_timer_us) / |
|
USEC_PER_SEC; |
|
/* Add the LPTIM cnt pre standby */ |
|
missed_lptim_cnt += lptim_cnt_pre_stdby; |
|
|
|
/* Update the cycle counter to include the cycles missed in standby */ |
|
accumulated_lptim_cnt += missed_lptim_cnt; |
|
|
|
/* Announce the passed ticks to the kernel */ |
|
dticks = (missed_lptim_cnt * CONFIG_SYS_CLOCK_TICKS_PER_SEC) |
|
/ lptim_clock_freq; |
|
sys_clock_announce(dticks); |
|
|
|
/* We've already performed all needed operations */ |
|
timeout_stdby = false; |
|
} |
|
#endif /* CONFIG_STM32_LPTIM_STDBY_TIMER */ |
|
} |
|
|
|
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, |
|
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);
|
|
|