Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

890 lines
25 KiB

/*
* Copyright (c) 2017 - 2018, Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/spi/rtio.h>
#include <zephyr/cache.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/device_runtime.h>
#include <zephyr/drivers/clock_control/nrf_clock_control.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/mem_mgmt/mem_attr.h>
#include <soc.h>
#ifdef CONFIG_SOC_NRF54H20_GPD
#include <nrf/gpd.h>
#endif
#ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
#include <nrfx_ppi.h>
#endif
#ifdef CONFIG_SOC_NRF5340_CPUAPP
#include <hal/nrf_clock.h>
#endif
#include <nrfx_spim.h>
#include <string.h>
#include <zephyr/linker/devicetree_regions.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(spi_nrfx_spim, CONFIG_SPI_LOG_LEVEL);
#include "spi_context.h"
#include "spi_nrfx_common.h"
#if defined(CONFIG_SOC_NRF52832) && !defined(CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58)
#error This driver is not available by default for nRF52832 because of Product Anomaly 58 \
(SPIM: An additional byte is clocked out when RXD.MAXCNT == 1 and TXD.MAXCNT <= 1). \
Use CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58=y to override this limitation.
#endif
#if (CONFIG_SPI_NRFX_RAM_BUFFER_SIZE > 0)
#define SPI_BUFFER_IN_RAM 1
#endif
#if defined(CONFIG_CLOCK_CONTROL_NRF2_GLOBAL_HSFLL)
#define SPIM_REQUESTS_CLOCK(node) \
DT_NODE_HAS_COMPAT(DT_NODELABEL(DT_CLOCKS_CTLR(node)), nordic_nrf_hsfll_global)
#define SPIM_REQUESTS_CLOCK_OR(node) SPIM_REQUESTS_CLOCK(node) ||
#if (DT_FOREACH_STATUS_OKAY(nordic_nrf_spim, SPIM_REQUESTS_CLOCK_OR) 0)
#define USE_CLOCK_REQUESTS 1
/* If fast instances are used then system managed device PM cannot be used because
* it may call PM actions from locked context and fast SPIM PM actions can only be
* called from a thread context.
*/
BUILD_ASSERT(!IS_ENABLED(CONFIG_PM_DEVICE_SYSTEM_MANAGED));
#endif
#else
#define SPIM_REQUESTS_CLOCK(idx) 0
#endif
struct spi_nrfx_data {
struct spi_context ctx;
const struct device *dev;
size_t chunk_len;
bool busy;
bool initialized;
#ifdef SPI_BUFFER_IN_RAM
uint8_t *tx_buffer;
uint8_t *rx_buffer;
#endif
#ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
bool anomaly_58_workaround_active;
uint8_t ppi_ch;
uint8_t gpiote_ch;
#endif
#ifdef USE_CLOCK_REQUESTS
bool clock_requested;
#endif
};
struct spi_nrfx_config {
nrfx_spim_t spim;
uint32_t max_freq;
nrfx_spim_config_t def_config;
void (*irq_connect)(void);
uint16_t max_chunk_len;
const struct pinctrl_dev_config *pcfg;
#ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
bool anomaly_58_workaround;
#endif
uint32_t wake_pin;
nrfx_gpiote_t wake_gpiote;
#ifdef CONFIG_DCACHE
uint32_t mem_attr;
#endif
#ifdef USE_CLOCK_REQUESTS
const struct device *clk_dev;
struct nrf_clock_spec clk_spec;
#endif
};
static void event_handler(const nrfx_spim_evt_t *p_event, void *p_context);
static inline int request_clock(const struct device *dev)
{
#ifdef USE_CLOCK_REQUESTS
struct spi_nrfx_data *dev_data = dev->data;
const struct spi_nrfx_config *dev_config = dev->config;
int error;
if (!dev_config->clk_dev) {
return 0;
}
error = nrf_clock_control_request_sync(
dev_config->clk_dev, &dev_config->clk_spec,
K_MSEC(CONFIG_SPI_COMPLETION_TIMEOUT_TOLERANCE));
if (error < 0) {
LOG_ERR("Failed to request clock: %d", error);
return error;
}
dev_data->clock_requested = true;
#else
ARG_UNUSED(dev);
#endif
return 0;
}
static inline void release_clock(const struct device *dev)
{
#ifdef USE_CLOCK_REQUESTS
struct spi_nrfx_data *dev_data = dev->data;
const struct spi_nrfx_config *dev_config = dev->config;
if (!dev_data->clock_requested) {
return;
}
dev_data->clock_requested = false;
nrf_clock_control_release(dev_config->clk_dev, &dev_config->clk_spec);
#else
ARG_UNUSED(dev);
#endif
}
static inline void finalize_spi_transaction(const struct device *dev, bool deactivate_cs)
{
struct spi_nrfx_data *dev_data = dev->data;
const struct spi_nrfx_config *dev_config = dev->config;
void *reg = dev_config->spim.p_reg;
if (deactivate_cs) {
spi_context_cs_control(&dev_data->ctx, false);
}
if (NRF_SPIM_IS_320MHZ_SPIM(reg) && !(dev_data->ctx.config->operation & SPI_HOLD_ON_CS)) {
nrfy_spim_disable(reg);
}
if (!IS_ENABLED(CONFIG_PM_DEVICE_RUNTIME)) {
release_clock(dev);
}
pm_device_runtime_put_async(dev, K_NO_WAIT);
}
static inline uint32_t get_nrf_spim_frequency(uint32_t frequency)
{
/* Get the highest supported frequency not exceeding the requested one.
*/
if (frequency >= MHZ(32) && (NRF_SPIM_HAS_32_MHZ_FREQ || NRF_SPIM_HAS_PRESCALER)) {
return MHZ(32);
} else if (frequency >= MHZ(16) && (NRF_SPIM_HAS_16_MHZ_FREQ || NRF_SPIM_HAS_PRESCALER)) {
return MHZ(16);
} else if (frequency >= MHZ(8)) {
return MHZ(8);
} else if (frequency >= MHZ(4)) {
return MHZ(4);
} else if (frequency >= MHZ(2)) {
return MHZ(2);
} else if (frequency >= MHZ(1)) {
return MHZ(1);
} else if (frequency >= KHZ(500)) {
return KHZ(500);
} else if (frequency >= KHZ(250)) {
return KHZ(250);
} else {
return KHZ(125);
}
}
static inline nrf_spim_mode_t get_nrf_spim_mode(uint16_t operation)
{
if (SPI_MODE_GET(operation) & SPI_MODE_CPOL) {
if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) {
return NRF_SPIM_MODE_3;
} else {
return NRF_SPIM_MODE_2;
}
} else {
if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) {
return NRF_SPIM_MODE_1;
} else {
return NRF_SPIM_MODE_0;
}
}
}
static inline nrf_spim_bit_order_t get_nrf_spim_bit_order(uint16_t operation)
{
if (operation & SPI_TRANSFER_LSB) {
return NRF_SPIM_BIT_ORDER_LSB_FIRST;
} else {
return NRF_SPIM_BIT_ORDER_MSB_FIRST;
}
}
static int configure(const struct device *dev,
const struct spi_config *spi_cfg)
{
struct spi_nrfx_data *dev_data = dev->data;
const struct spi_nrfx_config *dev_config = dev->config;
struct spi_context *ctx = &dev_data->ctx;
uint32_t max_freq = dev_config->max_freq;
nrfx_spim_config_t config;
nrfx_err_t result;
uint32_t sck_pin;
if (dev_data->initialized && spi_context_configured(ctx, spi_cfg)) {
/* Already configured. No need to do it again. */
return 0;
}
if (spi_cfg->operation & SPI_HALF_DUPLEX) {
LOG_ERR("Half-duplex not supported");
return -ENOTSUP;
}
if (SPI_OP_MODE_GET(spi_cfg->operation) != SPI_OP_MODE_MASTER) {
LOG_ERR("Slave mode is not supported on %s", dev->name);
return -EINVAL;
}
if (spi_cfg->operation & SPI_MODE_LOOP) {
LOG_ERR("Loopback mode is not supported");
return -EINVAL;
}
if (IS_ENABLED(CONFIG_SPI_EXTENDED_MODES) &&
(spi_cfg->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) {
LOG_ERR("Only single line mode is supported");
return -EINVAL;
}
if (SPI_WORD_SIZE_GET(spi_cfg->operation) != 8) {
LOG_ERR("Word sizes other than 8 bits are not supported");
return -EINVAL;
}
if (spi_cfg->frequency < 125000) {
LOG_ERR("Frequencies lower than 125 kHz are not supported");
return -EINVAL;
}
#if defined(CONFIG_SOC_NRF5340_CPUAPP)
/* On nRF5340, the 32 Mbps speed is supported by the application core
* when it is running at 128 MHz (see the Timing specifications section
* in the nRF5340 PS).
*/
if (max_freq > 16000000 &&
nrf_clock_hfclk_div_get(NRF_CLOCK) != NRF_CLOCK_HFCLK_DIV_1) {
max_freq = 16000000;
}
#endif
config = dev_config->def_config;
/* Limit the frequency to that supported by the SPIM instance. */
config.frequency = get_nrf_spim_frequency(MIN(spi_cfg->frequency,
max_freq));
config.mode = get_nrf_spim_mode(spi_cfg->operation);
config.bit_order = get_nrf_spim_bit_order(spi_cfg->operation);
sck_pin = nrfy_spim_sck_pin_get(dev_config->spim.p_reg);
if (sck_pin != NRF_SPIM_PIN_NOT_CONNECTED) {
nrfy_gpio_pin_write(sck_pin, spi_cfg->operation & SPI_MODE_CPOL ? 1 : 0);
}
if (dev_data->initialized) {
nrfx_spim_uninit(&dev_config->spim);
dev_data->initialized = false;
}
result = nrfx_spim_init(&dev_config->spim, &config,
event_handler, (void *)dev);
if (result != NRFX_SUCCESS) {
LOG_ERR("Failed to initialize nrfx driver: %08x", result);
return -EIO;
}
dev_data->initialized = true;
ctx->config = spi_cfg;
return 0;
}
#ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
static const nrfx_gpiote_t gpiote = NRFX_GPIOTE_INSTANCE(0);
/*
* Brief Workaround for transmitting 1 byte with SPIM.
*
* Derived from the setup_workaround_for_ftpan_58() function from
* the nRF52832 Rev 1 Errata v1.6 document anomaly 58 workaround.
*
* Warning Must not be used when transmitting multiple bytes.
*
* Warning After this workaround is used, the user must reset the PPI
* channel and the GPIOTE channel before attempting to transmit multiple
* bytes.
*/
static void anomaly_58_workaround_setup(const struct device *dev)
{
struct spi_nrfx_data *dev_data = dev->data;
const struct spi_nrfx_config *dev_config = dev->config;
NRF_SPIM_Type *spim = dev_config->spim.p_reg;
uint32_t ppi_ch = dev_data->ppi_ch;
uint32_t gpiote_ch = dev_data->gpiote_ch;
uint32_t eep = (uint32_t)&gpiote.p_reg->EVENTS_IN[gpiote_ch];
uint32_t tep = (uint32_t)&spim->TASKS_STOP;
dev_data->anomaly_58_workaround_active = true;
/* Create an event when SCK toggles */
nrf_gpiote_event_configure(gpiote.p_reg, gpiote_ch, spim->PSEL.SCK,
GPIOTE_CONFIG_POLARITY_Toggle);
nrf_gpiote_event_enable(gpiote.p_reg, gpiote_ch);
/* Stop the spim instance when SCK toggles */
nrf_ppi_channel_endpoint_setup(NRF_PPI, ppi_ch, eep, tep);
nrf_ppi_channel_enable(NRF_PPI, ppi_ch);
/* The spim instance cannot be stopped mid-byte, so it will finish
* transmitting the first byte and then stop. Effectively ensuring
* that only 1 byte is transmitted.
*/
}
static void anomaly_58_workaround_clear(struct spi_nrfx_data *dev_data)
{
uint32_t ppi_ch = dev_data->ppi_ch;
uint32_t gpiote_ch = dev_data->gpiote_ch;
if (dev_data->anomaly_58_workaround_active) {
nrf_ppi_channel_disable(NRF_PPI, ppi_ch);
nrf_gpiote_task_disable(gpiote.p_reg, gpiote_ch);
dev_data->anomaly_58_workaround_active = false;
}
}
static int anomaly_58_workaround_init(const struct device *dev)
{
struct spi_nrfx_data *dev_data = dev->data;
const struct spi_nrfx_config *dev_config = dev->config;
nrfx_err_t err_code;
dev_data->anomaly_58_workaround_active = false;
if (dev_config->anomaly_58_workaround) {
err_code = nrfx_ppi_channel_alloc(&dev_data->ppi_ch);
if (err_code != NRFX_SUCCESS) {
LOG_ERR("Failed to allocate PPI channel");
return -ENODEV;
}
err_code = nrfx_gpiote_channel_alloc(&gpiote, &dev_data->gpiote_ch);
if (err_code != NRFX_SUCCESS) {
LOG_ERR("Failed to allocate GPIOTE channel");
return -ENODEV;
}
LOG_DBG("PAN 58 workaround enabled for %s: ppi %u, gpiote %u",
dev->name, dev_data->ppi_ch, dev_data->gpiote_ch);
}
return 0;
}
#endif
static void finish_transaction(const struct device *dev, int error)
{
struct spi_nrfx_data *dev_data = dev->data;
struct spi_context *ctx = &dev_data->ctx;
LOG_DBG("Transaction finished with status %d", error);
spi_context_complete(ctx, dev, error);
dev_data->busy = false;
if (dev_data->ctx.config->operation & SPI_LOCK_ON) {
/* Keep device resumed until call to spi_release() */
(void)pm_device_runtime_get(dev);
}
finalize_spi_transaction(dev, true);
}
static void transfer_next_chunk(const struct device *dev)
{
struct spi_nrfx_data *dev_data = dev->data;
const struct spi_nrfx_config *dev_config = dev->config;
struct spi_context *ctx = &dev_data->ctx;
int error = 0;
size_t chunk_len = spi_context_max_continuous_chunk(ctx);
if (chunk_len > 0) {
nrfx_spim_xfer_desc_t xfer;
nrfx_err_t result;
const uint8_t *tx_buf = ctx->tx_buf;
uint8_t *rx_buf = ctx->rx_buf;
if (chunk_len > dev_config->max_chunk_len) {
chunk_len = dev_config->max_chunk_len;
}
#ifdef SPI_BUFFER_IN_RAM
if (spi_context_tx_buf_on(ctx) &&
!nrf_dma_accessible_check(&dev_config->spim.p_reg, tx_buf)) {
if (chunk_len > CONFIG_SPI_NRFX_RAM_BUFFER_SIZE) {
chunk_len = CONFIG_SPI_NRFX_RAM_BUFFER_SIZE;
}
memcpy(dev_data->tx_buffer, tx_buf, chunk_len);
#ifdef CONFIG_DCACHE
if (dev_config->mem_attr & DT_MEM_CACHEABLE) {
sys_cache_data_flush_range(dev_data->tx_buffer, chunk_len);
}
#endif
tx_buf = dev_data->tx_buffer;
}
if (spi_context_rx_buf_on(ctx) &&
!nrf_dma_accessible_check(&dev_config->spim.p_reg, rx_buf)) {
if (chunk_len > CONFIG_SPI_NRFX_RAM_BUFFER_SIZE) {
chunk_len = CONFIG_SPI_NRFX_RAM_BUFFER_SIZE;
}
rx_buf = dev_data->rx_buffer;
}
#endif
dev_data->chunk_len = chunk_len;
xfer.p_tx_buffer = tx_buf;
xfer.tx_length = spi_context_tx_buf_on(ctx) ? chunk_len : 0;
xfer.p_rx_buffer = rx_buf;
xfer.rx_length = spi_context_rx_buf_on(ctx) ? chunk_len : 0;
#ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
if (xfer.rx_length == 1 && xfer.tx_length <= 1) {
if (dev_config->anomaly_58_workaround) {
anomaly_58_workaround_setup(dev);
} else {
LOG_WRN("Transaction aborted since it would trigger "
"nRF52832 PAN 58");
error = -EIO;
}
}
#endif
if (error == 0) {
result = nrfx_spim_xfer(&dev_config->spim, &xfer, 0);
if (result == NRFX_SUCCESS) {
return;
}
error = -EIO;
#ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
anomaly_58_workaround_clear(dev_data);
#endif
}
}
finish_transaction(dev, error);
}
static void event_handler(const nrfx_spim_evt_t *p_event, void *p_context)
{
const struct device *dev = p_context;
struct spi_nrfx_data *dev_data = dev->data;
#ifdef CONFIG_DCACHE
const struct spi_nrfx_config *dev_config = dev->config;
#endif
if (p_event->type == NRFX_SPIM_EVENT_DONE) {
/* Chunk length is set to 0 when a transaction is aborted
* due to a timeout.
*/
if (dev_data->chunk_len == 0) {
finish_transaction(dev_data->dev, -ETIMEDOUT);
return;
}
#ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
anomaly_58_workaround_clear(dev_data);
#endif
#ifdef SPI_BUFFER_IN_RAM
if (spi_context_rx_buf_on(&dev_data->ctx) &&
p_event->xfer_desc.p_rx_buffer != NULL &&
p_event->xfer_desc.p_rx_buffer != dev_data->ctx.rx_buf) {
#ifdef CONFIG_DCACHE
if (dev_config->mem_attr & DT_MEM_CACHEABLE) {
sys_cache_data_invd_range(dev_data->rx_buffer, dev_data->chunk_len);
}
#endif
(void)memcpy(dev_data->ctx.rx_buf,
dev_data->rx_buffer,
dev_data->chunk_len);
}
#endif
spi_context_update_tx(&dev_data->ctx, 1, dev_data->chunk_len);
spi_context_update_rx(&dev_data->ctx, 1, dev_data->chunk_len);
transfer_next_chunk(dev_data->dev);
}
}
static int transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
spi_callback_t cb,
void *userdata)
{
struct spi_nrfx_data *dev_data = dev->data;
const struct spi_nrfx_config *dev_config = dev->config;
void *reg = dev_config->spim.p_reg;
int error;
pm_device_runtime_get(dev);
spi_context_lock(&dev_data->ctx, asynchronous, cb, userdata, spi_cfg);
error = configure(dev, spi_cfg);
if (error == 0 && !IS_ENABLED(CONFIG_PM_DEVICE_RUNTIME)) {
error = request_clock(dev);
}
if (error == 0) {
dev_data->busy = true;
if (dev_config->wake_pin != WAKE_PIN_NOT_USED) {
error = spi_nrfx_wake_request(&dev_config->wake_gpiote,
dev_config->wake_pin);
if (error == -ETIMEDOUT) {
LOG_WRN("Waiting for WAKE acknowledgment timed out");
/* If timeout occurs, try to perform the transfer
* anyway, just in case the slave device was unable
* to signal that it was already awaken and prepared
* for the transfer.
*/
}
}
spi_context_buffers_setup(&dev_data->ctx, tx_bufs, rx_bufs, 1);
if (NRF_SPIM_IS_320MHZ_SPIM(reg)) {
nrfy_spim_enable(reg);
}
spi_context_cs_control(&dev_data->ctx, true);
transfer_next_chunk(dev);
error = spi_context_wait_for_completion(&dev_data->ctx);
if (error == -ETIMEDOUT) {
/* Set the chunk length to 0 so that event_handler()
* knows that the transaction timed out and is to be
* aborted.
*/
dev_data->chunk_len = 0;
/* Abort the current transfer by deinitializing
* the nrfx driver.
*/
nrfx_spim_uninit(&dev_config->spim);
dev_data->initialized = false;
/* Make sure the transaction is finished (it may be
* already finished if it actually did complete before
* the nrfx driver was deinitialized).
*/
finish_transaction(dev, -ETIMEDOUT);
/* Clean up the driver state. */
#ifdef CONFIG_MULTITHREADING
k_sem_reset(&dev_data->ctx.sync);
#else
dev_data->ctx.ready = 0;
#endif /* CONFIG_MULTITHREADING */
#ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
anomaly_58_workaround_clear(dev_data);
#endif
} else if (error) {
finalize_spi_transaction(dev, true);
}
} else {
pm_device_runtime_put(dev);
}
spi_context_release(&dev_data->ctx, error);
return error;
}
static int spi_nrfx_transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_nrfx_transceive_async(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata);
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_nrfx_release(const struct device *dev,
const struct spi_config *spi_cfg)
{
struct spi_nrfx_data *dev_data = dev->data;
if (!spi_context_configured(&dev_data->ctx, spi_cfg)) {
return -EINVAL;
}
if (dev_data->busy) {
return -EBUSY;
}
spi_context_unlock_unconditionally(&dev_data->ctx);
finalize_spi_transaction(dev, false);
return 0;
}
static DEVICE_API(spi, spi_nrfx_driver_api) = {
.transceive = spi_nrfx_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_nrfx_transceive_async,
#endif
#ifdef CONFIG_SPI_RTIO
.iodev_submit = spi_rtio_iodev_default_submit,
#endif
.release = spi_nrfx_release,
};
static int spim_resume(const struct device *dev)
{
const struct spi_nrfx_config *dev_config = dev->config;
struct spi_nrfx_data *dev_data = dev->data;
(void)pinctrl_apply_state(dev_config->pcfg, PINCTRL_STATE_DEFAULT);
/* nrfx_spim_init() will be called at configuration before
* the next transfer.
*/
if (spi_context_cs_get_all(&dev_data->ctx)) {
return -EAGAIN;
}
#ifdef CONFIG_SOC_NRF54H20_GPD
nrf_gpd_retain_pins_set(dev_config->pcfg, false);
#endif
return IS_ENABLED(CONFIG_PM_DEVICE_RUNTIME) ? request_clock(dev) : 0;
}
static void spim_suspend(const struct device *dev)
{
const struct spi_nrfx_config *dev_config = dev->config;
struct spi_nrfx_data *dev_data = dev->data;
if (dev_data->initialized) {
nrfx_spim_uninit(&dev_config->spim);
dev_data->initialized = false;
}
if (IS_ENABLED(CONFIG_PM_DEVICE_RUNTIME)) {
release_clock(dev);
}
spi_context_cs_put_all(&dev_data->ctx);
#ifdef CONFIG_SOC_NRF54H20_GPD
nrf_gpd_retain_pins_set(dev_config->pcfg, true);
#endif
(void)pinctrl_apply_state(dev_config->pcfg, PINCTRL_STATE_SLEEP);
}
static int spim_nrfx_pm_action(const struct device *dev, enum pm_device_action action)
{
if (action == PM_DEVICE_ACTION_RESUME) {
return spim_resume(dev);
} else if (IS_ENABLED(CONFIG_PM_DEVICE) && (action == PM_DEVICE_ACTION_SUSPEND)) {
spim_suspend(dev);
} else {
return -ENOTSUP;
}
return 0;
}
static int spi_nrfx_init(const struct device *dev)
{
const struct spi_nrfx_config *dev_config = dev->config;
struct spi_nrfx_data *dev_data = dev->data;
int err;
err = pinctrl_apply_state(dev_config->pcfg, PINCTRL_STATE_DEFAULT);
if (err < 0) {
return err;
}
if (dev_config->wake_pin != WAKE_PIN_NOT_USED) {
err = spi_nrfx_wake_init(&dev_config->wake_gpiote, dev_config->wake_pin);
if (err == -ENODEV) {
LOG_ERR("Failed to allocate GPIOTE channel for WAKE");
return err;
}
if (err == -EIO) {
LOG_ERR("Failed to configure WAKE pin");
return err;
}
}
dev_config->irq_connect();
err = spi_context_cs_configure_all(&dev_data->ctx);
if (err < 0) {
return err;
}
spi_context_unlock_unconditionally(&dev_data->ctx);
#ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
err = anomaly_58_workaround_init(dev);
if (err < 0) {
return err;
}
#endif
return pm_device_driver_init(dev, spim_nrfx_pm_action);
}
/*
* We use NODELABEL here because the nrfx API requires us to call
* functions which are named according to SoC peripheral instance
* being operated on. Since DT_INST() makes no guarantees about that,
* it won't work.
*/
#define SPIM(idx) DT_NODELABEL(spi##idx)
#define SPIM_PROP(idx, prop) DT_PROP(SPIM(idx), prop)
#define SPIM_HAS_PROP(idx, prop) DT_NODE_HAS_PROP(SPIM(idx), prop)
#define SPIM_MEM_REGION(idx) DT_PHANDLE(SPIM(idx), memory_regions)
#define SPI_NRFX_SPIM_EXTENDED_CONFIG(idx) \
IF_ENABLED(NRFX_SPIM_EXTENDED_ENABLED, \
(.dcx_pin = NRF_SPIM_PIN_NOT_CONNECTED, \
COND_CODE_1(SPIM_PROP(idx, rx_delay_supported), \
(.rx_delay = SPIM_PROP(idx, rx_delay),), \
()) \
))
#define SPIM_GET_MEM_ATTR(idx) \
COND_CODE_1(SPIM_HAS_PROP(idx, memory_regions), \
(COND_CODE_1(DT_NODE_HAS_PROP(SPIM_MEM_REGION(idx), zephyr_memory_attr), \
(DT_PROP(SPIM_MEM_REGION(idx), zephyr_memory_attr)), \
(0))), \
(0))
/* Fast instances depend on the global HSFLL clock controller (as they need
* to request the highest frequency from it to operate correctly), so they
* must be initialized after that controller driver, hence the default SPI
* initialization priority may be too early for them.
*/
#if defined(CONFIG_CLOCK_CONTROL_NRF2_GLOBAL_HSFLL_INIT_PRIORITY) && \
CONFIG_SPI_INIT_PRIORITY < CONFIG_CLOCK_CONTROL_NRF2_GLOBAL_HSFLL_INIT_PRIORITY
#define SPIM_INIT_PRIORITY(idx) \
COND_CODE_1(SPIM_REQUESTS_CLOCK(idx), \
(UTIL_INC(CONFIG_CLOCK_CONTROL_NRF2_GLOBAL_HSFLL_INIT_PRIORITY)), \
(CONFIG_SPI_INIT_PRIORITY))
#else
#define SPIM_INIT_PRIORITY(idx) CONFIG_SPI_INIT_PRIORITY
#endif
#define SPI_NRFX_SPIM_DEFINE(idx) \
NRF_DT_CHECK_NODE_HAS_PINCTRL_SLEEP(SPIM(idx)); \
static void irq_connect##idx(void) \
{ \
IRQ_CONNECT(DT_IRQN(SPIM(idx)), DT_IRQ(SPIM(idx), priority), \
nrfx_isr, nrfx_spim_##idx##_irq_handler, 0); \
} \
IF_ENABLED(SPI_BUFFER_IN_RAM, \
(static uint8_t spim_##idx##_tx_buffer \
[CONFIG_SPI_NRFX_RAM_BUFFER_SIZE] \
SPIM_MEMORY_SECTION(idx); \
static uint8_t spim_##idx##_rx_buffer \
[CONFIG_SPI_NRFX_RAM_BUFFER_SIZE] \
SPIM_MEMORY_SECTION(idx);)) \
static struct spi_nrfx_data spi_##idx##_data = { \
IF_ENABLED(CONFIG_MULTITHREADING, \
(SPI_CONTEXT_INIT_LOCK(spi_##idx##_data, ctx),)) \
IF_ENABLED(CONFIG_MULTITHREADING, \
(SPI_CONTEXT_INIT_SYNC(spi_##idx##_data, ctx),)) \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(SPIM(idx), ctx) \
IF_ENABLED(SPI_BUFFER_IN_RAM, \
(.tx_buffer = spim_##idx##_tx_buffer, \
.rx_buffer = spim_##idx##_rx_buffer,)) \
.dev = DEVICE_DT_GET(SPIM(idx)), \
.busy = false, \
}; \
PINCTRL_DT_DEFINE(SPIM(idx)); \
static const struct spi_nrfx_config spi_##idx##z_config = { \
.spim = { \
.p_reg = (NRF_SPIM_Type *)DT_REG_ADDR(SPIM(idx)), \
.drv_inst_idx = NRFX_SPIM##idx##_INST_IDX, \
}, \
.max_freq = SPIM_PROP(idx, max_frequency), \
.def_config = { \
.skip_gpio_cfg = true, \
.skip_psel_cfg = true, \
.ss_pin = NRF_SPIM_PIN_NOT_CONNECTED, \
.orc = SPIM_PROP(idx, overrun_character), \
SPI_NRFX_SPIM_EXTENDED_CONFIG(idx) \
}, \
.irq_connect = irq_connect##idx, \
.pcfg = PINCTRL_DT_DEV_CONFIG_GET(SPIM(idx)), \
.max_chunk_len = BIT_MASK(SPIM_PROP(idx, easydma_maxcnt_bits)),\
COND_CODE_1(CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58, \
(.anomaly_58_workaround = \
SPIM_PROP(idx, anomaly_58_workaround),), \
()) \
.wake_pin = NRF_DT_GPIOS_TO_PSEL_OR(SPIM(idx), wake_gpios, \
WAKE_PIN_NOT_USED), \
.wake_gpiote = WAKE_GPIOTE_INSTANCE(SPIM(idx)), \
IF_ENABLED(CONFIG_DCACHE, \
(.mem_attr = SPIM_GET_MEM_ATTR(idx),)) \
IF_ENABLED(USE_CLOCK_REQUESTS, \
(.clk_dev = SPIM_REQUESTS_CLOCK(idx) \
? DEVICE_DT_GET(DT_CLOCKS_CTLR(SPIM(idx))) \
: NULL, \
.clk_spec = { \
.frequency = NRF_CLOCK_CONTROL_FREQUENCY_MAX, \
},)) \
}; \
BUILD_ASSERT(!SPIM_HAS_PROP(idx, wake_gpios) || \
!(DT_GPIO_FLAGS(SPIM(idx), wake_gpios) & GPIO_ACTIVE_LOW),\
"WAKE line must be configured as active high"); \
PM_DEVICE_DT_DEFINE(SPIM(idx), spim_nrfx_pm_action); \
SPI_DEVICE_DT_DEFINE(SPIM(idx), \
spi_nrfx_init, \
PM_DEVICE_DT_GET(SPIM(idx)), \
&spi_##idx##_data, \
&spi_##idx##z_config, \
POST_KERNEL, SPIM_INIT_PRIORITY(idx), \
&spi_nrfx_driver_api)
#define SPIM_MEMORY_SECTION(idx) \
COND_CODE_1(SPIM_HAS_PROP(idx, memory_regions), \
(__attribute__((__section__(LINKER_DT_NODE_REGION_NAME( \
SPIM_MEM_REGION(idx)))))), \
())
#define COND_NRF_SPIM_DEVICE(unused, prefix, i, _) \
IF_ENABLED(CONFIG_HAS_HW_NRF_SPIM##prefix##i, (SPI_NRFX_SPIM_DEFINE(prefix##i);))
NRFX_FOREACH_PRESENT(SPIM, COND_NRF_SPIM_DEVICE, (), (), _)