You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
401 lines
10 KiB
401 lines
10 KiB
/* |
|
* Copyright (c) 2010-2014 Wind River Systems, Inc. |
|
* |
|
* Licensed under the Apache License, Version 2.0 (the "License"); |
|
* you may not use this file except in compliance with the License. |
|
* You may obtain a copy of the License at |
|
* |
|
* http://www.apache.org/licenses/LICENSE-2.0 |
|
* |
|
* Unless required by applicable law or agreed to in writing, software |
|
* distributed under the License is distributed on an "AS IS" BASIS, |
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
* See the License for the specific language governing permissions and |
|
* limitations under the License. |
|
*/ |
|
|
|
/** |
|
* @file |
|
* @brief Kernel initialization module |
|
* |
|
* This module contains routines that are used to initialize the nanokernel. |
|
*/ |
|
|
|
#include <zephyr.h> |
|
#include <offsets_short.h> |
|
#include <kernel.h> |
|
#include <misc/printk.h> |
|
#include <drivers/rand32.h> |
|
#include <sections.h> |
|
#include <toolchain.h> |
|
#include <kernel_structs.h> |
|
#include <device.h> |
|
#include <init.h> |
|
#include <linker-defs.h> |
|
#include <ksched.h> |
|
#include <version.h> |
|
#include <string.h> |
|
|
|
/* kernel build timestamp items */ |
|
|
|
#define BUILD_TIMESTAMP "BUILD: " __DATE__ " " __TIME__ |
|
|
|
#ifdef CONFIG_BUILD_TIMESTAMP |
|
const char * const build_timestamp = BUILD_TIMESTAMP; |
|
#endif |
|
|
|
/* boot banner items */ |
|
|
|
#define BOOT_BANNER "BOOTING ZEPHYR OS v" KERNEL_VERSION_STRING |
|
|
|
#if !defined(CONFIG_BOOT_BANNER) |
|
#define PRINT_BOOT_BANNER() do { } while (0) |
|
#elif !defined(CONFIG_BUILD_TIMESTAMP) |
|
#define PRINT_BOOT_BANNER() printk("***** " BOOT_BANNER " *****\n") |
|
#else |
|
#define PRINT_BOOT_BANNER() \ |
|
printk("***** " BOOT_BANNER " - %s *****\n", build_timestamp) |
|
#endif |
|
|
|
/* boot time measurement items */ |
|
|
|
#ifdef CONFIG_BOOT_TIME_MEASUREMENT |
|
uint64_t __noinit __start_tsc; /* timestamp when kernel starts */ |
|
uint64_t __noinit __main_tsc; /* timestamp when main task starts */ |
|
uint64_t __noinit __idle_tsc; /* timestamp when CPU goes idle */ |
|
#endif |
|
|
|
/* init/main and idle threads */ |
|
|
|
#define IDLE_STACK_SIZE CONFIG_IDLE_STACK_SIZE |
|
|
|
#if CONFIG_MAIN_STACK_SIZE & (STACK_ALIGN - 1) |
|
#error "MAIN_STACK_SIZE must be a multiple of the stack alignment" |
|
#endif |
|
|
|
#if IDLE_STACK_SIZE & (STACK_ALIGN - 1) |
|
#error "IDLE_STACK_SIZE must be a multiple of the stack alignment" |
|
#endif |
|
|
|
/* Some projects may specify their main thread and parameters in the |
|
* MDEF file. In this case, we need to use the stack size specified there |
|
* and not in Kconfig |
|
*/ |
|
#if defined(MDEF_MAIN_STACK_SIZE) && \ |
|
(MDEF_MAIN_STACK_SIZE > CONFIG_MAIN_STACK_SIZE) |
|
#define MAIN_STACK_SIZE MDEF_MAIN_STACK_SIZE |
|
#else |
|
#define MAIN_STACK_SIZE CONFIG_MAIN_STACK_SIZE |
|
#endif |
|
|
|
char __noinit __stack _main_stack[MAIN_STACK_SIZE]; |
|
char __noinit __stack _idle_stack[IDLE_STACK_SIZE]; |
|
|
|
k_tid_t const _main_thread = (k_tid_t)_main_stack; |
|
k_tid_t const _idle_thread = (k_tid_t)_idle_stack; |
|
|
|
/* |
|
* storage space for the interrupt stack |
|
* |
|
* Note: This area is used as the system stack during nanokernel initialization, |
|
* since the nanokernel hasn't yet set up its own stack areas. The dual |
|
* purposing of this area is safe since interrupts are disabled until the |
|
* nanokernel context switches to the background (or idle) task. |
|
*/ |
|
#if CONFIG_ISR_STACK_SIZE & (STACK_ALIGN - 1) |
|
#error "ISR_STACK_SIZE must be a multiple of the stack alignment" |
|
#endif |
|
char __noinit __stack _interrupt_stack[CONFIG_ISR_STACK_SIZE]; |
|
|
|
#ifdef CONFIG_SYS_CLOCK_EXISTS |
|
#include <misc/dlist.h> |
|
#define initialize_timeouts() do { \ |
|
sys_dlist_init(&_timeout_q); \ |
|
} while ((0)) |
|
#else |
|
#define initialize_timeouts() do { } while ((0)) |
|
#endif |
|
|
|
extern void idle(void *unused1, void *unused2, void *unused3); |
|
|
|
/** |
|
* |
|
* @brief Clear BSS |
|
* |
|
* This routine clears the BSS region, so all bytes are 0. |
|
* |
|
* @return N/A |
|
*/ |
|
void _bss_zero(void) |
|
{ |
|
memset(&__bss_start, 0, |
|
((uint32_t) &__bss_end - (uint32_t) &__bss_start)); |
|
} |
|
|
|
|
|
#ifdef CONFIG_XIP |
|
/** |
|
* |
|
* @brief Copy the data section from ROM to RAM |
|
* |
|
* This routine copies the data section from ROM to RAM. |
|
* |
|
* @return N/A |
|
*/ |
|
void _data_copy(void) |
|
{ |
|
memcpy(&__data_ram_start, &__data_rom_start, |
|
((uint32_t) &__data_ram_end - (uint32_t) &__data_ram_start)); |
|
} |
|
#endif |
|
|
|
/** |
|
* |
|
* @brief Mainline for nanokernel's background task |
|
* |
|
* This routine completes kernel initialization by invoking the remaining |
|
* init functions, then invokes application's main() routine. |
|
* |
|
* @return N/A |
|
*/ |
|
static void _main(void *unused1, void *unused2, void *unused3) |
|
{ |
|
ARG_UNUSED(unused1); |
|
ARG_UNUSED(unused2); |
|
ARG_UNUSED(unused3); |
|
|
|
_sys_device_do_config_level(_SYS_INIT_LEVEL_POST_KERNEL); |
|
|
|
/* These 3 are deprecated */ |
|
_sys_device_do_config_level(_SYS_INIT_LEVEL_SECONDARY); |
|
_sys_device_do_config_level(_SYS_INIT_LEVEL_NANOKERNEL); |
|
_sys_device_do_config_level(_SYS_INIT_LEVEL_MICROKERNEL); |
|
|
|
/* Final init level before app starts */ |
|
_sys_device_do_config_level(_SYS_INIT_LEVEL_APPLICATION); |
|
|
|
#ifdef CONFIG_CPLUSPLUS |
|
/* Process the .ctors and .init_array sections */ |
|
extern void __do_global_ctors_aux(void); |
|
extern void __do_init_array_aux(void); |
|
__do_global_ctors_aux(); |
|
__do_init_array_aux(); |
|
#endif |
|
|
|
_init_static_threads(); |
|
|
|
#ifdef CONFIG_BOOT_TIME_MEASUREMENT |
|
/* record timestamp for kernel's _main() function */ |
|
extern uint64_t __main_tsc; |
|
|
|
__main_tsc = _tsc_read(); |
|
#endif |
|
|
|
extern void main(void); |
|
|
|
/* If we're going to load the MDEF main() in this context, we need |
|
* to now set the priority to be what was specified in the MDEF file |
|
*/ |
|
#if defined(MDEF_MAIN_THREAD_PRIORITY) && \ |
|
(MDEF_MAIN_THREAD_PRIORITY != CONFIG_MAIN_THREAD_PRIORITY) |
|
k_thread_priority_set(_main_thread, MDEF_MAIN_THREAD_PRIORITY); |
|
#endif |
|
main(); |
|
|
|
/* Terminate thread normally since it has no more work to do */ |
|
_main_thread->base.flags &= ~K_ESSENTIAL; |
|
} |
|
|
|
void __weak main(void) |
|
{ |
|
/* NOP default main() if the application does not provide one. */ |
|
} |
|
|
|
/** |
|
* |
|
* @brief Initializes nanokernel data structures |
|
* |
|
* This routine initializes various nanokernel data structures, including |
|
* the background (or idle) task and any architecture-specific initialization. |
|
* |
|
* Note that all fields of "_kernel" are set to zero on entry, which may |
|
* be all the initialization many of them require. |
|
* |
|
* @return N/A |
|
*/ |
|
static void prepare_multithreading(struct k_thread *dummy_thread) |
|
{ |
|
#ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN |
|
ARG_UNUSED(dummy_thread); |
|
#else |
|
/* |
|
* Initialize the current execution thread to permit a level of |
|
* debugging output if an exception should happen during nanokernel |
|
* initialization. However, don't waste effort initializing the |
|
* fields of the dummy thread beyond those needed to identify it as a |
|
* dummy thread. |
|
*/ |
|
|
|
_current = dummy_thread; |
|
|
|
dummy_thread->base.flags = K_ESSENTIAL; |
|
#endif |
|
|
|
/* _kernel.ready_q is all zeroes */ |
|
|
|
|
|
/* |
|
* The interrupt library needs to be initialized early since a series |
|
* of handlers are installed into the interrupt table to catch |
|
* spurious interrupts. This must be performed before other nanokernel |
|
* subsystems install bonafide handlers, or before hardware device |
|
* drivers are initialized. |
|
*/ |
|
|
|
_IntLibInit(); |
|
|
|
/* ready the init/main and idle threads */ |
|
|
|
for (int ii = 0; ii < K_NUM_PRIORITIES; ii++) { |
|
sys_dlist_init(&_ready_q.q[ii]); |
|
} |
|
|
|
/* |
|
* prime the cache with the main thread since: |
|
* |
|
* - the cache can never be NULL |
|
* - the main thread will be the one to run first |
|
* - no other thread is initialized yet and thus their priority fields |
|
* contain garbage, which would prevent the cache loading algorithm |
|
* to work as intended |
|
*/ |
|
_ready_q.cache = _main_thread; |
|
|
|
_new_thread(_main_stack, MAIN_STACK_SIZE, |
|
_main, NULL, NULL, NULL, |
|
CONFIG_MAIN_THREAD_PRIORITY, K_ESSENTIAL); |
|
_mark_thread_as_started(_main_thread); |
|
_add_thread_to_ready_q(_main_thread); |
|
|
|
#ifdef CONFIG_MULTITHREADING |
|
_new_thread(_idle_stack, IDLE_STACK_SIZE, |
|
idle, NULL, NULL, NULL, |
|
K_LOWEST_THREAD_PRIO, K_ESSENTIAL); |
|
_mark_thread_as_started(_idle_thread); |
|
_add_thread_to_ready_q(_idle_thread); |
|
#endif |
|
|
|
initialize_timeouts(); |
|
|
|
/* perform any architecture-specific initialization */ |
|
|
|
nanoArchInit(); |
|
} |
|
|
|
static void switch_to_main_thread(void) |
|
{ |
|
#ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN |
|
_arch_switch_to_main_thread(_main_stack, MAIN_STACK_SIZE, _main); |
|
#else |
|
/* |
|
* Context switch to main task (entry function is _main()): the |
|
* current fake thread is not on a wait queue or ready queue, so it |
|
* will never be rescheduled in. |
|
*/ |
|
|
|
_Swap(irq_lock()); |
|
#endif |
|
} |
|
|
|
#ifdef CONFIG_STACK_CANARIES |
|
/** |
|
* |
|
* @brief Initialize the kernel's stack canary |
|
* |
|
* This macro initializes the kernel's stack canary global variable, |
|
* __stack_chk_guard, with a random value. |
|
* |
|
* INTERNAL |
|
* Depending upon the compiler, modifying __stack_chk_guard directly at runtime |
|
* may generate a build error. In-line assembly is used as a workaround. |
|
*/ |
|
|
|
extern void *__stack_chk_guard; |
|
|
|
#if defined(CONFIG_X86) |
|
#define _MOVE_INSTR "movl " |
|
#elif defined(CONFIG_ARM) |
|
#define _MOVE_INSTR "str " |
|
#elif defined(CONFIG_ARC) |
|
#define _MOVE_INSTR "st " |
|
#else |
|
#error "Unknown Architecture type" |
|
#endif /* CONFIG_X86 */ |
|
|
|
#define STACK_CANARY_INIT() \ |
|
do { \ |
|
register void *tmp; \ |
|
tmp = (void *)sys_rand32_get(); \ |
|
__asm__ volatile(_MOVE_INSTR "%1, %0;\n\t" \ |
|
: "=m"(__stack_chk_guard) \ |
|
: "r"(tmp)); \ |
|
} while (0) |
|
|
|
#else /* !CONFIG_STACK_CANARIES */ |
|
#define STACK_CANARY_INIT() |
|
#endif /* CONFIG_STACK_CANARIES */ |
|
|
|
/** |
|
* |
|
* @brief Initialize nanokernel |
|
* |
|
* This routine is invoked when the system is ready to run C code. The |
|
* processor must be running in 32-bit mode, and the BSS must have been |
|
* cleared/zeroed. |
|
* |
|
* @return Does not return |
|
*/ |
|
FUNC_NORETURN void _Cstart(void) |
|
{ |
|
#ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN |
|
void *dummy_thread = NULL; |
|
#else |
|
/* floating point is NOT used during nanokernel init */ |
|
|
|
char __stack dummy_stack[_K_THREAD_NO_FLOAT_SIZEOF]; |
|
void *dummy_thread = dummy_stack; |
|
#endif |
|
|
|
/* |
|
* Initialize nanokernel data structures. This step includes |
|
* initializing the interrupt subsystem, which must be performed |
|
* before the hardware initialization phase. |
|
*/ |
|
|
|
prepare_multithreading(dummy_thread); |
|
|
|
/* Deprecated */ |
|
_sys_device_do_config_level(_SYS_INIT_LEVEL_PRIMARY); |
|
|
|
/* perform basic hardware initialization */ |
|
_sys_device_do_config_level(_SYS_INIT_LEVEL_PRE_KERNEL_1); |
|
_sys_device_do_config_level(_SYS_INIT_LEVEL_PRE_KERNEL_2); |
|
|
|
/* initialize stack canaries */ |
|
|
|
STACK_CANARY_INIT(); |
|
|
|
/* display boot banner */ |
|
|
|
PRINT_BOOT_BANNER(); |
|
|
|
switch_to_main_thread(); |
|
|
|
/* |
|
* Compiler can't tell that the above routines won't return and issues |
|
* a warning unless we explicitly tell it that control never gets this |
|
* far. |
|
*/ |
|
|
|
CODE_UNREACHABLE; |
|
}
|
|
|