Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

200 lines
5.7 KiB

/*
* Copyright (c) 2024 Espressif Systems (Shanghai) Co., Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/device.h>
#include <zephyr/kernel.h>
#include <zephyr/spinlock.h>
#include <zephyr/kernel_structs.h>
#include <zephyr/storage/flash_map.h>
#include <zephyr/drivers/interrupt_controller/intc_esp32.h>
#include <soc.h>
#include <esp_log.h>
#include <esp_cpu.h>
#include "esp_rom_uart.h"
#include "esp_mcuboot_image.h"
#include "esp_memory_utils.h"
#include "hw_init.h"
#define TAG "amp"
/* AMP support */
#ifdef CONFIG_SOC_ENABLE_APPCPU
#include "bootloader_flash_priv.h"
#define sys_mmap bootloader_mmap
#define sys_munmap bootloader_munmap
void esp_appcpu_start(void *entry_point)
{
esp_cpu_unstall(1);
if (!REG_GET_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_CLKGATE_EN)) {
REG_SET_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_CLKGATE_EN);
REG_CLR_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RUNSTALL);
REG_SET_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RESETTING);
REG_CLR_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RESETTING);
}
esp_rom_ets_set_appcpu_boot_addr((void *)entry_point);
esp_cpu_reset(1);
}
static int load_segment(uint32_t src_addr, uint32_t src_len, uint32_t dst_addr)
{
const uint32_t *data = (const uint32_t *)sys_mmap(src_addr, src_len);
if (!data) {
ESP_EARLY_LOGE(TAG, "%s: mmap failed", __func__);
return -1;
}
volatile uint32_t *dst = (volatile uint32_t *)dst_addr;
for (int i = 0; i < src_len / 4; i++) {
dst[i] = data[i];
}
sys_munmap(data);
return 0;
}
int IRAM_ATTR esp_appcpu_image_load(unsigned int hdr_offset, unsigned int *entry_addr)
{
const uint32_t fa_offset = FIXED_PARTITION_OFFSET(slot0_appcpu_partition);
const uint32_t fa_size = FIXED_PARTITION_SIZE(slot0_appcpu_partition);
const uint8_t fa_id = FIXED_PARTITION_ID(slot0_appcpu_partition);
if (entry_addr == NULL) {
ESP_EARLY_LOGE(TAG, "Can't return the entry address. Aborting!");
abort();
return -1;
}
uint32_t mcuboot_header[8] = {0};
esp_image_load_header_t image_header = {0};
const uint32_t *data = (const uint32_t *)sys_mmap(fa_offset, 0x80);
memcpy((void *)&mcuboot_header, data, sizeof(mcuboot_header));
memcpy((void *)&image_header, data + (hdr_offset / sizeof(uint32_t)),
sizeof(esp_image_load_header_t));
sys_munmap(data);
if (image_header.header_magic == ESP_LOAD_HEADER_MAGIC) {
ESP_EARLY_LOGI(TAG,
"APPCPU image, area id: %d, offset: 0x%x, hdr.off: 0x%x, size: %d kB",
fa_id, fa_offset, hdr_offset, fa_size / 1024);
} else if ((image_header.header_magic & 0xff) == 0xE9) {
ESP_EARLY_LOGE(TAG, "ESP image format is not supported");
abort();
} else {
ESP_EARLY_LOGE(TAG, "Unknown or empty image detected. Aborting!");
abort();
}
if (!esp_ptr_in_iram((void *)image_header.iram_dest_addr) ||
!esp_ptr_in_iram((void *)(image_header.iram_dest_addr + image_header.iram_size))) {
ESP_EARLY_LOGE(TAG, "IRAM region in load header is not valid. Aborting");
abort();
}
if (!esp_ptr_in_dram((void *)image_header.dram_dest_addr) ||
!esp_ptr_in_dram((void *)(image_header.dram_dest_addr + image_header.dram_size))) {
ESP_EARLY_LOGE(TAG, "DRAM region in load header is not valid. Aborting");
abort();
}
if (!esp_ptr_in_iram((void *)image_header.entry_addr)) {
ESP_EARLY_LOGE(TAG, "Application entry point (%xh) is not in IRAM. Aborting",
image_header.entry_addr);
abort();
}
ESP_EARLY_LOGI(TAG, "IRAM segment: paddr=%08xh, vaddr=%08xh, size=%05xh (%6d) load",
(fa_offset + image_header.iram_flash_offset), image_header.iram_dest_addr,
image_header.iram_size, image_header.iram_size);
load_segment(fa_offset + image_header.iram_flash_offset, image_header.iram_size,
image_header.iram_dest_addr);
ESP_EARLY_LOGI(TAG, "DRAM segment: paddr=%08xh, vaddr=%08xh, size=%05xh (%6d) load",
(fa_offset + image_header.dram_flash_offset), image_header.dram_dest_addr,
image_header.dram_size, image_header.dram_size);
load_segment(fa_offset + image_header.dram_flash_offset, image_header.dram_size,
image_header.dram_dest_addr);
ESP_EARLY_LOGI(TAG, "IROM segment: paddr=%08xh, vaddr=%08xh, size=%05xh (%6d) map",
(fa_offset + image_header.irom_flash_offset), image_header.irom_map_addr,
image_header.irom_size, image_header.irom_size);
ESP_EARLY_LOGI(TAG, "DROM segment: paddr=%08xh, vaddr=%08xh, size=%05xh (%6d) map",
(fa_offset + image_header.drom_flash_offset), image_header.drom_map_addr,
image_header.drom_size, image_header.drom_size);
struct rom_segments rom = {
image_header.drom_map_addr,
image_header.drom_flash_offset + fa_offset,
image_header.drom_size,
image_header.irom_map_addr,
image_header.irom_flash_offset + fa_offset,
image_header.irom_size,
};
map_rom_segments(1, &rom);
ESP_EARLY_LOGI(TAG, "Application start=%xh\n\n", image_header.entry_addr);
esp_rom_uart_tx_wait_idle(0);
assert(entry_addr != NULL);
*entry_addr = image_header.entry_addr;
return 0;
}
void esp_appcpu_image_stop(void)
{
esp_cpu_stall(1);
}
void esp_appcpu_image_start(unsigned int hdr_offset)
{
static int started;
unsigned int entry_addr = 0;
if (started) {
printk("APPCPU already started.\r\n");
return;
}
/* Input image meta header, output appcpu entry point */
esp_appcpu_image_load(hdr_offset, &entry_addr);
esp_appcpu_start((void *)entry_addr);
}
int esp_appcpu_init(void)
{
/* Load APPCPU image using image header offset
* (skipping the MCUBoot header)
*/
esp_appcpu_image_start(0x20);
return 0;
}
#if !defined(CONFIG_MCUBOOT)
extern int esp_appcpu_init(void);
SYS_INIT(esp_appcpu_init, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
#endif
#endif /* CONFIG_SOC_ENABLE_APPCPU */