Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

367 lines
13 KiB

/*
* Copyright (c) 2025 Bastien Jauny <bastien.jauny@smile.fr>
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT vishay_vs1838b
#include <zephyr/device.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/logging/log.h>
#include <zephyr/input/input.h>
#include <zephyr/kernel.h>
LOG_MODULE_REGISTER(input_vs1838b, CONFIG_INPUT_LOG_LEVEL);
/* A NEC packet is defined by:
* - a lead burst (2 edges)
* - an 8-bit address followed by its logical inverse
* - an 8-bit command followed by its logical inverse
* - a trailing burst
*/
/* Constants used for parsing the edges buffer for NEC protocol */
#define NEC_LEAD_PULSE_EDGE_OFFSET 0
#define NEC_LEAD_PULSE_EDGE_WIDTH 2
#define NEC_ADDRESS_BYTE_EDGE_OFFSET (NEC_LEAD_PULSE_EDGE_OFFSET + NEC_LEAD_PULSE_EDGE_WIDTH)
#define NEC_ADDRESS_BYTE_EDGE_WIDTH (2 * BITS_PER_BYTE)
#define NEC_REVERSE_ADDRESS_BYTE_EDGE_OFFSET \
(NEC_ADDRESS_BYTE_EDGE_OFFSET + NEC_ADDRESS_BYTE_EDGE_WIDTH)
#define NEC_REVERSE_ADDRESS_BYTE_EDGE_WIDTH (2 * BITS_PER_BYTE)
#define NEC_COMMAND_BYTE_EDGE_OFFSET \
(NEC_REVERSE_ADDRESS_BYTE_EDGE_OFFSET + NEC_REVERSE_ADDRESS_BYTE_EDGE_WIDTH)
#define NEC_COMMAND_BYTE_EDGE_WIDTH (2 * BITS_PER_BYTE)
#define NEC_REVERSE_COMMAND_BYTE_EDGE_OFFSET \
(NEC_COMMAND_BYTE_EDGE_OFFSET + NEC_COMMAND_BYTE_EDGE_WIDTH)
#define NEC_REVERSE_COMMAND_BYTE_EDGE_WIDTH (2 * BITS_PER_BYTE)
#define NEC_SINGLE_COMMAND_EDGES_COUNT \
(NEC_REVERSE_COMMAND_BYTE_EDGE_OFFSET + NEC_REVERSE_COMMAND_BYTE_EDGE_WIDTH + 2)
/* NEC protocol values */
#define NEC_LEAD_PULSE_PERIOD_ON_USEC 9000
#define NEC_LEAD_PULSE_PERIOD_OFF_USEC 4500
#define NEC_BIT_DETECT_PERIOD_NSEC 562500
#define NEC_BIT_DETECT_PERIOD_USEC (NEC_BIT_DETECT_PERIOD_NSEC / NSEC_PER_USEC)
#define NEC_BIT_0_TOTAL_PERIOD_USEC 1125
#define NEC_BIT_1_TOTAL_PERIOD_USEC 2250
/* Total delay between a command and a repeat code is 108ms
* and total time of a command is 67.5ms
*/
#define NEC_TIMEOUT_REPEAT_CODE_MSEC (108 - 67)
/* Macros to define tick ranges based on a millisecond tolerance */
#define VS1838B_MIN_TICK(usec, tol) \
((((usec) - (tol)) * CONFIG_SYS_CLOCK_TICKS_PER_SEC) / USEC_PER_SEC)
#define VS1838B_MAX_TICK(usec, tol) \
((((usec) + (tol)) * CONFIG_SYS_CLOCK_TICKS_PER_SEC) / USEC_PER_SEC)
/* Empiric tolerance values. Might be a good idea to put them in the Kconfig? */
#define VS1838B_NEC_LEAD_PULSE_PERIOD_TOLERANCE_USEC 400
#define VS1838B_NEC_BIT_DETECT_PERIOD_TOLERANCE_USEC 150
#define VS1838B_NEC_BIT_0_TOTAL_TOLERANCE_USEC 200
#define VS1838B_NEC_BIT_1_TOTAL_TOLERANCE_USEC 200
/* Tick ranges for the NEC elements */
#define VS1838B_NEC_LEAD_PULSE_ON_MIN_TICK \
VS1838B_MIN_TICK(NEC_LEAD_PULSE_PERIOD_ON_USEC, \
VS1838B_NEC_LEAD_PULSE_PERIOD_TOLERANCE_USEC)
#define VS1838B_NEC_LEAD_PULSE_ON_MAX_TICK \
VS1838B_MAX_TICK(NEC_LEAD_PULSE_PERIOD_ON_USEC, \
VS1838B_NEC_LEAD_PULSE_PERIOD_TOLERANCE_USEC)
#define VS1838B_NEC_LEAD_PULSE_OFF_MIN_TICK \
VS1838B_MIN_TICK(NEC_LEAD_PULSE_PERIOD_OFF_USEC, \
VS1838B_NEC_LEAD_PULSE_PERIOD_TOLERANCE_USEC)
#define VS1838B_NEC_LEAD_PULSE_OFF_MAX_TICK \
VS1838B_MAX_TICK(NEC_LEAD_PULSE_PERIOD_OFF_USEC, \
VS1838B_NEC_LEAD_PULSE_PERIOD_TOLERANCE_USEC)
#define VS1838B_NEC_BIT_DETECT_MIN_TICK \
VS1838B_MIN_TICK(NEC_BIT_DETECT_PERIOD_USEC, VS1838B_NEC_BIT_DETECT_PERIOD_TOLERANCE_USEC)
#define VS1838B_NEC_BIT_DETECT_MAX_TICK \
VS1838B_MAX_TICK(NEC_BIT_DETECT_PERIOD_USEC, VS1838B_NEC_BIT_DETECT_PERIOD_TOLERANCE_USEC)
#define VS1838B_NEC_BIT_0_TOTAL_MIN_TICK \
VS1838B_MIN_TICK(NEC_BIT_0_TOTAL_PERIOD_USEC, VS1838B_NEC_BIT_0_TOTAL_TOLERANCE_USEC)
#define VS1838B_NEC_BIT_0_TOTAL_MAX_TICK \
VS1838B_MAX_TICK(NEC_BIT_0_TOTAL_PERIOD_USEC, VS1838B_NEC_BIT_0_TOTAL_TOLERANCE_USEC)
#define VS1838B_NEC_BIT_1_TOTAL_MIN_TICK \
VS1838B_MIN_TICK(NEC_BIT_1_TOTAL_PERIOD_USEC, VS1838B_NEC_BIT_1_TOTAL_TOLERANCE_USEC)
#define VS1838B_NEC_BIT_1_TOTAL_MAX_TICK \
VS1838B_MAX_TICK(NEC_BIT_1_TOTAL_PERIOD_USEC, VS1838B_NEC_BIT_1_TOTAL_TOLERANCE_USEC)
struct vs1838b_data {
struct device const *dev;
struct gpio_callback input_cb;
struct k_work_delayable decode_work;
int64_t edges_ticks[NEC_SINGLE_COMMAND_EDGES_COUNT];
uint8_t edges_count;
struct k_sem decode_sem;
};
struct vs1838b_config {
struct gpio_dt_spec input;
};
static inline bool is_within_range(k_ticks_t const ticks, k_ticks_t const min, k_ticks_t const max)
{
return (ticks <= max) && (ticks >= min);
}
static bool read_byte_from(int64_t *const edges_ticks, uint8_t const offset, uint8_t *byte)
{
/* Make sure we add bits from 0 */
uint8_t temp_byte = 0;
k_ticks_t ticks_on;
k_ticks_t ticks_total;
/* Bytes are transmitted LSB first */
for (uint8_t i = 0; i < BITS_PER_BYTE; ++i) {
/*
* To detect bits and their values we analyze:
* - the initial pulse width
* - the total period
*/
ticks_on = edges_ticks[(2 * i) + offset + 1] - edges_ticks[(2 * i) + offset];
ticks_total = edges_ticks[(2 * i) + offset + 2] - edges_ticks[(2 * i) + offset];
LOG_DBG("ticks_on %lld", ticks_on);
LOG_DBG("ticks_total %lld", ticks_total);
if (is_within_range(ticks_on, VS1838B_NEC_BIT_DETECT_MIN_TICK,
VS1838B_NEC_BIT_DETECT_MAX_TICK)) {
if (is_within_range(ticks_total, VS1838B_NEC_BIT_0_TOTAL_MIN_TICK,
VS1838B_NEC_BIT_0_TOTAL_MAX_TICK)) {
/* 0 detected */
} else if (is_within_range(ticks_total, VS1838B_NEC_BIT_1_TOTAL_MIN_TICK,
VS1838B_NEC_BIT_1_TOTAL_MAX_TICK)) {
/* 1 detected */
temp_byte += BIT(i);
} else {
LOG_WRN("Failed to identify detected bit at position %u", i);
return false;
}
} else {
LOG_WRN("Failed to detect a valid bit at position %u", i);
return false;
}
}
*byte = temp_byte;
return true;
}
static bool detect_leading_burst(int64_t *const edges_ticks)
{
/* Detect leading pulse using the first 3 edges */
int64_t lead_ticks_on = edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET + 1] -
edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET];
int64_t lead_ticks_off = edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET + 2] -
edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET + 1];
/* Manage the corner case of an overflow */
if ((lead_ticks_on < 0) || (lead_ticks_off < 0)) {
LOG_ERR("Ticks overflow: %lld - %lld - %lld",
edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET],
edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET + 1],
edges_ticks[NEC_LEAD_PULSE_EDGE_OFFSET + 2]);
return false;
}
LOG_DBG("Read %lld ticks on and %lld ticks off", lead_ticks_on, lead_ticks_off);
return is_within_range(lead_ticks_on, VS1838B_NEC_LEAD_PULSE_ON_MIN_TICK,
VS1838B_NEC_LEAD_PULSE_ON_MAX_TICK) &&
is_within_range(lead_ticks_off, VS1838B_NEC_LEAD_PULSE_OFF_MIN_TICK,
VS1838B_NEC_LEAD_PULSE_OFF_MAX_TICK);
}
static bool read_redundant_byte(int64_t *const edges_ticks, uint8_t *const byte,
uint32_t const offset)
{
uint8_t temp_byte;
uint8_t reverse_byte;
if (read_byte_from(edges_ticks, offset, &temp_byte) &&
read_byte_from(edges_ticks, offset + (2 * BITS_PER_BYTE), &reverse_byte)) {
if (temp_byte == (uint8_t)(~reverse_byte)) {
*byte = temp_byte;
} else {
LOG_ERR("Error while decoding byte");
return false;
}
} else {
LOG_ERR("Error while reading bytes");
return false;
}
return true;
}
static bool read_address_byte(int64_t *const edges_ticks, uint8_t *const address)
{
return read_redundant_byte(edges_ticks, address, NEC_ADDRESS_BYTE_EDGE_OFFSET);
}
static bool read_command_byte(int64_t *const edges_ticks, uint8_t *const command)
{
return read_redundant_byte(edges_ticks, command, NEC_COMMAND_BYTE_EDGE_OFFSET);
}
static bool detect_last_burst(int64_t *const edges_ticks)
{
/* Detect leading pulse using the last 3 edges */
int64_t burst_length = edges_ticks[NEC_SINGLE_COMMAND_EDGES_COUNT - 1] -
edges_ticks[NEC_SINGLE_COMMAND_EDGES_COUNT - 2];
/* Manage the corner case of an overflow */
if (burst_length < 0) {
LOG_ERR("Ticks overflow: %lld - %lld",
edges_ticks[NEC_SINGLE_COMMAND_EDGES_COUNT - 1],
edges_ticks[NEC_SINGLE_COMMAND_EDGES_COUNT - 2]);
return false;
}
LOG_DBG("Read %lld ticks in the last burst", burst_length);
return is_within_range(burst_length, VS1838B_NEC_BIT_DETECT_MIN_TICK,
VS1838B_NEC_BIT_DETECT_MAX_TICK);
}
static bool get_address_and_command(int64_t *const edges_ticks, uint8_t *const address,
uint8_t *const command)
{
if (!detect_leading_burst(edges_ticks)) {
LOG_DBG("No lead detected");
return false;
}
if (!read_address_byte(edges_ticks, address)) {
LOG_DBG("No address decoded");
return false;
}
if (!read_command_byte(edges_ticks, command)) {
LOG_DBG("No command decoded");
return false;
}
if (!detect_last_burst(edges_ticks)) {
LOG_DBG("No trailing edge detected");
return false;
}
return true;
}
/*
* Management of the decoding
*/
static void vs1838b_decode_work_handler(struct k_work *item)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(item);
struct vs1838b_data *data = CONTAINER_OF(dwork, struct vs1838b_data, decode_work);
if (k_sem_take(&data->decode_sem, K_FOREVER) == 0) {
uint8_t address_byte;
uint8_t command_byte;
if (get_address_and_command(data->edges_ticks, &address_byte, &command_byte)) {
LOG_DBG("Address: [0x%X] | Command: [0x%X]", address_byte, command_byte);
if (input_report(data->dev, INPUT_EV_DEVICE, INPUT_MSC_SCAN,
(address_byte << 8) | command_byte, true, K_FOREVER) < 0) {
LOG_ERR("Message failed to be enqueued");
}
}
}
/* Reset the record */
data->edges_count = 0;
k_sem_give(&data->decode_sem);
}
/*
* Internal callback
*/
static void vs1838b_input_callback(struct device const *dev, struct gpio_callback *cb,
uint32_t pins)
{
/*
* We want to:
* - register the timestamps of interrupts
* - try and decode the received bits when we reach the appropriate threshold
*/
int64_t const tick = k_uptime_ticks();
struct vs1838b_data *data = CONTAINER_OF(cb, struct vs1838b_data, input_cb);
/* If we already schedule a decode, we need to cancel it. */
if (k_work_cancel_delayable(&data->decode_work) != 0) {
LOG_WRN("Decoding not cancelled!");
}
if (k_sem_take(&data->decode_sem, K_NO_WAIT) != 0) {
/* Decoding might be pending */
return;
}
/* If more interrupts are received, they're likely to be repeat codes
* and we choose to ignore them.
*/
if (data->edges_count < NEC_SINGLE_COMMAND_EDGES_COUNT) {
data->edges_ticks[data->edges_count++] = tick;
}
if (data->edges_count == NEC_SINGLE_COMMAND_EDGES_COUNT) {
/* There's a candidate!
* If nothing gets in during the grace period
* it *should* be an entire command.
*/
k_work_schedule(&data->decode_work, K_MSEC(NEC_TIMEOUT_REPEAT_CODE_MSEC));
}
k_sem_give(&data->decode_sem);
}
static int vs1838b_init(struct device const *dev)
{
struct vs1838b_config const *config = dev->config;
struct gpio_dt_spec const *data_input = &config->input;
struct vs1838b_data *data = dev->data;
data->dev = dev;
if (!gpio_is_ready_dt(data_input)) {
LOG_ERR("GPIO input pin is not ready");
return -ENODEV;
}
/*
* Setup the input as an interrupt source
* and register an associated callback.
*/
gpio_pin_configure_dt(data_input, GPIO_INPUT);
gpio_pin_interrupt_configure_dt(data_input, GPIO_INT_EDGE_BOTH);
gpio_init_callback(&data->input_cb, vs1838b_input_callback, BIT(data_input->pin));
gpio_add_callback_dt(data_input, &data->input_cb);
k_sem_init(&data->decode_sem, 1, 1);
k_work_init_delayable(&data->decode_work, vs1838b_decode_work_handler);
return 0;
}
#define VS1838B_DEFINE(inst) \
static struct vs1838b_data vs1838b_data_##inst; \
\
static struct vs1838b_config const vs1838b_config_##inst = { \
.input = GPIO_DT_SPEC_INST_GET(inst, data_gpios), \
}; \
\
DEVICE_DT_INST_DEFINE(inst, vs1838b_init, NULL, &vs1838b_data_##inst, \
&vs1838b_config_##inst, POST_KERNEL, CONFIG_INPUT_INIT_PRIORITY, \
NULL);
DT_INST_FOREACH_STATUS_OKAY(VS1838B_DEFINE)