Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

462 lines
13 KiB

/*
* Copyright (c) 2018 Intel Corporation
* Copyright (c) 2024 Espressif Systems (Shanghai) Co., Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/device.h>
#include <zephyr/kernel.h>
#include <zephyr/spinlock.h>
#include <zephyr/kernel_structs.h>
#include <zephyr/storage/flash_map.h>
#include <zephyr/drivers/interrupt_controller/intc_esp32.h>
#include <soc.h>
#include <esp_cpu.h>
#include "esp_rom_uart.h"
#include "esp_mcuboot_image.h"
#include "esp_memory_utils.h"
#ifdef CONFIG_SMP
#include <ipi.h>
#ifndef CONFIG_SOC_ESP32_PROCPU
static struct k_spinlock loglock;
#endif
struct cpustart_rec {
int cpu;
arch_cpustart_t fn;
char *stack_top;
void *arg;
int vecbase;
volatile int *alive;
};
volatile struct cpustart_rec *start_rec;
static void *appcpu_top;
static bool cpus_active[CONFIG_MP_MAX_NUM_CPUS];
static struct k_spinlock loglock;
/* Note that the logging done here is ACTUALLY REQUIRED FOR RELIABLE
* OPERATION! At least one particular board will experience spurious
* hangs during initialization (usually the APPCPU fails to start at
* all) without these calls present. It's not just time -- careful
* use of k_busy_wait() (and even hand-crafted timer loops using the
* Xtensa timer SRs directly) that duplicates the timing exactly still
* sees hangs. Something is happening inside the ROM UART code that
* magically makes the startup sequence reliable.
*
* Leave this in place until the sequence is understood better.
*
* (Note that the use of the spinlock is cosmetic only -- if you take
* it out the messages will interleave across the two CPUs but startup
* will still be reliable.)
*/
void smp_log(const char *msg)
{
k_spinlock_key_t key = k_spin_lock(&loglock);
while (*msg) {
esp_rom_uart_tx_one_char(*msg++);
}
esp_rom_uart_tx_one_char('\r');
esp_rom_uart_tx_one_char('\n');
k_spin_unlock(&loglock, key);
}
static void appcpu_entry2(void)
{
volatile int ps, ie;
/* Copy over VECBASE from the main CPU for an initial value
* (will need to revisit this if we ever allow a user API to
* change interrupt vectors at runtime). Make sure interrupts
* are locally disabled, then synthesize a PS value that will
* enable them for the user code to pass to irq_unlock()
* later.
*/
__asm__ volatile("rsr.PS %0" : "=r"(ps));
ps &= ~(XCHAL_PS_EXCM_MASK | XCHAL_PS_INTLEVEL_MASK);
__asm__ volatile("wsr.PS %0" : : "r"(ps));
ie = 0;
__asm__ volatile("wsr.INTENABLE %0" : : "r"(ie));
__asm__ volatile("wsr.VECBASE %0" : : "r"(start_rec->vecbase));
__asm__ volatile("rsync");
/* Set up the CPU pointer. Really this should be xtensa arch
* code, not in the ESP-32 layer
*/
_cpu_t *cpu = &_kernel.cpus[1];
__asm__ volatile("wsr.MISC0 %0" : : "r"(cpu));
smp_log("ESP32: APPCPU running");
*start_rec->alive = 1;
start_rec->fn(start_rec->arg);
}
/* Defines a locally callable "function" named _stack-switch(). The
* first argument (in register a2 post-ENTRY) is the new stack pointer
* to go into register a1. The second (a3) is the entry point.
* Because this never returns, a0 is used as a scratch register then
* set to zero for the called function (a null return value is the
* signal for "top of stack" to the debugger).
*/
void z_appcpu_stack_switch(void *stack, void *entry);
__asm__("\n"
".align 4" "\n"
"z_appcpu_stack_switch:" "\n\t"
"entry a1, 16" "\n\t"
/* Subtle: we want the stack to be 16 bytes higher than the
* top on entry to the called function, because the ABI forces
* it to assume that those bytes are for its caller's A0-A3
* spill area. (In fact ENTRY instructions with stack
* adjustments less than 16 are a warning condition in the
* assembler). But we aren't a caller, have no bit set in
* WINDOWSTART and will never be asked to spill anything.
* Those 16 bytes would otherwise be wasted on the stack, so
* adjust
*/
"addi a1, a2, 16" "\n\t"
/* Clear WINDOWSTART so called functions never try to spill
* our callers' registers into the now-garbage stack pointers
* they contain. No need to set the bit corresponding to
* WINDOWBASE, our C callee will do that when it does an
* ENTRY.
*/
"movi a0, 0" "\n\t"
"wsr.WINDOWSTART a0" "\n\t"
/* Clear CALLINC field of PS (you would think it would, but
* our ENTRY doesn't actually do that) so the callee's ENTRY
* doesn't shift the registers
*/
"rsr.PS a0" "\n\t"
"movi a2, 0xfffcffff" "\n\t"
"and a0, a0, a2" "\n\t"
"wsr.PS a0" "\n\t"
"rsync" "\n\t"
"movi a0, 0" "\n\t"
"jx a3" "\n\t");
/* Carefully constructed to use no stack beyond compiler-generated ABI
* instructions. WE DO NOT KNOW WHERE THE STACK FOR THIS FUNCTION IS.
* The ROM library just picks a spot on its own with no input from our
* app linkage and tells us nothing about it until we're already
* running.
*/
static void appcpu_entry1(void)
{
z_appcpu_stack_switch(appcpu_top, appcpu_entry2);
}
/* The calls and sequencing here were extracted from the ESP-32
* FreeRTOS integration with just a tiny bit of cleanup. None of the
* calls or registers shown are documented, so treat this code with
* extreme caution.
*/
void esp_appcpu_start(void *entry_point)
{
ets_printf("ESP32: starting APPCPU");
/* These two calls are wrapped in a "stall_other_cpu" API in
* esp-idf. But in this context the appcpu is stalled by
* definition, so we can skip that complexity and just call
* the ROM directly.
*/
esp_rom_Cache_Flush(1);
esp_rom_Cache_Read_Enable(1);
esp_rom_ets_set_appcpu_boot_addr((void *)0);
DPORT_SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN);
DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_C_REG, DPORT_APPCPU_RUNSTALL);
DPORT_SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_A_REG, DPORT_APPCPU_RESETTING);
DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_A_REG, DPORT_APPCPU_RESETTING);
/* extracted from SMP LOG above, THIS IS REQUIRED FOR AMP RELIABLE
* OPERATION AS WELL, PLEASE DON'T touch on the dummy write below!
*
* Note that the logging done here is ACTUALLY REQUIRED FOR RELIABLE
* OPERATION! At least one particular board will experience spurious
* hangs during initialization (usually the APPCPU fails to start at
* all) without these calls present. It's not just time -- careful
* use of k_busy_wait() (and even hand-crafted timer loops using the
* Xtensa timer SRs directly) that duplicates the timing exactly still
* sees hangs. Something is happening inside the ROM UART code that
* magically makes the startup sequence reliable.
*
* Leave this in place until the sequence is understood better.
*
*/
esp_rom_uart_tx_one_char('\r');
esp_rom_uart_tx_one_char('\r');
esp_rom_uart_tx_one_char('\n');
/* Seems weird that you set the boot address AFTER starting
* the CPU, but this is how they do it...
*/
esp_rom_ets_set_appcpu_boot_addr((void *)entry_point);
ets_printf("ESP32: APPCPU start sequence complete");
}
IRAM_ATTR static void esp_crosscore_isr(void *arg)
{
ARG_UNUSED(arg);
/* Right now this interrupt is only used for IPIs */
z_sched_ipi();
const int core_id = esp_core_id();
if (core_id == 0) {
DPORT_WRITE_PERI_REG(DPORT_CPU_INTR_FROM_CPU_0_REG, 0);
} else {
DPORT_WRITE_PERI_REG(DPORT_CPU_INTR_FROM_CPU_1_REG, 0);
}
}
void arch_cpu_start(int cpu_num, k_thread_stack_t *stack, int sz,
arch_cpustart_t fn, void *arg)
{
volatile struct cpustart_rec sr;
int vb;
volatile int alive_flag;
__ASSERT(cpu_num == 1, "ESP-32 supports only two CPUs");
__asm__ volatile("rsr.VECBASE %0\n\t" : "=r"(vb));
alive_flag = 0;
sr.cpu = cpu_num;
sr.fn = fn;
sr.stack_top = K_KERNEL_STACK_BUFFER(stack) + sz;
sr.arg = arg;
sr.vecbase = vb;
sr.alive = &alive_flag;
appcpu_top = K_KERNEL_STACK_BUFFER(stack) + sz;
start_rec = &sr;
esp_appcpu_start(appcpu_entry1);
while (!alive_flag) {
}
cpus_active[0] = true;
cpus_active[cpu_num] = true;
esp_intr_alloc(DT_IRQ_BY_IDX(DT_NODELABEL(ipi0), 0, irq),
ESP_PRIO_TO_FLAGS(DT_IRQ_BY_IDX(DT_NODELABEL(ipi0), 0, priority)) |
ESP_INT_FLAGS_CHECK(DT_IRQ_BY_IDX(DT_NODELABEL(ipi0), 0, flags)) |
ESP_INTR_FLAG_IRAM,
esp_crosscore_isr,
NULL,
NULL);
esp_intr_alloc(DT_IRQ_BY_IDX(DT_NODELABEL(ipi1), 0, irq),
ESP_PRIO_TO_FLAGS(DT_IRQ_BY_IDX(DT_NODELABEL(ipi1), 0, priority)) |
ESP_INT_FLAGS_CHECK(DT_IRQ_BY_IDX(DT_NODELABEL(ipi1), 0, flags)) |
ESP_INTR_FLAG_IRAM,
esp_crosscore_isr,
NULL,
NULL);
smp_log("ESP32: APPCPU initialized");
}
void arch_sched_directed_ipi(uint32_t cpu_bitmap)
{
const int core_id = esp_core_id();
ARG_UNUSED(cpu_bitmap);
if (core_id == 0) {
DPORT_WRITE_PERI_REG(DPORT_CPU_INTR_FROM_CPU_0_REG, DPORT_CPU_INTR_FROM_CPU_0);
} else {
DPORT_WRITE_PERI_REG(DPORT_CPU_INTR_FROM_CPU_1_REG, DPORT_CPU_INTR_FROM_CPU_1);
}
}
void arch_sched_broadcast_ipi(void)
{
arch_sched_directed_ipi(IPI_ALL_CPUS_MASK);
}
IRAM_ATTR bool arch_cpu_active(int cpu_num)
{
return cpus_active[cpu_num];
}
#endif /* CONFIG_SMP */
void esp_appcpu_start2(void *entry_point)
{
esp_cpu_unstall(1);
if (!DPORT_GET_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN)) {
DPORT_SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN);
DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_C_REG, DPORT_APPCPU_RUNSTALL);
DPORT_SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_A_REG, DPORT_APPCPU_RESETTING);
DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_A_REG, DPORT_APPCPU_RESETTING);
}
esp_rom_ets_set_appcpu_boot_addr((void *)entry_point);
esp_cpu_reset(1);
}
/* AMP support */
#ifdef CONFIG_SOC_ENABLE_APPCPU
#include "bootloader_flash_priv.h"
#define sys_mmap bootloader_mmap
#define sys_munmap bootloader_munmap
static int load_segment(uint32_t src_addr, uint32_t src_len, uint32_t dst_addr)
{
const uint32_t *data = (const uint32_t *)sys_mmap(src_addr, src_len);
if (!data) {
ets_printf("%s: mmap failed", __func__);
return -1;
}
volatile uint32_t *dst = (volatile uint32_t *)dst_addr;
for (int i = 0; i < src_len / 4; i++) {
dst[i] = data[i];
}
sys_munmap(data);
return 0;
}
int IRAM_ATTR esp_appcpu_image_load(unsigned int hdr_offset, unsigned int *entry_addr)
{
const uint32_t img_off = FIXED_PARTITION_OFFSET(slot0_appcpu_partition);
const uint32_t fa_size = FIXED_PARTITION_SIZE(slot0_appcpu_partition);
const uint8_t fa_id = FIXED_PARTITION_ID(slot0_appcpu_partition);
if (entry_addr == NULL) {
ets_printf("Can't return the entry address. Aborting!\n");
abort();
return -1;
}
uint32_t mcuboot_header[8] = {0};
esp_image_load_header_t image_header = {0};
const uint32_t *data = (const uint32_t *)sys_mmap(img_off, 0x40);
memcpy((void *)&mcuboot_header, data, sizeof(mcuboot_header));
memcpy((void *)&image_header, data + (hdr_offset / sizeof(uint32_t)),
sizeof(esp_image_load_header_t));
sys_munmap(data);
if (image_header.header_magic == ESP_LOAD_HEADER_MAGIC) {
ets_printf("APPCPU image, area id: %d, offset: 0x%x, hdr.off: 0x%x, size: %d kB\n",
fa_id, img_off, hdr_offset, fa_size / 1024);
} else if ((image_header.header_magic & 0xff) == 0xE9) {
ets_printf("ESP image format is not supported\n");
abort();
} else {
ets_printf("Unknown or empty image detected. Aborting!\n");
abort();
}
if (!esp_ptr_in_iram((void *)image_header.iram_dest_addr) ||
!esp_ptr_in_iram((void *)(image_header.iram_dest_addr + image_header.iram_size))) {
ets_printf("IRAM region in load header is not valid. Aborting");
abort();
}
if (!esp_ptr_in_dram((void *)image_header.dram_dest_addr) ||
!esp_ptr_in_dram((void *)(image_header.dram_dest_addr + image_header.dram_size))) {
ets_printf("DRAM region in load header is not valid. Aborting");
abort();
}
if (!esp_ptr_in_iram((void *)image_header.entry_addr)) {
ets_printf("Application entry point (%xh) is not in IRAM. Aborting",
image_header.entry_addr);
abort();
}
ets_printf("IRAM segment: paddr=%08xh, vaddr=%08xh, size=%05xh (%6d) load\n",
(img_off + image_header.iram_flash_offset), image_header.iram_dest_addr,
image_header.iram_size, image_header.iram_size);
load_segment(img_off + image_header.iram_flash_offset, image_header.iram_size,
image_header.iram_dest_addr);
ets_printf("DRAM segment: paddr=%08xh, vaddr=%08xh, size=%05xh (%6d) load\n",
(img_off + image_header.dram_flash_offset), image_header.dram_dest_addr,
image_header.dram_size, image_header.dram_size);
load_segment(img_off + image_header.dram_flash_offset, image_header.dram_size,
image_header.dram_dest_addr);
ets_printf("Application start=%xh\n\n", image_header.entry_addr);
esp_rom_uart_tx_wait_idle(0);
assert(entry_addr != NULL);
*entry_addr = image_header.entry_addr;
return 0;
}
void esp_appcpu_image_stop(void)
{
esp_cpu_stall(1);
}
void esp_appcpu_image_start(unsigned int hdr_offset)
{
static int started;
unsigned int entry_addr = 0;
if (started) {
printk("APPCPU already started.\r\n");
return;
}
/* Input image meta header, output appcpu entry point */
esp_appcpu_image_load(hdr_offset, &entry_addr);
esp_appcpu_start2((void *)entry_addr);
}
int esp_appcpu_init(void)
{
/* Load APPCPU image using image header offset
* (skipping the MCUBoot header)
*/
esp_appcpu_image_start(0x20);
return 0;
}
#if !defined(CONFIG_MCUBOOT)
extern int esp_appcpu_init(void);
SYS_INIT(esp_appcpu_init, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
#endif
#endif /* CONFIG_SOC_ENABLE_APPCPU */