Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1132 lines
32 KiB

/*
*
* Copyright (c) 2019 Linaro Limited.
* Copyright (c) 2020 Jeremy LOCHE
* Copyright (c) 2021 Electrolance Solutions
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <soc.h>
#include <stm32_ll_bus.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_utils.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/sys/util.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <stm32_backup_domain.h>
#include <stm32_hsem.h>
/* Macros to fill up prescaler values */
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
#define z_hsi_divider(v) LL_RCC_HSI_DIV_ ## v
#else
#define z_hsi_divider(v) LL_RCC_HSI_DIV ## v
#endif
#define hsi_divider(v) z_hsi_divider(v)
#define z_sysclk_prescaler(v) LL_RCC_SYSCLK_DIV_ ## v
#define sysclk_prescaler(v) z_sysclk_prescaler(v)
#define z_ahb_prescaler(v) LL_RCC_AHB_DIV_ ## v
#define ahb_prescaler(v) z_ahb_prescaler(v)
#define z_apb1_prescaler(v) LL_RCC_APB1_DIV_ ## v
#define apb1_prescaler(v) z_apb1_prescaler(v)
#define z_apb2_prescaler(v) LL_RCC_APB2_DIV_ ## v
#define apb2_prescaler(v) z_apb2_prescaler(v)
#define z_apb3_prescaler(v) LL_RCC_APB3_DIV_ ## v
#define apb3_prescaler(v) z_apb3_prescaler(v)
#define z_apb4_prescaler(v) LL_RCC_APB4_DIV_ ## v
#define apb4_prescaler(v) z_apb4_prescaler(v)
#define z_apb5_prescaler(v) LL_RCC_APB5_DIV_ ## v
#define apb5_prescaler(v) z_apb5_prescaler(v)
/* Macro to check for clock feasibility */
/* It is Cortex M7's responsibility to setup clock tree */
/* This check should only be performed for the M7 core code */
#ifdef CONFIG_CPU_CORTEX_M7
/* Choose PLL SRC : same source for all the PLL */
#if defined(STM32_PLL_SRC_HSI) || defined(STM32_PLL2_SRC_HSI) || defined(STM32_PLL3_SRC_HSI)
#define PLLSRC_FREQ ((STM32_HSI_FREQ)/(STM32_HSI_DIVISOR))
#endif
#if defined(STM32_PLL_SRC_CSI) || defined(STM32_PLL2_SRC_CSI) || defined(STM32_PLL3_SRC_CSI)
#if !defined(PLLSRC_FREQ)
#define PLLSRC_FREQ STM32_CSI_FREQ
#else
#error "All PLLs must have the same clock source"
#endif
#endif
#if defined(STM32_PLL_SRC_HSE) || defined(STM32_PLL2_SRC_HSE) || defined(STM32_PLL3_SRC_HSE)
#if !defined(PLLSRC_FREQ)
#define PLLSRC_FREQ STM32_HSE_FREQ
#else
#error "All PLLs must have the same clock source"
#endif
#endif
#if !defined(PLLSRC_FREQ)
#define PLLSRC_FREQ 0
#endif
/* Given source clock and dividers, computed the output frequency of PLLP */
#define PLLP_FREQ(pllsrc_freq, divm, divn, divp) (((pllsrc_freq)*\
(divn))/((divm)*(divp)))
/* PLL P output frequency value */
#define PLLP_VALUE PLLP_FREQ(\
PLLSRC_FREQ,\
STM32_PLL_M_DIVISOR,\
STM32_PLL_N_MULTIPLIER,\
STM32_PLL_P_DIVISOR)
/* SYSCLKSRC before the D1CPRE prescaler */
#if defined(STM32_SYSCLK_SRC_PLL)
#define SYSCLKSRC_FREQ PLLP_VALUE
#elif defined(STM32_SYSCLK_SRC_HSI)
#define SYSCLKSRC_FREQ ((STM32_HSI_FREQ)/(STM32_HSI_DIVISOR))
#elif defined(STM32_SYSCLK_SRC_CSI)
#define SYSCLKSRC_FREQ STM32_CSI_FREQ
#elif defined(STM32_SYSCLK_SRC_HSE)
#define SYSCLKSRC_FREQ STM32_HSE_FREQ
#endif
/* ARM Sys CPU Clock before HPRE prescaler */
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
#define SYSCLK_FREQ ((SYSCLKSRC_FREQ)/(STM32_D1CPRE))
#define AHB_FREQ ((SYSCLK_FREQ)/(STM32_HPRE))
#define APB1_FREQ ((AHB_FREQ)/(STM32_PPRE1))
#define APB2_FREQ ((AHB_FREQ)/(STM32_PPRE2))
#define APB4_FREQ ((AHB_FREQ)/(STM32_PPRE4))
#define APB5_FREQ ((AHB_FREQ)/(STM32_PPRE5))
#else
#define SYSCLK_FREQ ((SYSCLKSRC_FREQ)/(STM32_D1CPRE))
#define AHB_FREQ ((SYSCLK_FREQ)/(STM32_HPRE))
#define APB1_FREQ ((AHB_FREQ)/(STM32_D2PPRE1))
#define APB2_FREQ ((AHB_FREQ)/(STM32_D2PPRE2))
#define APB3_FREQ ((AHB_FREQ)/(STM32_D1PPRE))
#define APB4_FREQ ((AHB_FREQ)/(STM32_D3PPRE))
#endif /* CONFIG_SOC_SERIES_STM32H7RSX */
/* Datasheet maximum frequency definitions */
#if defined(CONFIG_SOC_STM32H743XX) ||\
defined(CONFIG_SOC_STM32H745XX_M7) || defined(CONFIG_SOC_STM32H745XX_M4) ||\
defined(CONFIG_SOC_STM32H747XX_M7) || defined(CONFIG_SOC_STM32H747XX_M4) ||\
defined(CONFIG_SOC_STM32H750XX) ||\
defined(CONFIG_SOC_STM32H753XX) ||\
defined(CONFIG_SOC_STM32H755XX_M7) || defined(CONFIG_SOC_STM32H755XX_M4) ||\
defined(CONFIG_SOC_STM32H757XX_M7) || defined(CONFIG_SOC_STM32H757XX_M4)
/* All h7 SoC with maximum 480MHz SYSCLK */
#define SYSCLK_FREQ_MAX 480000000UL
#define AHB_FREQ_MAX 240000000UL
#define APBx_FREQ_MAX 120000000UL
#elif defined(CONFIG_SOC_STM32H723XX) ||\
defined(CONFIG_SOC_STM32H725XX) ||\
defined(CONFIG_SOC_STM32H730XX) || defined(CONFIG_SOC_STM32H730XXQ) ||\
defined(CONFIG_SOC_STM32H735XX)
/* All h7 SoC with maximum 550MHz SYSCLK */
#define SYSCLK_FREQ_MAX 550000000UL
#define AHB_FREQ_MAX 275000000UL
#define APBx_FREQ_MAX 137500000UL
#elif defined(CONFIG_SOC_STM32H7A3XX) || defined(CONFIG_SOC_STM32H7A3XXQ) ||\
defined(CONFIG_SOC_STM32H7B0XX) || defined(CONFIG_SOC_STM32H7B0XXQ) ||\
defined(CONFIG_SOC_STM32H7B3XX) || defined(CONFIG_SOC_STM32H7B3XXQ)
#define SYSCLK_FREQ_MAX 280000000UL
#define AHB_FREQ_MAX 280000000UL
#define APBx_FREQ_MAX 140000000UL
#elif defined(CONFIG_SOC_SERIES_STM32H7RSX)
/* All h7RS SoC with maximum 500MHz SYSCLK (refer to Datasheet DS14359 rev 1) */
#define SYSCLK_FREQ_MAX 500000000UL
#define AHB_FREQ_MAX 250000000UL
#define APBx_FREQ_MAX 125000000UL
#else
/* Default: All h7 SoC with maximum 280MHz SYSCLK */
#define SYSCLK_FREQ_MAX 280000000UL
#define AHB_FREQ_MAX 140000000UL
#define APBx_FREQ_MAX 70000000UL
#endif
#if SYSCLK_FREQ > SYSCLK_FREQ_MAX
#error "SYSCLK frequency is too high!"
#endif
#if AHB_FREQ > AHB_FREQ_MAX
#error "AHB frequency is too high!"
#endif
#if APB1_FREQ > APBx_FREQ_MAX
#error "APB1 frequency is too high!"
#endif
#if APB2_FREQ > APBx_FREQ_MAX
#error "APB2 frequency is too high!"
#endif
#if APB3_FREQ > APBx_FREQ_MAX
#error "APB3 frequency is too high!"
#endif
#if APB4_FREQ > APBx_FREQ_MAX
#error "APB4 frequency is too high!"
#endif
/* end of clock feasibility check */
#endif /* CONFIG_CPU_CORTEX_M7 */
#if defined(CONFIG_CPU_CORTEX_M7)
#if STM32_D1CPRE > 1
/*
* D1CPRE prescaler allows to set a HCLK frequency lower than SYSCLK frequency.
* Though, zephyr doesn't make a difference today between these two clocks.
* So, changing this prescaler is not allowed until it is made possible to
* use them independently in zephyr clock subsystem.
*/
#error "D1CPRE prescaler can't be higher than 1"
#endif
#endif /* CONFIG_CPU_CORTEX_M7 */
#if defined(CONFIG_CPU_CORTEX_M7)
/* Offset to access bus clock registers from M7 (or only) core */
#define STM32H7_BUS_CLK_REG DT_REG_ADDR(DT_NODELABEL(rcc))
#elif defined(CONFIG_CPU_CORTEX_M4)
/* Offset to access bus clock registers from M4 core */
#define STM32H7_BUS_CLK_REG DT_REG_ADDR(DT_NODELABEL(rcc)) + 0x60
#endif
static uint32_t get_bus_clock(uint32_t clock, uint32_t prescaler)
{
return clock / prescaler;
}
__unused
static uint32_t get_pllout_frequency(uint32_t pllsrc_freq,
int pllm_div,
int plln_mul,
int pllout_div)
{
__ASSERT_NO_MSG(pllm_div && pllout_div);
return (pllsrc_freq / pllm_div) * plln_mul / pllout_div;
}
__unused
static uint32_t get_pllsrc_frequency(void)
{
switch (LL_RCC_PLL_GetSource()) {
case LL_RCC_PLLSOURCE_HSI:
return STM32_HSI_FREQ;
case LL_RCC_PLLSOURCE_CSI:
return STM32_CSI_FREQ;
case LL_RCC_PLLSOURCE_HSE:
return STM32_HSE_FREQ;
case LL_RCC_PLLSOURCE_NONE:
default:
return 0;
}
}
__unused
static uint32_t get_hclk_frequency(void)
{
uint32_t sysclk = 0;
/* Get the current system clock source */
switch (LL_RCC_GetSysClkSource()) {
case LL_RCC_SYS_CLKSOURCE_STATUS_HSI:
sysclk = STM32_HSI_FREQ/STM32_HSI_DIVISOR;
break;
case LL_RCC_SYS_CLKSOURCE_STATUS_CSI:
sysclk = STM32_CSI_FREQ;
break;
case LL_RCC_SYS_CLKSOURCE_STATUS_HSE:
sysclk = STM32_HSE_FREQ;
break;
#if defined(STM32_PLL_ENABLED)
case LL_RCC_SYS_CLKSOURCE_STATUS_PLL1:
sysclk = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_P_DIVISOR);
break;
#endif /* STM32_PLL_ENABLED */
}
return get_bus_clock(sysclk, STM32_HPRE);
}
#if !defined(CONFIG_CPU_CORTEX_M4)
static int32_t prepare_regulator_voltage_scale(void)
{
/* Make sure to put the CPU in highest Voltage scale during clock configuration */
/* Highest voltage is SCALE0 */
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE0);
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
while (LL_PWR_IsActiveFlag_VOSRDY() == 0) {
#else
while (LL_PWR_IsActiveFlag_VOS() == 0) {
#endif
}
return 0;
}
static int32_t optimize_regulator_voltage_scale(uint32_t sysclk_freq)
{
/* After sysclock is configured, tweak the voltage scale down */
/* to reduce power consumption */
/* Needs some smart work to configure properly */
/* LL_PWR_REGULATOR_SCALE3 is lowest power consumption */
/* Must be done in accordance to the Maximum allowed frequency vs VOS*/
/* See RM0433 page 352 for more details */
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE0);
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
while (LL_PWR_IsActiveFlag_VOSRDY() == 0) {
#else
while (LL_PWR_IsActiveFlag_VOS() == 0) {
#endif
};
return 0;
}
__unused
static int get_vco_input_range(uint32_t m_div, uint32_t *range)
{
uint32_t vco_freq;
vco_freq = PLLSRC_FREQ / m_div;
if (MHZ(1) <= vco_freq && vco_freq <= MHZ(2)) {
*range = LL_RCC_PLLINPUTRANGE_1_2;
} else if (MHZ(2) < vco_freq && vco_freq <= MHZ(4)) {
*range = LL_RCC_PLLINPUTRANGE_2_4;
} else if (MHZ(4) < vco_freq && vco_freq <= MHZ(8)) {
*range = LL_RCC_PLLINPUTRANGE_4_8;
} else if (MHZ(8) < vco_freq && vco_freq <= MHZ(16)) {
*range = LL_RCC_PLLINPUTRANGE_8_16;
} else {
return -ERANGE;
}
return 0;
}
__unused
static uint32_t get_vco_output_range(uint32_t vco_input_range)
{
if (vco_input_range == LL_RCC_PLLINPUTRANGE_1_2) {
return LL_RCC_PLLVCORANGE_MEDIUM;
}
return LL_RCC_PLLVCORANGE_WIDE;
}
#endif /* ! CONFIG_CPU_CORTEX_M4 */
/** @brief Verifies clock is part of active clock configuration */
int enabled_clock(uint32_t src_clk)
{
if ((src_clk == STM32_SRC_SYSCLK) ||
((src_clk == STM32_SRC_CKPER) && IS_ENABLED(STM32_CKPER_ENABLED)) ||
((src_clk == STM32_SRC_HSE) && IS_ENABLED(STM32_HSE_ENABLED)) ||
((src_clk == STM32_SRC_HSI_KER) && IS_ENABLED(STM32_HSI_ENABLED)) ||
((src_clk == STM32_SRC_CSI_KER) && IS_ENABLED(STM32_CSI_ENABLED)) ||
((src_clk == STM32_SRC_HSI48) && IS_ENABLED(STM32_HSI48_ENABLED)) ||
((src_clk == STM32_SRC_LSE) && IS_ENABLED(STM32_LSE_ENABLED)) ||
((src_clk == STM32_SRC_LSI) && IS_ENABLED(STM32_LSI_ENABLED)) ||
((src_clk == STM32_SRC_PLL1_P) && IS_ENABLED(STM32_PLL_P_ENABLED)) ||
((src_clk == STM32_SRC_PLL1_Q) && IS_ENABLED(STM32_PLL_Q_ENABLED)) ||
((src_clk == STM32_SRC_PLL1_R) && IS_ENABLED(STM32_PLL_R_ENABLED)) ||
((src_clk == STM32_SRC_PLL2_P) && IS_ENABLED(STM32_PLL2_P_ENABLED)) ||
((src_clk == STM32_SRC_PLL2_Q) && IS_ENABLED(STM32_PLL2_Q_ENABLED)) ||
((src_clk == STM32_SRC_PLL2_R) && IS_ENABLED(STM32_PLL2_R_ENABLED)) ||
((src_clk == STM32_SRC_PLL3_P) && IS_ENABLED(STM32_PLL3_P_ENABLED)) ||
((src_clk == STM32_SRC_PLL3_Q) && IS_ENABLED(STM32_PLL3_Q_ENABLED)) ||
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
(src_clk == STM32_SRC_HCLK1) ||
(src_clk == STM32_SRC_HCLK2) ||
(src_clk == STM32_SRC_HCLK3) ||
(src_clk == STM32_SRC_HCLK4) ||
(src_clk == STM32_SRC_HCLK5) ||
((src_clk == STM32_SRC_PLL2_S) && IS_ENABLED(STM32_PLL2_S_ENABLED)) ||
((src_clk == STM32_SRC_PLL2_T) && IS_ENABLED(STM32_PLL2_T_ENABLED)) ||
((src_clk == STM32_SRC_PLL3_S) && IS_ENABLED(STM32_PLL3_S_ENABLED)) ||
#endif
((src_clk == STM32_SRC_PLL3_R) && IS_ENABLED(STM32_PLL3_R_ENABLED))) {
return 0;
}
return -ENOTSUP;
}
static int stm32_clock_control_on(const struct device *dev, clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
volatile int temp;
ARG_UNUSED(dev);
if (!IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX)) {
/* Attempt to toggle a wrong periph clock bit */
return -ENOTSUP;
}
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
sys_set_bits(STM32H7_BUS_CLK_REG + pclken->bus, pclken->enr);
/* Delay after enabling the clock, to allow it to become active.
* See RM0433 8.5.10 "Clock enabling delays"
*/
temp = sys_read32(STM32H7_BUS_CLK_REG + pclken->bus);
UNUSED(temp);
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
return 0;
}
static int stm32_clock_control_off(const struct device *dev, clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
ARG_UNUSED(dev);
if (!IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX)) {
/* Attempt to toggle a wrong periph clock bit */
return -ENOTSUP;
}
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
sys_clear_bits(STM32H7_BUS_CLK_REG + pclken->bus, pclken->enr);
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
return 0;
}
static int stm32_clock_control_configure(const struct device *dev,
clock_control_subsys_t sub_system,
void *data)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
int err;
ARG_UNUSED(dev);
ARG_UNUSED(data);
err = enabled_clock(pclken->bus);
if (err < 0) {
/* Attempt to configure a src clock not available or not valid */
return err;
}
if (pclken->enr == NO_SEL) {
/* Domain clock is fixed. Nothing to set. Exit */
return 0;
}
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_DT_CLKSEL_REG_GET(pclken->enr),
STM32_DT_CLKSEL_MASK_GET(pclken->enr) <<
STM32_DT_CLKSEL_SHIFT_GET(pclken->enr));
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_DT_CLKSEL_REG_GET(pclken->enr),
STM32_DT_CLKSEL_VAL_GET(pclken->enr) <<
STM32_DT_CLKSEL_SHIFT_GET(pclken->enr));
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
return 0;
}
static int stm32_clock_control_get_subsys_rate(const struct device *clock,
clock_control_subsys_t sub_system,
uint32_t *rate)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
/*
* Get AHB Clock (= SystemCoreClock = SYSCLK/prescaler)
* SystemCoreClock is preferred to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC
* since it will be updated after clock configuration and hence
* more likely to contain actual clock speed
*/
#if defined(CONFIG_CPU_CORTEX_M4)
uint32_t ahb_clock = SystemCoreClock;
#else
uint32_t ahb_clock = get_bus_clock(SystemCoreClock, STM32_HPRE);
#endif
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
uint32_t apb1_clock = get_bus_clock(ahb_clock, STM32_PPRE1);
uint32_t apb2_clock = get_bus_clock(ahb_clock, STM32_PPRE2);
uint32_t apb4_clock = get_bus_clock(ahb_clock, STM32_PPRE4);
uint32_t apb5_clock = get_bus_clock(ahb_clock, STM32_PPRE5);
#else
uint32_t apb1_clock = get_bus_clock(ahb_clock, STM32_D2PPRE1);
uint32_t apb2_clock = get_bus_clock(ahb_clock, STM32_D2PPRE2);
uint32_t apb3_clock = get_bus_clock(ahb_clock, STM32_D1PPRE);
uint32_t apb4_clock = get_bus_clock(ahb_clock, STM32_D3PPRE);
#endif
ARG_UNUSED(clock);
switch (pclken->bus) {
case STM32_CLOCK_BUS_AHB1:
case STM32_CLOCK_BUS_AHB2:
case STM32_CLOCK_BUS_AHB3:
case STM32_CLOCK_BUS_AHB4:
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
/* HCLKn is a possible source clock for some peripherals */
case STM32_SRC_HCLK1:
case STM32_SRC_HCLK2:
case STM32_SRC_HCLK3:
case STM32_SRC_HCLK4:
case STM32_SRC_HCLK5:
#endif /* CONFIG_SOC_SERIES_STM32H7RSX */
*rate = ahb_clock;
break;
case STM32_CLOCK_BUS_APB1:
case STM32_CLOCK_BUS_APB1_2:
*rate = apb1_clock;
break;
case STM32_CLOCK_BUS_APB2:
*rate = apb2_clock;
break;
#if !defined(CONFIG_SOC_SERIES_STM32H7RSX)
case STM32_CLOCK_BUS_APB3:
*rate = apb3_clock;
break;
#endif /* !CONFIG_SOC_SERIES_STM32H7RSX */
case STM32_CLOCK_BUS_APB4:
*rate = apb4_clock;
break;
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
case STM32_CLOCK_BUS_APB5:
*rate = apb5_clock;
break;
case STM32_CLOCK_BUS_AHB5:
*rate = ahb_clock;
break;
#endif /* CONFIG_SOC_SERIES_STM32H7RSX */
case STM32_SRC_SYSCLK:
*rate = get_hclk_frequency();
break;
#if defined(STM32_CKPER_ENABLED)
case STM32_SRC_CKPER:
*rate = LL_RCC_GetCLKPClockFreq(LL_RCC_CLKP_CLKSOURCE);
break;
#endif /* STM32_CKPER_ENABLED */
#if defined(STM32_HSE_ENABLED)
case STM32_SRC_HSE:
*rate = STM32_HSE_FREQ;
break;
#endif /* STM32_HSE_ENABLED */
#if defined(STM32_LSE_ENABLED)
case STM32_SRC_LSE:
*rate = STM32_LSE_FREQ;
break;
#endif /* STM32_LSE_ENABLED */
#if defined(STM32_LSI_ENABLED)
case STM32_SRC_LSI:
*rate = STM32_LSI_FREQ;
break;
#endif /* STM32_LSI_ENABLED */
#if defined(STM32_HSI_ENABLED)
case STM32_SRC_HSI_KER:
*rate = STM32_HSI_FREQ/STM32_HSI_DIVISOR;
break;
#endif /* STM32_HSI_ENABLED */
#if defined(STM32_HSI48_ENABLED)
case STM32_SRC_HSI48:
*rate = STM32_HSI48_FREQ;
break;
#endif /* STM32_HSI48_ENABLED */
#if defined(STM32_PLL_ENABLED)
case STM32_SRC_PLL1_P:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_P_DIVISOR);
break;
case STM32_SRC_PLL1_Q:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_Q_DIVISOR);
break;
case STM32_SRC_PLL1_R:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_R_DIVISOR);
break;
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
case STM32_SRC_PLL1_S:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_S_DIVISOR);
break;
/* PLL 1 has no T-divider */
#endif /* CONFIG_SOC_SERIES_STM32H7RSX */
#endif /* STM32_PLL_ENABLED */
#if defined(STM32_PLL2_ENABLED)
case STM32_SRC_PLL2_P:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL2_M_DIVISOR,
STM32_PLL2_N_MULTIPLIER,
STM32_PLL2_P_DIVISOR);
break;
case STM32_SRC_PLL2_Q:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL2_M_DIVISOR,
STM32_PLL2_N_MULTIPLIER,
STM32_PLL2_Q_DIVISOR);
break;
case STM32_SRC_PLL2_R:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL2_M_DIVISOR,
STM32_PLL2_N_MULTIPLIER,
STM32_PLL2_R_DIVISOR);
break;
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
case STM32_SRC_PLL2_S:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL2_M_DIVISOR,
STM32_PLL2_N_MULTIPLIER,
STM32_PLL2_S_DIVISOR);
break;
case STM32_SRC_PLL2_T:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL2_M_DIVISOR,
STM32_PLL2_N_MULTIPLIER,
STM32_PLL2_T_DIVISOR);
break;
#endif /* CONFIG_SOC_SERIES_STM32H7RSX */
#endif /* STM32_PLL2_ENABLED */
#if defined(STM32_PLL3_ENABLED)
case STM32_SRC_PLL3_P:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL3_M_DIVISOR,
STM32_PLL3_N_MULTIPLIER,
STM32_PLL3_P_DIVISOR);
break;
case STM32_SRC_PLL3_Q:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL3_M_DIVISOR,
STM32_PLL3_N_MULTIPLIER,
STM32_PLL3_Q_DIVISOR);
break;
case STM32_SRC_PLL3_R:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL3_M_DIVISOR,
STM32_PLL3_N_MULTIPLIER,
STM32_PLL3_R_DIVISOR);
break;
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
case STM32_SRC_PLL3_S:
*rate = get_pllout_frequency(get_pllsrc_frequency(),
STM32_PLL3_M_DIVISOR,
STM32_PLL3_N_MULTIPLIER,
STM32_PLL3_S_DIVISOR);
break;
/* PLL 3 has no T-divider */
#endif /* CONFIG_SOC_SERIES_STM32H7RSX */
#endif /* STM32_PLL3_ENABLED */
default:
return -ENOTSUP;
}
if (pclken->div) {
*rate /= (pclken->div + 1);
}
return 0;
}
static DEVICE_API(clock_control, stm32_clock_control_api) = {
.on = stm32_clock_control_on,
.off = stm32_clock_control_off,
.get_rate = stm32_clock_control_get_subsys_rate,
.configure = stm32_clock_control_configure,
};
__unused
static void set_up_fixed_clock_sources(void)
{
if (IS_ENABLED(STM32_HSE_ENABLED)) {
/* Enable HSE oscillator */
if (IS_ENABLED(STM32_HSE_BYPASS)) {
LL_RCC_HSE_EnableBypass();
} else {
LL_RCC_HSE_DisableBypass();
}
LL_RCC_HSE_Enable();
while (LL_RCC_HSE_IsReady() != 1) {
}
/* Check if we need to enable HSE clock security system or not */
#if STM32_HSE_CSS
z_arm_nmi_set_handler(HAL_RCC_NMI_IRQHandler);
LL_RCC_HSE_EnableCSS();
#endif /* STM32_HSE_CSS */
}
if (IS_ENABLED(STM32_HSI_ENABLED)) {
if (IS_ENABLED(STM32_PLL_SRC_HSI) || IS_ENABLED(STM32_PLL2_SRC_HSI) ||
IS_ENABLED(STM32_PLL3_SRC_HSI)) {
/* HSI calibration */
LL_RCC_HSI_SetCalibTrimming(RCC_HSICALIBRATION_DEFAULT);
}
/* Enable HSI if not enabled */
if (LL_RCC_HSI_IsReady() != 1) {
/* Enable HSI oscillator */
LL_RCC_HSI_Enable();
while (LL_RCC_HSI_IsReady() != 1) {
/* Wait for HSI ready */
}
}
/* HSI divider configuration */
LL_RCC_HSI_SetDivider(hsi_divider(STM32_HSI_DIVISOR));
}
if (IS_ENABLED(STM32_CSI_ENABLED)) {
/* Enable CSI oscillator */
LL_RCC_CSI_Enable();
while (LL_RCC_CSI_IsReady() != 1) {
}
}
if (IS_ENABLED(STM32_LSI_ENABLED)) {
/* Enable LSI oscillator */
LL_RCC_LSI_Enable();
while (LL_RCC_LSI_IsReady() != 1) {
}
}
if (IS_ENABLED(STM32_LSE_ENABLED)) {
stm32_backup_domain_enable_access();
/* Configure driving capability */
LL_RCC_LSE_SetDriveCapability(STM32_LSE_DRIVING << RCC_BDCR_LSEDRV_Pos);
if (IS_ENABLED(STM32_LSE_BYPASS)) {
/* Configure LSE bypass */
LL_RCC_LSE_EnableBypass();
}
/* Enable LSE oscillator */
LL_RCC_LSE_Enable();
while (LL_RCC_LSE_IsReady() != 1) {
}
stm32_backup_domain_disable_access();
}
if (IS_ENABLED(STM32_HSI48_ENABLED)) {
LL_RCC_HSI48_Enable();
while (LL_RCC_HSI48_IsReady() != 1) {
}
}
}
/*
* Unconditionally switch the system clock source to HSI.
*/
__unused
static void stm32_clock_switch_to_hsi(void)
{
/* Enable HSI if not enabled */
if (LL_RCC_HSI_IsReady() != 1) {
/* Enable HSI */
LL_RCC_HSI_Enable();
while (LL_RCC_HSI_IsReady() != 1) {
/* Wait for HSI ready */
}
}
/* Set HSI as SYSCLCK source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) {
}
}
__unused
static int set_up_plls(void)
{
#if defined(STM32_PLL_ENABLED) || defined(STM32_PLL2_ENABLED) || defined(STM32_PLL3_ENABLED)
int r;
uint32_t vco_input_range;
uint32_t vco_output_range;
/*
* Case of chain-loaded applications:
* Switch to HSI and disable the PLL before configuration.
* (Switching to HSI makes sure we have a SYSCLK source in
* case we're currently running from the PLL we're about to
* turn off and reconfigure.)
*
*/
if (LL_RCC_GetSysClkSource() == LL_RCC_SYS_CLKSOURCE_STATUS_PLL1) {
stm32_clock_switch_to_hsi();
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
}
#if defined(CONFIG_STM32_MEMMAP) && defined(CONFIG_BOOTLOADER_MCUBOOT)
/*
* Don't disable PLL during application initialization
* that runs in memmap mode when (Q/O)SPI uses PLL
* as its clock source.
*/
#if defined(OCTOSPI1) || defined(OCTOSPI2)
if (LL_RCC_GetOSPIClockSource(LL_RCC_OSPI_CLKSOURCE) != LL_RCC_OSPI_CLKSOURCE_PLL1Q) {
LL_RCC_PLL1_Disable();
}
if (LL_RCC_GetOSPIClockSource(LL_RCC_OSPI_CLKSOURCE) != LL_RCC_OSPI_CLKSOURCE_PLL2R) {
LL_RCC_PLL2_Disable();
}
#elif defined(QUADSPI)
if (LL_RCC_GetQSPIClockSource(LL_RCC_QSPI_CLKSOURCE) != LL_RCC_QSPI_CLKSOURCE_PLL1Q) {
LL_RCC_PLL1_Disable();
}
if (LL_RCC_GetQSPIClockSource(LL_RCC_QSPI_CLKSOURCE) != LL_RCC_QSPI_CLKSOURCE_PLL2R) {
LL_RCC_PLL2_Disable();
}
#else
LL_RCC_PLL1_Disable();
LL_RCC_PLL2_Disable();
#endif
#else
LL_RCC_PLL1_Disable();
LL_RCC_PLL2_Disable();
#endif
LL_RCC_PLL3_Disable();
/* Configure PLL source */
/* Can be HSE , HSI 64Mhz/HSIDIV, CSI 4MHz*/
if (IS_ENABLED(STM32_PLL_SRC_HSE) ||
IS_ENABLED(STM32_PLL2_SRC_HSE) ||
IS_ENABLED(STM32_PLL3_SRC_HSE)) {
/* Main PLL configuration and activation */
LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_HSE);
} else if (IS_ENABLED(STM32_PLL_SRC_CSI) ||
IS_ENABLED(STM32_PLL2_SRC_CSI) ||
IS_ENABLED(STM32_PLL3_SRC_CSI)) {
/* Main PLL configuration and activation */
LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_CSI);
} else if (IS_ENABLED(STM32_PLL_SRC_HSI) ||
IS_ENABLED(STM32_PLL2_SRC_HSI) ||
IS_ENABLED(STM32_PLL3_SRC_HSI)) {
/* Main PLL configuration and activation */
LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_HSI);
} else {
return -ENOTSUP;
}
#if defined(STM32_PLL_ENABLED)
r = get_vco_input_range(STM32_PLL_M_DIVISOR, &vco_input_range);
if (r < 0) {
return r;
}
vco_output_range = get_vco_output_range(vco_input_range);
LL_RCC_PLL1_SetM(STM32_PLL_M_DIVISOR);
LL_RCC_PLL1_SetVCOInputRange(vco_input_range);
LL_RCC_PLL1_SetVCOOutputRange(vco_output_range);
LL_RCC_PLL1_SetN(STM32_PLL_N_MULTIPLIER);
LL_RCC_PLL1FRACN_Disable();
if (IS_ENABLED(STM32_PLL_FRACN_ENABLED)) {
LL_RCC_PLL1_SetFRACN(STM32_PLL_FRACN_VALUE);
LL_RCC_PLL1FRACN_Enable();
}
if (IS_ENABLED(STM32_PLL_P_ENABLED)) {
LL_RCC_PLL1_SetP(STM32_PLL_P_DIVISOR);
LL_RCC_PLL1P_Enable();
}
if (IS_ENABLED(STM32_PLL_Q_ENABLED)) {
LL_RCC_PLL1_SetQ(STM32_PLL_Q_DIVISOR);
LL_RCC_PLL1Q_Enable();
}
if (IS_ENABLED(STM32_PLL_R_ENABLED)) {
LL_RCC_PLL1_SetR(STM32_PLL_R_DIVISOR);
LL_RCC_PLL1R_Enable();
}
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
if (IS_ENABLED(STM32_PLL_S_ENABLED)) {
LL_RCC_PLL1_SetS(STM32_PLL_S_DIVISOR);
LL_RCC_PLL1S_Enable();
}
#endif /* CONFIG_SOC_SERIES_STM32H7RSX */
LL_RCC_PLL1_Enable();
while (LL_RCC_PLL1_IsReady() != 1U) {
}
#endif /* STM32_PLL_ENABLED */
#if defined(STM32_PLL2_ENABLED)
r = get_vco_input_range(STM32_PLL2_M_DIVISOR, &vco_input_range);
if (r < 0) {
return r;
}
vco_output_range = get_vco_output_range(vco_input_range);
LL_RCC_PLL2_SetM(STM32_PLL2_M_DIVISOR);
LL_RCC_PLL2_SetVCOInputRange(vco_input_range);
LL_RCC_PLL2_SetVCOOutputRange(vco_output_range);
LL_RCC_PLL2_SetN(STM32_PLL2_N_MULTIPLIER);
LL_RCC_PLL2FRACN_Disable();
if (IS_ENABLED(STM32_PLL2_FRACN_ENABLED)) {
LL_RCC_PLL2_SetFRACN(STM32_PLL2_FRACN_VALUE);
LL_RCC_PLL2FRACN_Enable();
}
if (IS_ENABLED(STM32_PLL2_P_ENABLED)) {
LL_RCC_PLL2_SetP(STM32_PLL2_P_DIVISOR);
LL_RCC_PLL2P_Enable();
}
if (IS_ENABLED(STM32_PLL2_Q_ENABLED)) {
LL_RCC_PLL2_SetQ(STM32_PLL2_Q_DIVISOR);
LL_RCC_PLL2Q_Enable();
}
if (IS_ENABLED(STM32_PLL2_R_ENABLED)) {
LL_RCC_PLL2_SetR(STM32_PLL2_R_DIVISOR);
LL_RCC_PLL2R_Enable();
}
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
if (IS_ENABLED(STM32_PLL2_S_ENABLED)) {
LL_RCC_PLL2_SetS(STM32_PLL2_S_DIVISOR);
LL_RCC_PLL2S_Enable();
}
if (IS_ENABLED(STM32_PLL2_T_ENABLED)) {
LL_RCC_PLL2_SetT(STM32_PLL2_T_DIVISOR);
LL_RCC_PLL2T_Enable();
}
#endif /* CONFIG_SOC_SERIES_STM32H7RSX */
LL_RCC_PLL2_Enable();
while (LL_RCC_PLL2_IsReady() != 1U) {
}
#endif /* STM32_PLL2_ENABLED */
#if defined(STM32_PLL3_ENABLED)
r = get_vco_input_range(STM32_PLL3_M_DIVISOR, &vco_input_range);
if (r < 0) {
return r;
}
vco_output_range = get_vco_output_range(vco_input_range);
LL_RCC_PLL3_SetM(STM32_PLL3_M_DIVISOR);
LL_RCC_PLL3_SetVCOInputRange(vco_input_range);
LL_RCC_PLL3_SetVCOOutputRange(vco_output_range);
LL_RCC_PLL3_SetN(STM32_PLL3_N_MULTIPLIER);
LL_RCC_PLL3FRACN_Disable();
if (IS_ENABLED(STM32_PLL3_FRACN_ENABLED)) {
LL_RCC_PLL3_SetFRACN(STM32_PLL3_FRACN_VALUE);
LL_RCC_PLL3FRACN_Enable();
}
if (IS_ENABLED(STM32_PLL3_P_ENABLED)) {
LL_RCC_PLL3_SetP(STM32_PLL3_P_DIVISOR);
LL_RCC_PLL3P_Enable();
}
if (IS_ENABLED(STM32_PLL3_Q_ENABLED)) {
LL_RCC_PLL3_SetQ(STM32_PLL3_Q_DIVISOR);
LL_RCC_PLL3Q_Enable();
}
if (IS_ENABLED(STM32_PLL3_R_ENABLED)) {
LL_RCC_PLL3_SetR(STM32_PLL3_R_DIVISOR);
LL_RCC_PLL3R_Enable();
}
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
if (IS_ENABLED(STM32_PLL3_S_ENABLED)) {
LL_RCC_PLL3_SetS(STM32_PLL3_S_DIVISOR);
LL_RCC_PLL3S_Enable();
}
#endif /* CONFIG_SOC_SERIES_STM32H7RSX */
LL_RCC_PLL3_Enable();
while (LL_RCC_PLL3_IsReady() != 1U) {
}
#endif /* STM32_PLL3_ENABLED */
#else
/* Init PLL source to None */
LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_NONE);
#endif /* STM32_PLL_ENABLED || STM32_PLL2_ENABLED || STM32_PLL3_ENABLED */
return 0;
}
int stm32_clock_control_init(const struct device *dev)
{
int r = 0;
#if defined(CONFIG_CPU_CORTEX_M7)
uint32_t old_hclk_freq;
uint32_t new_hclk_freq;
/* HW semaphore Clock enable */
#if defined(CONFIG_SOC_STM32H7A3XX) || defined(CONFIG_SOC_STM32H7A3XXQ) || \
defined(CONFIG_SOC_STM32H7B0XX) || defined(CONFIG_SOC_STM32H7B0XXQ) || \
defined(CONFIG_SOC_STM32H7B3XX) || defined(CONFIG_SOC_STM32H7B3XXQ)
LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_HSEM);
#elif !defined(CONFIG_SOC_SERIES_STM32H7RSX)
/* The stm32h7RS serie has no HSEM peripheral */
LL_AHB4_GRP1_EnableClock(LL_AHB4_GRP1_PERIPH_HSEM);
#endif
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
/* Set up individual enabled clocks */
set_up_fixed_clock_sources();
/* Set up PLLs */
r = set_up_plls();
if (r < 0) {
return r;
}
/* Configure Voltage scale to comply with the desired system frequency */
prepare_regulator_voltage_scale();
/* Current hclk value */
old_hclk_freq = get_hclk_frequency();
/* AHB is HCLK clock to configure */
new_hclk_freq = get_bus_clock(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC,
STM32_HPRE);
/* Set flash latency */
/* AHB/AXI/HCLK clock is SYSCLK / HPRE */
/* If freq increases, set flash latency before any clock setting */
if (new_hclk_freq > old_hclk_freq) {
LL_SetFlashLatency(new_hclk_freq);
}
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
/*
* The default Flash latency is 3 WS which is not enough,
* set higher and correct later if needed
*/
LL_FLASH_SetLatency(LL_FLASH_LATENCY_6);
#endif /* CONFIG_SOC_SERIES_STM32H7RSX */
/* Preset the prescalers prior to choosing SYSCLK */
/* Prevents APB clock to go over limits */
/* Set buses (Sys,AHB, APB1, APB2 & APB4) prescalers */
LL_RCC_SetSysPrescaler(sysclk_prescaler(STM32_D1CPRE));
LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_HPRE));
#if defined(CONFIG_SOC_SERIES_STM32H7RSX)
LL_RCC_SetAPB1Prescaler(apb1_prescaler(STM32_PPRE1));
LL_RCC_SetAPB2Prescaler(apb2_prescaler(STM32_PPRE2));
LL_RCC_SetAPB4Prescaler(apb4_prescaler(STM32_PPRE4));
LL_RCC_SetAPB5Prescaler(apb5_prescaler(STM32_PPRE5));
#else
LL_RCC_SetAPB1Prescaler(apb1_prescaler(STM32_D2PPRE1));
LL_RCC_SetAPB2Prescaler(apb2_prescaler(STM32_D2PPRE2));
LL_RCC_SetAPB3Prescaler(apb3_prescaler(STM32_D1PPRE));
LL_RCC_SetAPB4Prescaler(apb4_prescaler(STM32_D3PPRE));
#endif
/* Set up sys clock */
if (IS_ENABLED(STM32_SYSCLK_SRC_PLL)) {
/* Set PLL1 as System Clock Source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL1);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL1) {
}
} else if (IS_ENABLED(STM32_SYSCLK_SRC_HSE)) {
/* Set sysclk source to HSE */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE);
while (LL_RCC_GetSysClkSource() !=
LL_RCC_SYS_CLKSOURCE_STATUS_HSE) {
}
} else if (IS_ENABLED(STM32_SYSCLK_SRC_HSI)) {
/* Set sysclk source to HSI */
stm32_clock_switch_to_hsi();
} else if (IS_ENABLED(STM32_SYSCLK_SRC_CSI)) {
/* Set sysclk source to CSI */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_CSI);
while (LL_RCC_GetSysClkSource() !=
LL_RCC_SYS_CLKSOURCE_STATUS_CSI) {
}
} else {
return -ENOTSUP;
}
/* Set FLASH latency */
/* AHB/AXI/HCLK clock is SYSCLK / HPRE */
/* If freq not increased, set flash latency after all clock setting */
if (new_hclk_freq <= old_hclk_freq) {
LL_SetFlashLatency(new_hclk_freq);
}
optimize_regulator_voltage_scale(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
#endif /* CONFIG_CPU_CORTEX_M7 */
ARG_UNUSED(dev);
/* Update CMSIS variable */
SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
return r;
}
#if defined(STM32_HSE_CSS)
void __weak stm32_hse_css_callback(void) {}
/* Called by the HAL in response to an HSE CSS interrupt */
void HAL_RCC_CSSCallback(void)
{
stm32_hse_css_callback();
}
#endif
/**
* @brief RCC device, note that priority is intentionally set to 1 so
* that the device init runs just after SOC init
*/
DEVICE_DT_DEFINE(DT_NODELABEL(rcc),
stm32_clock_control_init,
NULL,
NULL, NULL,
PRE_KERNEL_1,
CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
&stm32_clock_control_api);