You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
912 lines
25 KiB
912 lines
25 KiB
/* |
|
* |
|
* Copyright (c) 2021 Linaro Limited |
|
* Copyright (c) 2022 Thomas Stranger |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
|
|
#include <soc.h> |
|
#include <stm32_ll_bus.h> |
|
#include <stm32_ll_pwr.h> |
|
#include <stm32_ll_rcc.h> |
|
#include <stm32_ll_utils.h> |
|
#include <stm32_ll_system.h> |
|
#include <zephyr/arch/cpu.h> |
|
#include <zephyr/drivers/clock_control.h> |
|
#include <zephyr/sys/util.h> |
|
#include <zephyr/drivers/clock_control/stm32_clock_control.h> |
|
#include <stm32_backup_domain.h> |
|
|
|
/* Macros to fill up prescaler values */ |
|
#define z_ahb_prescaler(v) LL_RCC_SYSCLK_DIV_ ## v |
|
#define ahb_prescaler(v) z_ahb_prescaler(v) |
|
|
|
#define z_apb1_prescaler(v) LL_RCC_APB1_DIV_ ## v |
|
#define apb1_prescaler(v) z_apb1_prescaler(v) |
|
|
|
#define z_apb2_prescaler(v) LL_RCC_APB2_DIV_ ## v |
|
#define apb2_prescaler(v) z_apb2_prescaler(v) |
|
|
|
#define z_apb3_prescaler(v) LL_RCC_APB3_DIV_ ## v |
|
#define apb3_prescaler(v) z_apb3_prescaler(v) |
|
|
|
#define PLL1_ID 1 |
|
#define PLL2_ID 2 |
|
#define PLL3_ID 3 |
|
|
|
static uint32_t get_bus_clock(uint32_t clock, uint32_t prescaler) |
|
{ |
|
return clock / prescaler; |
|
} |
|
|
|
static uint32_t get_msis_frequency(void) |
|
{ |
|
return __LL_RCC_CALC_MSIS_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(), |
|
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ? |
|
LL_RCC_MSIS_GetRange() : |
|
LL_RCC_MSIS_GetRangeAfterStandby())); |
|
} |
|
|
|
__unused |
|
/** @brief returns the pll source frequency of given pll_id */ |
|
static uint32_t get_pllsrc_frequency(size_t pll_id) |
|
{ |
|
|
|
if ((IS_ENABLED(STM32_PLL_SRC_HSI) && pll_id == PLL1_ID) || |
|
(IS_ENABLED(STM32_PLL2_SRC_HSI) && pll_id == PLL2_ID) || |
|
(IS_ENABLED(STM32_PLL3_SRC_HSI) && pll_id == PLL3_ID)) { |
|
return STM32_HSI_FREQ; |
|
} else if ((IS_ENABLED(STM32_PLL_SRC_HSE) && pll_id == PLL1_ID) || |
|
(IS_ENABLED(STM32_PLL2_SRC_HSE) && pll_id == PLL2_ID) || |
|
(IS_ENABLED(STM32_PLL3_SRC_HSE) && pll_id == PLL3_ID)) { |
|
return STM32_HSE_FREQ; |
|
} else if ((IS_ENABLED(STM32_PLL_SRC_MSIS) && pll_id == PLL1_ID) || |
|
(IS_ENABLED(STM32_PLL2_SRC_MSIS) && pll_id == PLL2_ID) || |
|
(IS_ENABLED(STM32_PLL3_SRC_MSIS) && pll_id == PLL3_ID)) { |
|
return get_msis_frequency(); |
|
} |
|
|
|
__ASSERT(0, "No PLL Source configured"); |
|
return 0; |
|
} |
|
|
|
static uint32_t get_startup_frequency(void) |
|
{ |
|
switch (LL_RCC_GetSysClkSource()) { |
|
case LL_RCC_SYS_CLKSOURCE_STATUS_MSIS: |
|
return get_msis_frequency(); |
|
case LL_RCC_SYS_CLKSOURCE_STATUS_HSI: |
|
return STM32_HSI_FREQ; |
|
case LL_RCC_SYS_CLKSOURCE_STATUS_HSE: |
|
return STM32_HSE_FREQ; |
|
case LL_RCC_SYS_CLKSOURCE_STATUS_PLL1: |
|
return get_pllsrc_frequency(PLL1_ID); |
|
default: |
|
__ASSERT(0, "Unexpected startup freq"); |
|
return 0; |
|
} |
|
} |
|
|
|
__unused |
|
static uint32_t get_pllout_frequency(uint32_t pllsrc_freq, |
|
int pllm_div, |
|
int plln_mul, |
|
int pllout_div) |
|
{ |
|
__ASSERT_NO_MSG(pllm_div && pllout_div); |
|
|
|
return (pllsrc_freq / pllm_div) * plln_mul / pllout_div; |
|
} |
|
|
|
static uint32_t get_sysclk_frequency(void) |
|
{ |
|
#if defined(STM32_SYSCLK_SRC_PLL) |
|
return get_pllout_frequency(get_pllsrc_frequency(PLL1_ID), |
|
STM32_PLL_M_DIVISOR, |
|
STM32_PLL_N_MULTIPLIER, |
|
STM32_PLL_R_DIVISOR); |
|
#elif defined(STM32_SYSCLK_SRC_MSIS) |
|
return get_msis_frequency(); |
|
#elif defined(STM32_SYSCLK_SRC_HSE) |
|
return STM32_HSE_FREQ; |
|
#elif defined(STM32_SYSCLK_SRC_HSI) |
|
return STM32_HSI_FREQ; |
|
#else |
|
__ASSERT(0, "No SYSCLK Source configured"); |
|
return 0; |
|
#endif |
|
|
|
} |
|
|
|
/** @brief Verifies clock is part of active clock configuration */ |
|
int enabled_clock(uint32_t src_clk) |
|
{ |
|
if ((src_clk == STM32_SRC_SYSCLK) || |
|
(src_clk == STM32_SRC_HCLK) || |
|
(src_clk == STM32_SRC_PCLK1) || |
|
(src_clk == STM32_SRC_PCLK2) || |
|
(src_clk == STM32_SRC_PCLK3) || |
|
((src_clk == STM32_SRC_HSE) && IS_ENABLED(STM32_HSE_ENABLED)) || |
|
((src_clk == STM32_SRC_HSI16) && IS_ENABLED(STM32_HSI_ENABLED)) || |
|
((src_clk == STM32_SRC_HSI48) && IS_ENABLED(STM32_HSI48_ENABLED)) || |
|
((src_clk == STM32_SRC_LSE) && IS_ENABLED(STM32_LSE_ENABLED)) || |
|
((src_clk == STM32_SRC_LSI) && IS_ENABLED(STM32_LSI_ENABLED)) || |
|
((src_clk == STM32_SRC_MSIS) && IS_ENABLED(STM32_MSIS_ENABLED)) || |
|
((src_clk == STM32_SRC_MSIK) && IS_ENABLED(STM32_MSIK_ENABLED)) || |
|
((src_clk == STM32_SRC_PLL1_P) && IS_ENABLED(STM32_PLL_P_ENABLED)) || |
|
((src_clk == STM32_SRC_PLL1_Q) && IS_ENABLED(STM32_PLL_Q_ENABLED)) || |
|
((src_clk == STM32_SRC_PLL1_R) && IS_ENABLED(STM32_PLL_R_ENABLED)) || |
|
((src_clk == STM32_SRC_PLL2_P) && IS_ENABLED(STM32_PLL2_P_ENABLED)) || |
|
((src_clk == STM32_SRC_PLL2_Q) && IS_ENABLED(STM32_PLL2_Q_ENABLED)) || |
|
((src_clk == STM32_SRC_PLL2_R) && IS_ENABLED(STM32_PLL2_R_ENABLED)) || |
|
((src_clk == STM32_SRC_PLL3_P) && IS_ENABLED(STM32_PLL3_P_ENABLED)) || |
|
((src_clk == STM32_SRC_PLL3_Q) && IS_ENABLED(STM32_PLL3_Q_ENABLED)) || |
|
((src_clk == STM32_SRC_PLL3_R) && IS_ENABLED(STM32_PLL3_R_ENABLED))) { |
|
return 0; |
|
} |
|
|
|
return -ENOTSUP; |
|
} |
|
|
|
static int stm32_clock_control_on(const struct device *dev, clock_control_subsys_t sub_system) |
|
{ |
|
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system); |
|
volatile int temp; |
|
|
|
ARG_UNUSED(dev); |
|
|
|
if (!IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX)) { |
|
/* Attempt to toggle a wrong periph clock bit */ |
|
return -ENOTSUP; |
|
} |
|
|
|
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus, |
|
pclken->enr); |
|
/* Delay after enabling the clock, to allow it to become active */ |
|
temp = sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus); |
|
UNUSED(temp); |
|
|
|
return 0; |
|
} |
|
|
|
static int stm32_clock_control_off(const struct device *dev, clock_control_subsys_t sub_system) |
|
{ |
|
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system); |
|
|
|
ARG_UNUSED(dev); |
|
|
|
if (!IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX)) { |
|
/* Attempt to toggle a wrong periph clock bit */ |
|
return -ENOTSUP; |
|
} |
|
|
|
sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus, |
|
pclken->enr); |
|
|
|
return 0; |
|
} |
|
|
|
static int stm32_clock_control_configure(const struct device *dev, |
|
clock_control_subsys_t sub_system, |
|
void *data) |
|
{ |
|
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system); |
|
int err; |
|
|
|
ARG_UNUSED(dev); |
|
ARG_UNUSED(data); |
|
|
|
err = enabled_clock(pclken->bus); |
|
if (err < 0) { |
|
/* Attempt to configure a src clock not available or not valid */ |
|
return err; |
|
} |
|
|
|
sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_DT_CLKSEL_REG_GET(pclken->enr), |
|
STM32_DT_CLKSEL_MASK_GET(pclken->enr) << |
|
STM32_DT_CLKSEL_SHIFT_GET(pclken->enr)); |
|
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_DT_CLKSEL_REG_GET(pclken->enr), |
|
STM32_DT_CLKSEL_VAL_GET(pclken->enr) << |
|
STM32_DT_CLKSEL_SHIFT_GET(pclken->enr)); |
|
|
|
return 0; |
|
} |
|
|
|
static int stm32_clock_control_get_subsys_rate(const struct device *dev, |
|
clock_control_subsys_t sys, |
|
uint32_t *rate) |
|
{ |
|
struct stm32_pclken *pclken = (struct stm32_pclken *)(sys); |
|
|
|
/* |
|
* Get AHB Clock (= SystemCoreClock = SYSCLK/prescaler) |
|
* SystemCoreClock is preferred to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC |
|
* since it will be updated after clock configuration and hence |
|
* more likely to contain actual clock speed |
|
*/ |
|
uint32_t ahb_clock = SystemCoreClock; |
|
uint32_t apb1_clock = get_bus_clock(ahb_clock, STM32_APB1_PRESCALER); |
|
uint32_t apb2_clock = get_bus_clock(ahb_clock, STM32_APB2_PRESCALER); |
|
uint32_t apb3_clock = get_bus_clock(ahb_clock, STM32_APB3_PRESCALER); |
|
|
|
ARG_UNUSED(dev); |
|
|
|
switch (pclken->bus) { |
|
case STM32_CLOCK_BUS_AHB1: |
|
case STM32_CLOCK_BUS_AHB2: |
|
case STM32_CLOCK_BUS_AHB2_2: |
|
case STM32_CLOCK_BUS_AHB3: |
|
case STM32_SRC_HCLK: |
|
*rate = ahb_clock; |
|
break; |
|
case STM32_CLOCK_BUS_APB1: |
|
case STM32_CLOCK_BUS_APB1_2: |
|
case STM32_SRC_PCLK1: |
|
*rate = apb1_clock; |
|
break; |
|
case STM32_CLOCK_BUS_APB2: |
|
case STM32_SRC_PCLK2: |
|
*rate = apb2_clock; |
|
break; |
|
case STM32_CLOCK_BUS_APB3: |
|
case STM32_SRC_PCLK3: |
|
*rate = apb3_clock; |
|
break; |
|
case STM32_SRC_SYSCLK: |
|
*rate = get_sysclk_frequency(); |
|
break; |
|
#if defined(STM32_HSI_ENABLED) |
|
case STM32_SRC_HSI16: |
|
*rate = STM32_HSI_FREQ; |
|
break; |
|
#endif /* STM32_HSI_ENABLED */ |
|
#if defined(STM32_MSIS_ENABLED) |
|
case STM32_SRC_MSIS: |
|
*rate = get_msis_frequency(); |
|
break; |
|
#endif /* STM32_MSIS_ENABLED */ |
|
#if defined(STM32_MSIK_ENABLED) |
|
case STM32_SRC_MSIK: |
|
*rate = __LL_RCC_CALC_MSIK_FREQ(LL_RCC_MSIRANGESEL_RUN, |
|
STM32_MSIK_RANGE << RCC_ICSCR1_MSIKRANGE_Pos); |
|
break; |
|
#endif /* STM32_MSIK_ENABLED */ |
|
#if defined(STM32_HSE_ENABLED) |
|
case STM32_SRC_HSE: |
|
*rate = STM32_HSE_FREQ; |
|
break; |
|
#endif /* STM32_HSE_ENABLED */ |
|
#if defined(STM32_LSE_ENABLED) |
|
case STM32_SRC_LSE: |
|
*rate = STM32_LSE_FREQ; |
|
break; |
|
#endif /* STM32_LSE_ENABLED */ |
|
#if defined(STM32_LSI_ENABLED) |
|
case STM32_SRC_LSI: |
|
*rate = STM32_LSI_FREQ; |
|
break; |
|
#endif /* STM32_LSI_ENABLED */ |
|
#if defined(STM32_HSI48_ENABLED) |
|
case STM32_SRC_HSI48: |
|
*rate = STM32_HSI48_FREQ; |
|
break; |
|
#endif /* STM32_HSI48_ENABLED */ |
|
#if defined(STM32_PLL_ENABLED) |
|
case STM32_SRC_PLL1_P: |
|
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL1_ID), |
|
STM32_PLL_M_DIVISOR, |
|
STM32_PLL_N_MULTIPLIER, |
|
STM32_PLL_P_DIVISOR); |
|
break; |
|
case STM32_SRC_PLL1_Q: |
|
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL1_ID), |
|
STM32_PLL_M_DIVISOR, |
|
STM32_PLL_N_MULTIPLIER, |
|
STM32_PLL_Q_DIVISOR); |
|
break; |
|
case STM32_SRC_PLL1_R: |
|
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL1_ID), |
|
STM32_PLL_M_DIVISOR, |
|
STM32_PLL_N_MULTIPLIER, |
|
STM32_PLL_R_DIVISOR); |
|
break; |
|
#endif /* STM32_PLL_ENABLED */ |
|
#if defined(STM32_PLL2_ENABLED) |
|
case STM32_SRC_PLL2_P: |
|
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL2_ID), |
|
STM32_PLL2_M_DIVISOR, |
|
STM32_PLL2_N_MULTIPLIER, |
|
STM32_PLL2_P_DIVISOR); |
|
break; |
|
case STM32_SRC_PLL2_Q: |
|
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL2_ID), |
|
STM32_PLL2_M_DIVISOR, |
|
STM32_PLL2_N_MULTIPLIER, |
|
STM32_PLL2_Q_DIVISOR); |
|
break; |
|
case STM32_SRC_PLL2_R: |
|
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL2_ID), |
|
STM32_PLL2_M_DIVISOR, |
|
STM32_PLL2_N_MULTIPLIER, |
|
STM32_PLL2_R_DIVISOR); |
|
break; |
|
#endif /* STM32_PLL2_ENABLED */ |
|
#if defined(STM32_PLL3_ENABLED) |
|
case STM32_SRC_PLL3_P: |
|
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL3_ID), |
|
STM32_PLL3_M_DIVISOR, |
|
STM32_PLL3_N_MULTIPLIER, |
|
STM32_PLL3_P_DIVISOR); |
|
break; |
|
case STM32_SRC_PLL3_Q: |
|
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL3_ID), |
|
STM32_PLL3_M_DIVISOR, |
|
STM32_PLL3_N_MULTIPLIER, |
|
STM32_PLL3_Q_DIVISOR); |
|
break; |
|
case STM32_SRC_PLL3_R: |
|
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL3_ID), |
|
STM32_PLL3_M_DIVISOR, |
|
STM32_PLL3_N_MULTIPLIER, |
|
STM32_PLL3_R_DIVISOR); |
|
break; |
|
#endif /* STM32_PLL3_ENABLED */ |
|
default: |
|
return -ENOTSUP; |
|
} |
|
|
|
if (pclken->div) { |
|
*rate /= (pclken->div + 1); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static enum clock_control_status stm32_clock_control_get_status(const struct device *dev, |
|
clock_control_subsys_t sub_system) |
|
{ |
|
struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system; |
|
|
|
ARG_UNUSED(dev); |
|
|
|
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX)) { |
|
/* Gated clocks */ |
|
if ((sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus) & pclken->enr) |
|
== pclken->enr) { |
|
return CLOCK_CONTROL_STATUS_ON; |
|
} else { |
|
return CLOCK_CONTROL_STATUS_OFF; |
|
} |
|
} else { |
|
/* Domain clock sources */ |
|
if (enabled_clock(pclken->bus) == 0) { |
|
return CLOCK_CONTROL_STATUS_ON; |
|
} else { |
|
return CLOCK_CONTROL_STATUS_OFF; |
|
} |
|
} |
|
} |
|
|
|
static DEVICE_API(clock_control, stm32_clock_control_api) = { |
|
.on = stm32_clock_control_on, |
|
.off = stm32_clock_control_off, |
|
.get_rate = stm32_clock_control_get_subsys_rate, |
|
.get_status = stm32_clock_control_get_status, |
|
.configure = stm32_clock_control_configure, |
|
}; |
|
|
|
__unused |
|
static int get_vco_input_range(uint32_t m_div, uint32_t *range, size_t pll_id) |
|
{ |
|
uint32_t vco_freq; |
|
|
|
vco_freq = get_pllsrc_frequency(pll_id) / m_div; |
|
|
|
if (MHZ(4) <= vco_freq && vco_freq <= MHZ(8)) { |
|
*range = LL_RCC_PLLINPUTRANGE_4_8; |
|
} else if (MHZ(8) < vco_freq && vco_freq <= MHZ(16)) { |
|
*range = LL_RCC_PLLINPUTRANGE_8_16; |
|
} else { |
|
return -ERANGE; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void set_regu_voltage(uint32_t hclk_freq) |
|
{ |
|
if (hclk_freq < MHZ(25)) { |
|
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE4); |
|
} else if (hclk_freq < MHZ(55)) { |
|
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE3); |
|
} else if (hclk_freq < MHZ(110)) { |
|
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE2); |
|
} else { |
|
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1); |
|
} |
|
while (LL_PWR_IsActiveFlag_VOS() == 0) { |
|
} |
|
} |
|
|
|
#if defined(STM32_PLL_ENABLED) |
|
/* |
|
* Dynamic voltage scaling: |
|
* Enable the Booster mode before enabling then PLL for sysclock above 55MHz |
|
* The goal of this function is to set the epod prescaler, so that epod clock freq |
|
* is between 4MHz and 16MHz. |
|
* Up to now only MSI as PLL1 source clock can be > 16MHz, requiring a epod prescaler > 1 |
|
* For HSI16, epod prescaler is default (div1, not divided). |
|
* Once HSE is > 16MHz, the epod prescaler would also be also required. |
|
*/ |
|
static void set_epod_booster(void) |
|
{ |
|
/* Reset Epod Prescaler in case it was set earlier with another DIV value */ |
|
LL_PWR_DisableEPODBooster(); |
|
while (LL_PWR_IsActiveFlag_BOOST() == 1) { |
|
} |
|
|
|
LL_RCC_SetPll1EPodPrescaler(LL_RCC_PLL1MBOOST_DIV_1); |
|
|
|
if (MHZ(55) <= CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) { |
|
/* |
|
* Set EPOD clock prescaler based on PLL1 input freq |
|
* (MSI/PLLM or HSE/PLLM when HSE is > 16MHz |
|
* Booster clock frequency should be between 4 and 16MHz |
|
* This is done in following steps: |
|
* Read MSI Frequency or HSE oscillaor freq |
|
* Divide PLL1 input freq (MSI/PLL or HSE/PLLM) |
|
* by the targeted freq (8MHz). |
|
* Make sure value is not higher than 16 |
|
* Shift in the register space (/2) |
|
*/ |
|
int tmp; |
|
|
|
if (IS_ENABLED(STM32_PLL_SRC_MSIS)) { |
|
tmp = __LL_RCC_CALC_MSIS_FREQ(LL_RCC_MSIRANGESEL_RUN, |
|
STM32_MSIS_RANGE << RCC_ICSCR1_MSISRANGE_Pos); |
|
} else if (IS_ENABLED(STM32_PLL_SRC_HSE) && (MHZ(16) < STM32_HSE_FREQ)) { |
|
tmp = STM32_HSE_FREQ; |
|
} else { |
|
return; |
|
} |
|
|
|
tmp = MIN(tmp / STM32_PLL_M_DIVISOR / 8000000, 16); |
|
tmp = tmp / 2; |
|
|
|
/* Configure the epod clock frequency between 4 and 16 MHz */ |
|
LL_RCC_SetPll1EPodPrescaler(tmp << RCC_PLL1CFGR_PLL1MBOOST_Pos); |
|
|
|
/* Enable EPOD booster and wait for booster ready flag set */ |
|
LL_PWR_EnableEPODBooster(); |
|
while (LL_PWR_IsActiveFlag_BOOST() == 0) { |
|
} |
|
} |
|
} |
|
#endif /* STM32_PLL_ENABLED */ |
|
|
|
__unused |
|
static void clock_switch_to_hsi(void) |
|
{ |
|
/* Enable HSI if not enabled */ |
|
if (LL_RCC_HSI_IsReady() != 1) { |
|
/* Enable HSI */ |
|
LL_RCC_HSI_Enable(); |
|
while (LL_RCC_HSI_IsReady() != 1) { |
|
/* Wait for HSI ready */ |
|
} |
|
} |
|
|
|
/* Set HSI as SYSCLCK source */ |
|
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI); |
|
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) { |
|
} |
|
|
|
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); |
|
} |
|
|
|
__unused |
|
static int set_up_plls(void) |
|
{ |
|
#if defined(STM32_PLL_ENABLED) || defined(STM32_PLL2_ENABLED) || \ |
|
defined(STM32_PLL3_ENABLED) |
|
int r; |
|
uint32_t vco_input_range; |
|
#endif |
|
|
|
#if defined(STM32_PLL_ENABLED) |
|
/* |
|
* Switch to HSI and disable the PLL before configuration. |
|
* (Switching to HSI makes sure we have a SYSCLK source in |
|
* case we're currently running from the PLL we're about to |
|
* turn off and reconfigure.) |
|
*/ |
|
if (LL_RCC_GetSysClkSource() == LL_RCC_SYS_CLKSOURCE_STATUS_PLL1) { |
|
clock_switch_to_hsi(); |
|
} |
|
|
|
LL_RCC_PLL1_Disable(); |
|
|
|
/* Configure PLL source : Can be HSE, HSI, MSIS */ |
|
if (IS_ENABLED(STM32_PLL_SRC_HSE)) { |
|
/* Main PLL configuration and activation */ |
|
LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_HSE); |
|
} else if (IS_ENABLED(STM32_PLL_SRC_MSIS)) { |
|
/* Main PLL configuration and activation */ |
|
LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_MSIS); |
|
} else if (IS_ENABLED(STM32_PLL_SRC_HSI)) { |
|
/* Main PLL configuration and activation */ |
|
LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_HSI); |
|
} else { |
|
return -ENOTSUP; |
|
} |
|
|
|
/* |
|
* Configure the EPOD booster |
|
* before increasing the system clock freq |
|
* and after pll clock source is set |
|
*/ |
|
set_epod_booster(); |
|
|
|
r = get_vco_input_range(STM32_PLL_M_DIVISOR, &vco_input_range, PLL1_ID); |
|
if (r < 0) { |
|
return r; |
|
} |
|
|
|
LL_RCC_PLL1_SetDivider(STM32_PLL_M_DIVISOR); |
|
|
|
/* Set VCO Input before enabling the PLL, depends on freq used for PLL1 */ |
|
LL_RCC_PLL1_SetVCOInputRange(vco_input_range); |
|
|
|
LL_RCC_PLL1_SetN(STM32_PLL_N_MULTIPLIER); |
|
|
|
LL_RCC_PLL1FRACN_Disable(); |
|
if (IS_ENABLED(STM32_PLL_FRACN_ENABLED)) { |
|
LL_RCC_PLL1_SetFRACN(STM32_PLL_FRACN_VALUE); |
|
LL_RCC_PLL1FRACN_Enable(); |
|
} |
|
|
|
if (IS_ENABLED(STM32_PLL_P_ENABLED)) { |
|
LL_RCC_PLL1_SetP(STM32_PLL_P_DIVISOR); |
|
LL_RCC_PLL1_EnableDomain_SAI(); |
|
} |
|
|
|
if (IS_ENABLED(STM32_PLL_Q_ENABLED)) { |
|
LL_RCC_PLL1_SetQ(STM32_PLL_Q_DIVISOR); |
|
LL_RCC_PLL1_EnableDomain_48M(); |
|
} |
|
|
|
if (IS_ENABLED(STM32_PLL_R_ENABLED)) { |
|
__ASSERT_NO_MSG((STM32_PLL_R_DIVISOR == 1) || |
|
(STM32_PLL_R_DIVISOR % 2 == 0)); |
|
LL_RCC_PLL1_SetR(STM32_PLL_R_DIVISOR); |
|
LL_RCC_PLL1_EnableDomain_SYS(); |
|
} |
|
|
|
LL_RCC_PLL1_Enable(); |
|
while (LL_RCC_PLL1_IsReady() != 1U) { |
|
} |
|
#else |
|
/* Init PLL source to None */ |
|
LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_NONE); |
|
#endif /* STM32_PLL_ENABLED */ |
|
|
|
#if defined(STM32_PLL2_ENABLED) |
|
/* Configure PLL2 source */ |
|
if (IS_ENABLED(STM32_PLL2_SRC_HSE)) { |
|
LL_RCC_PLL2_SetSource(LL_RCC_PLL2SOURCE_HSE); |
|
} else if (IS_ENABLED(STM32_PLL2_SRC_MSIS)) { |
|
LL_RCC_PLL2_SetSource(LL_RCC_PLL2SOURCE_MSIS); |
|
} else if (IS_ENABLED(STM32_PLL2_SRC_HSI)) { |
|
LL_RCC_PLL2_SetSource(LL_RCC_PLL2SOURCE_HSI); |
|
} else { |
|
return -ENOTSUP; |
|
} |
|
|
|
r = get_vco_input_range(STM32_PLL2_M_DIVISOR, &vco_input_range, PLL2_ID); |
|
if (r < 0) { |
|
return r; |
|
} |
|
|
|
LL_RCC_PLL2_SetDivider(STM32_PLL2_M_DIVISOR); |
|
|
|
LL_RCC_PLL2_SetVCOInputRange(vco_input_range); |
|
|
|
LL_RCC_PLL2_SetN(STM32_PLL2_N_MULTIPLIER); |
|
|
|
LL_RCC_PLL2FRACN_Disable(); |
|
if (IS_ENABLED(STM32_PLL2_FRACN_ENABLED)) { |
|
LL_RCC_PLL2_SetFRACN(STM32_PLL2_FRACN_VALUE); |
|
LL_RCC_PLL2FRACN_Enable(); |
|
} |
|
|
|
if (IS_ENABLED(STM32_PLL2_P_ENABLED)) { |
|
LL_RCC_PLL2_SetP(STM32_PLL2_P_DIVISOR); |
|
SET_BIT(RCC->PLL2CFGR, RCC_PLL2CFGR_PLL2PEN); |
|
} |
|
|
|
if (IS_ENABLED(STM32_PLL2_Q_ENABLED)) { |
|
LL_RCC_PLL2_SetQ(STM32_PLL2_Q_DIVISOR); |
|
SET_BIT(RCC->PLL2CFGR, RCC_PLL2CFGR_PLL2QEN); |
|
} |
|
|
|
if (IS_ENABLED(STM32_PLL2_R_ENABLED)) { |
|
LL_RCC_PLL2_SetR(STM32_PLL2_R_DIVISOR); |
|
SET_BIT(RCC->PLL2CFGR, RCC_PLL2CFGR_PLL2REN); |
|
} |
|
|
|
LL_RCC_PLL2_Enable(); |
|
while (LL_RCC_PLL2_IsReady() != 1U) { |
|
} |
|
#else |
|
/* Init PLL2 source to None */ |
|
LL_RCC_PLL2_SetSource(LL_RCC_PLL2SOURCE_NONE); |
|
#endif /* STM32_PLL2_ENABLED */ |
|
|
|
#if defined(STM32_PLL3_ENABLED) |
|
/* Configure PLL3 source */ |
|
if (IS_ENABLED(STM32_PLL3_SRC_HSE)) { |
|
LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_HSE); |
|
} else if (IS_ENABLED(STM32_PLL3_SRC_MSIS)) { |
|
LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_MSIS); |
|
} else if (IS_ENABLED(STM32_PLL3_SRC_HSI)) { |
|
LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_HSI); |
|
} else { |
|
return -ENOTSUP; |
|
} |
|
|
|
r = get_vco_input_range(STM32_PLL3_M_DIVISOR, &vco_input_range, PLL3_ID); |
|
if (r < 0) { |
|
return r; |
|
} |
|
|
|
LL_RCC_PLL3_SetDivider(STM32_PLL3_M_DIVISOR); |
|
|
|
LL_RCC_PLL3_SetVCOInputRange(vco_input_range); |
|
|
|
LL_RCC_PLL3_SetN(STM32_PLL3_N_MULTIPLIER); |
|
|
|
LL_RCC_PLL3FRACN_Disable(); |
|
if (IS_ENABLED(STM32_PLL3_FRACN_ENABLED)) { |
|
LL_RCC_PLL3_SetFRACN(STM32_PLL3_FRACN_VALUE); |
|
LL_RCC_PLL3FRACN_Enable(); |
|
} |
|
|
|
if (IS_ENABLED(STM32_PLL3_P_ENABLED)) { |
|
LL_RCC_PLL3_SetP(STM32_PLL3_P_DIVISOR); |
|
SET_BIT(RCC->PLL3CFGR, RCC_PLL3CFGR_PLL3PEN); |
|
} |
|
|
|
if (IS_ENABLED(STM32_PLL3_Q_ENABLED)) { |
|
LL_RCC_PLL3_SetQ(STM32_PLL3_Q_DIVISOR); |
|
SET_BIT(RCC->PLL3CFGR, RCC_PLL3CFGR_PLL3QEN); |
|
} |
|
|
|
if (IS_ENABLED(STM32_PLL3_R_ENABLED)) { |
|
LL_RCC_PLL3_SetR(STM32_PLL3_R_DIVISOR); |
|
SET_BIT(RCC->PLL3CFGR, RCC_PLL3CFGR_PLL3REN); |
|
} |
|
|
|
LL_RCC_PLL3_Enable(); |
|
while (LL_RCC_PLL3_IsReady() != 1U) { |
|
} |
|
#else |
|
/* Init PLL3 source to None */ |
|
LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_NONE); |
|
#endif /* STM32_PLL3_ENABLED */ |
|
|
|
return 0; |
|
} |
|
|
|
static void set_up_fixed_clock_sources(void) |
|
{ |
|
|
|
if (IS_ENABLED(STM32_HSE_ENABLED)) { |
|
/* Check if need to enable HSE bypass feature or not */ |
|
if (IS_ENABLED(STM32_HSE_BYPASS)) { |
|
LL_RCC_HSE_EnableBypass(); |
|
} else { |
|
LL_RCC_HSE_DisableBypass(); |
|
} |
|
|
|
/* Enable HSE */ |
|
LL_RCC_HSE_Enable(); |
|
while (LL_RCC_HSE_IsReady() != 1) { |
|
/* Wait for HSE ready */ |
|
} |
|
} |
|
|
|
if (IS_ENABLED(STM32_HSI_ENABLED)) { |
|
/* Enable HSI if not enabled */ |
|
if (LL_RCC_HSI_IsReady() != 1) { |
|
/* Enable HSI */ |
|
LL_RCC_HSI_Enable(); |
|
while (LL_RCC_HSI_IsReady() != 1) { |
|
/* Wait for HSI ready */ |
|
} |
|
} |
|
} |
|
|
|
if (IS_ENABLED(STM32_LSE_ENABLED)) { |
|
/* Enable the power interface clock */ |
|
LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_PWR); |
|
|
|
stm32_backup_domain_enable_access(); |
|
|
|
/* Configure driving capability */ |
|
LL_RCC_LSE_SetDriveCapability(STM32_LSE_DRIVING << RCC_BDCR_LSEDRV_Pos); |
|
|
|
if (IS_ENABLED(STM32_LSE_BYPASS)) { |
|
/* Configure LSE bypass */ |
|
LL_RCC_LSE_EnableBypass(); |
|
} |
|
|
|
/* Enable LSE Oscillator */ |
|
LL_RCC_LSE_Enable(); |
|
/* Wait for LSE ready */ |
|
while (!LL_RCC_LSE_IsReady()) { |
|
} |
|
|
|
/* Enable LSESYS additionally */ |
|
LL_RCC_LSE_EnablePropagation(); |
|
/* Wait till LSESYS is ready */ |
|
while (!LL_RCC_LSESYS_IsReady()) { |
|
} |
|
|
|
stm32_backup_domain_disable_access(); |
|
} |
|
|
|
if (IS_ENABLED(STM32_MSIS_ENABLED)) { |
|
/* Set MSIS Range */ |
|
LL_RCC_MSI_EnableRangeSelection(); |
|
|
|
LL_RCC_MSIS_SetRange(STM32_MSIS_RANGE << RCC_ICSCR1_MSISRANGE_Pos); |
|
|
|
if (IS_ENABLED(STM32_MSIS_PLL_MODE)) { |
|
__ASSERT(STM32_LSE_ENABLED, |
|
"MSIS Hardware auto calibration needs LSE clock activation"); |
|
/* Enable MSI hardware auto calibration */ |
|
LL_RCC_SetMSIPLLMode(LL_RCC_PLLMODE_MSIS); |
|
LL_RCC_MSI_EnablePLLMode(); |
|
} |
|
|
|
/* Enable MSIS */ |
|
LL_RCC_MSIS_Enable(); |
|
|
|
/* Wait till MSIS is ready */ |
|
while (LL_RCC_MSIS_IsReady() != 1) { |
|
} |
|
} |
|
|
|
if (IS_ENABLED(STM32_MSIK_ENABLED)) { |
|
/* Set MSIK Range */ |
|
LL_RCC_MSI_EnableRangeSelection(); |
|
|
|
LL_RCC_MSIK_SetRange(STM32_MSIK_RANGE << RCC_ICSCR1_MSIKRANGE_Pos); |
|
|
|
if (IS_ENABLED(STM32_MSIK_PLL_MODE)) { |
|
__ASSERT(STM32_LSE_ENABLED, |
|
"MSIK Hardware auto calibration needs LSE clock activation"); |
|
/* Enable MSI hardware auto calibration */ |
|
LL_RCC_SetMSIPLLMode(LL_RCC_PLLMODE_MSIK); |
|
LL_RCC_MSI_EnablePLLMode(); |
|
} |
|
|
|
if (IS_ENABLED(STM32_MSIS_ENABLED)) { |
|
__ASSERT((STM32_MSIK_PLL_MODE == STM32_MSIS_PLL_MODE), |
|
"Please check MSIS/MSIK config consistency"); |
|
} |
|
|
|
/* Enable MSIK */ |
|
LL_RCC_MSIK_Enable(); |
|
|
|
/* Wait till MSIK is ready */ |
|
while (LL_RCC_MSIK_IsReady() != 1) { |
|
} |
|
} |
|
|
|
if (IS_ENABLED(STM32_LSI_ENABLED)) { |
|
if (!LL_AHB3_GRP1_IsEnabledClock(LL_AHB3_GRP1_PERIPH_PWR)) { |
|
/* Enable the power interface clock */ |
|
LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_PWR); |
|
} |
|
|
|
stm32_backup_domain_enable_access(); |
|
|
|
/* Enable LSI oscillator */ |
|
LL_RCC_LSI_Enable(); |
|
while (LL_RCC_LSI_IsReady() != 1) { |
|
} |
|
|
|
stm32_backup_domain_disable_access(); |
|
} |
|
|
|
if (IS_ENABLED(STM32_HSI48_ENABLED)) { |
|
LL_RCC_HSI48_Enable(); |
|
while (LL_RCC_HSI48_IsReady() != 1) { |
|
} |
|
} |
|
} |
|
|
|
int stm32_clock_control_init(const struct device *dev) |
|
{ |
|
uint32_t old_hclk_freq; |
|
int r; |
|
|
|
ARG_UNUSED(dev); |
|
|
|
/* Current hclk value */ |
|
old_hclk_freq = __LL_RCC_CALC_HCLK_FREQ(get_startup_frequency(), LL_RCC_GetAHBPrescaler()); |
|
|
|
/* Set voltage regulator to comply with targeted system frequency */ |
|
set_regu_voltage(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC); |
|
|
|
/* Set flash latency */ |
|
/* If freq increases, set flash latency before any clock setting */ |
|
if (old_hclk_freq < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) { |
|
LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC); |
|
} |
|
|
|
/* Set up individual enabled clocks */ |
|
set_up_fixed_clock_sources(); |
|
|
|
/* Set up PLLs */ |
|
r = set_up_plls(); |
|
if (r < 0) { |
|
return r; |
|
} |
|
|
|
/* Set peripheral buses prescalers */ |
|
LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_AHB_PRESCALER)); |
|
LL_RCC_SetAPB1Prescaler(apb1_prescaler(STM32_APB1_PRESCALER)); |
|
LL_RCC_SetAPB2Prescaler(apb2_prescaler(STM32_APB2_PRESCALER)); |
|
LL_RCC_SetAPB3Prescaler(apb3_prescaler(STM32_APB3_PRESCALER)); |
|
|
|
if (IS_ENABLED(STM32_SYSCLK_SRC_PLL)) { |
|
/* Set PLL1 as System Clock Source */ |
|
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL1); |
|
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL1) { |
|
} |
|
} else if (IS_ENABLED(STM32_SYSCLK_SRC_HSE)) { |
|
/* Set HSE as SYSCLCK source */ |
|
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE); |
|
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSE) { |
|
} |
|
} else if (IS_ENABLED(STM32_SYSCLK_SRC_MSIS)) { |
|
/* Set MSIS as SYSCLCK source */ |
|
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSIS); |
|
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSIS) { |
|
} |
|
} else if (IS_ENABLED(STM32_SYSCLK_SRC_HSI)) { |
|
/* Set HSI as SYSCLCK source */ |
|
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI); |
|
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) { |
|
} |
|
} else { |
|
return -ENOTSUP; |
|
} |
|
|
|
/* Set FLASH latency */ |
|
/* If freq not increased, set flash latency after all clock setting */ |
|
if (old_hclk_freq >= CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) { |
|
LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC); |
|
} |
|
|
|
/* Update CMSIS variable */ |
|
SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC; |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* @brief RCC device, note that priority is intentionally set to 1 so |
|
* that the device init runs just after SOC init |
|
*/ |
|
DEVICE_DT_DEFINE(DT_NODELABEL(rcc), |
|
stm32_clock_control_init, |
|
NULL, |
|
NULL, NULL, |
|
PRE_KERNEL_1, |
|
CONFIG_CLOCK_CONTROL_INIT_PRIORITY, |
|
&stm32_clock_control_api);
|
|
|