You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1693 lines
44 KiB
1693 lines
44 KiB
/* |
|
* Copyright (c) 2016 Open-RnD Sp. z o.o. |
|
* Copyright (c) 2016 Linaro Limited. |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
#define DT_DRV_COMPAT st_stm32_uart |
|
|
|
/** |
|
* @brief Driver for UART port on STM32 family processor. |
|
* @note LPUART and U(S)ART have the same base and |
|
* majority of operations are performed the same way. |
|
* Please validate for newly added series. |
|
*/ |
|
|
|
#include <kernel.h> |
|
#include <arch/cpu.h> |
|
#include <sys/__assert.h> |
|
#include <soc.h> |
|
#include <init.h> |
|
#include <drivers/uart.h> |
|
#include <drivers/pinmux.h> |
|
#include <pinmux/pinmux_stm32.h> |
|
#include <drivers/clock_control.h> |
|
#include <pm/pm.h> |
|
|
|
#ifdef CONFIG_UART_ASYNC_API |
|
#include <drivers/dma/dma_stm32.h> |
|
#include <drivers/dma.h> |
|
#endif |
|
|
|
#include <linker/sections.h> |
|
#include <drivers/clock_control/stm32_clock_control.h> |
|
#include "uart_stm32.h" |
|
|
|
#include <stm32_ll_usart.h> |
|
#include <stm32_ll_lpuart.h> |
|
|
|
#include <logging/log.h> |
|
LOG_MODULE_REGISTER(uart_stm32); |
|
|
|
#define HAS_LPUART_1 (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(lpuart1), \ |
|
st_stm32_lpuart, okay)) |
|
|
|
/* convenience defines */ |
|
#define DEV_CFG(dev) \ |
|
((const struct uart_stm32_config *const)(dev)->config) |
|
#define DEV_DATA(dev) \ |
|
((struct uart_stm32_data *const)(dev)->data) |
|
#define UART_STRUCT(dev) \ |
|
((USART_TypeDef *)(DEV_CFG(dev))->uconf.base) |
|
|
|
#if HAS_LPUART_1 |
|
#ifdef USART_PRESC_PRESCALER |
|
uint32_t lpuartdiv_calc(const uint64_t clock_rate, const uint16_t presc_idx, |
|
const uint32_t baud_rate) |
|
{ |
|
uint64_t lpuartdiv; |
|
|
|
lpuartdiv = clock_rate / LPUART_PRESCALER_TAB[presc_idx]; |
|
lpuartdiv *= LPUART_LPUARTDIV_FREQ_MUL; |
|
lpuartdiv += baud_rate / 2; |
|
lpuartdiv /= baud_rate; |
|
|
|
return (uint32_t)lpuartdiv; |
|
} |
|
#else |
|
uint32_t lpuartdiv_calc(const uint64_t clock_rate, const uint32_t baud_rate) |
|
{ |
|
uint64_t lpuartdiv; |
|
|
|
lpuartdiv = clock_rate * LPUART_LPUARTDIV_FREQ_MUL; |
|
lpuartdiv += baud_rate / 2; |
|
lpuartdiv /= baud_rate; |
|
|
|
return (uint32_t)lpuartdiv; |
|
} |
|
#endif /* USART_PRESC_PRESCALER */ |
|
#endif /* HAS_LPUART_1 */ |
|
|
|
#define TIMEOUT 1000 |
|
|
|
#ifdef CONFIG_PM |
|
static void uart_stm32_pm_constraint_set(const struct device *dev) |
|
{ |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
|
|
if (!data->pm_constraint_on) { |
|
data->pm_constraint_on = true; |
|
pm_constraint_set(PM_STATE_SUSPEND_TO_IDLE); |
|
} |
|
} |
|
|
|
static void uart_stm32_pm_constraint_release(const struct device *dev) |
|
{ |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
|
|
if (data->pm_constraint_on) { |
|
data->pm_constraint_on = false; |
|
pm_constraint_release(PM_STATE_SUSPEND_TO_IDLE); |
|
} |
|
} |
|
#endif /* CONFIG_PM */ |
|
|
|
static inline void uart_stm32_set_baudrate(const struct device *dev, |
|
uint32_t baud_rate) |
|
{ |
|
const struct uart_stm32_config *config = DEV_CFG(dev); |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
uint32_t clock_rate; |
|
|
|
/* Get clock rate */ |
|
if (clock_control_get_rate(data->clock, |
|
(clock_control_subsys_t *)&config->pclken, |
|
&clock_rate) < 0) { |
|
LOG_ERR("Failed call clock_control_get_rate"); |
|
return; |
|
} |
|
|
|
#if HAS_LPUART_1 |
|
if (IS_LPUART_INSTANCE(UartInstance)) { |
|
uint32_t lpuartdiv; |
|
#ifdef USART_PRESC_PRESCALER |
|
uint8_t presc_idx; |
|
uint32_t presc_val; |
|
|
|
for (presc_idx = 0; presc_idx < ARRAY_SIZE(LPUART_PRESCALER_TAB); presc_idx++) { |
|
lpuartdiv = lpuartdiv_calc(clock_rate, presc_idx, baud_rate); |
|
if (lpuartdiv >= LPUART_BRR_MIN_VALUE && lpuartdiv <= LPUART_BRR_MASK) { |
|
break; |
|
} |
|
} |
|
|
|
if (presc_idx == ARRAY_SIZE(LPUART_PRESCALER_TAB)) { |
|
LOG_ERR("Unable to set %s to %d", dev->name, baud_rate); |
|
return; |
|
} |
|
|
|
presc_val = presc_idx << USART_PRESC_PRESCALER_Pos; |
|
|
|
LL_LPUART_SetPrescaler(UartInstance, presc_val); |
|
#else |
|
lpuartdiv = lpuartdiv_calc(clock_rate, baud_rate); |
|
if (lpuartdiv < LPUART_BRR_MIN_VALUE || lpuartdiv > LPUART_BRR_MASK) { |
|
LOG_ERR("Unable to set %s to %d", dev->name, baud_rate); |
|
return; |
|
} |
|
#endif /* USART_PRESC_PRESCALER */ |
|
LL_LPUART_SetBaudRate(UartInstance, |
|
clock_rate, |
|
#ifdef USART_PRESC_PRESCALER |
|
presc_val, |
|
#endif |
|
baud_rate); |
|
} else { |
|
#endif /* HAS_LPUART_1 */ |
|
#ifdef USART_CR1_OVER8 |
|
LL_USART_SetOverSampling(UartInstance, |
|
LL_USART_OVERSAMPLING_16); |
|
#endif |
|
LL_USART_SetBaudRate(UartInstance, |
|
clock_rate, |
|
#ifdef USART_PRESC_PRESCALER |
|
LL_USART_PRESCALER_DIV1, |
|
#endif |
|
#ifdef USART_CR1_OVER8 |
|
LL_USART_OVERSAMPLING_16, |
|
#endif |
|
baud_rate); |
|
|
|
#if HAS_LPUART_1 |
|
} |
|
#endif /* HAS_LPUART_1 */ |
|
} |
|
|
|
static inline void uart_stm32_set_parity(const struct device *dev, |
|
uint32_t parity) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
LL_USART_SetParity(UartInstance, parity); |
|
} |
|
|
|
static inline uint32_t uart_stm32_get_parity(const struct device *dev) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
return LL_USART_GetParity(UartInstance); |
|
} |
|
|
|
static inline void uart_stm32_set_stopbits(const struct device *dev, |
|
uint32_t stopbits) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
LL_USART_SetStopBitsLength(UartInstance, stopbits); |
|
} |
|
|
|
static inline uint32_t uart_stm32_get_stopbits(const struct device *dev) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
return LL_USART_GetStopBitsLength(UartInstance); |
|
} |
|
|
|
static inline void uart_stm32_set_databits(const struct device *dev, |
|
uint32_t databits) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
LL_USART_SetDataWidth(UartInstance, databits); |
|
} |
|
|
|
static inline uint32_t uart_stm32_get_databits(const struct device *dev) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
return LL_USART_GetDataWidth(UartInstance); |
|
} |
|
|
|
static inline void uart_stm32_set_hwctrl(const struct device *dev, |
|
uint32_t hwctrl) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
LL_USART_SetHWFlowCtrl(UartInstance, hwctrl); |
|
} |
|
|
|
static inline uint32_t uart_stm32_get_hwctrl(const struct device *dev) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
return LL_USART_GetHWFlowCtrl(UartInstance); |
|
} |
|
|
|
static inline uint32_t uart_stm32_cfg2ll_parity(enum uart_config_parity parity) |
|
{ |
|
switch (parity) { |
|
case UART_CFG_PARITY_ODD: |
|
return LL_USART_PARITY_ODD; |
|
case UART_CFG_PARITY_EVEN: |
|
return LL_USART_PARITY_EVEN; |
|
case UART_CFG_PARITY_NONE: |
|
default: |
|
return LL_USART_PARITY_NONE; |
|
} |
|
} |
|
|
|
static inline enum uart_config_parity uart_stm32_ll2cfg_parity(uint32_t parity) |
|
{ |
|
switch (parity) { |
|
case LL_USART_PARITY_ODD: |
|
return UART_CFG_PARITY_ODD; |
|
case LL_USART_PARITY_EVEN: |
|
return UART_CFG_PARITY_EVEN; |
|
case LL_USART_PARITY_NONE: |
|
default: |
|
return UART_CFG_PARITY_NONE; |
|
} |
|
} |
|
|
|
static inline uint32_t uart_stm32_cfg2ll_stopbits(enum uart_config_stop_bits sb) |
|
{ |
|
switch (sb) { |
|
/* Some MCU's don't support 0.5 stop bits */ |
|
#ifdef LL_USART_STOPBITS_0_5 |
|
case UART_CFG_STOP_BITS_0_5: |
|
return LL_USART_STOPBITS_0_5; |
|
#endif /* LL_USART_STOPBITS_0_5 */ |
|
case UART_CFG_STOP_BITS_1: |
|
return LL_USART_STOPBITS_1; |
|
/* Some MCU's don't support 1.5 stop bits */ |
|
#ifdef LL_USART_STOPBITS_1_5 |
|
case UART_CFG_STOP_BITS_1_5: |
|
return LL_USART_STOPBITS_1_5; |
|
#endif /* LL_USART_STOPBITS_1_5 */ |
|
case UART_CFG_STOP_BITS_2: |
|
default: |
|
return LL_USART_STOPBITS_2; |
|
} |
|
} |
|
|
|
static inline enum uart_config_stop_bits uart_stm32_ll2cfg_stopbits(uint32_t sb) |
|
{ |
|
switch (sb) { |
|
/* Some MCU's don't support 0.5 stop bits */ |
|
#ifdef LL_USART_STOPBITS_0_5 |
|
case LL_USART_STOPBITS_0_5: |
|
return UART_CFG_STOP_BITS_0_5; |
|
#endif /* LL_USART_STOPBITS_0_5 */ |
|
case LL_USART_STOPBITS_1: |
|
return UART_CFG_STOP_BITS_1; |
|
/* Some MCU's don't support 1.5 stop bits */ |
|
#ifdef LL_USART_STOPBITS_1_5 |
|
case LL_USART_STOPBITS_1_5: |
|
return UART_CFG_STOP_BITS_1_5; |
|
#endif /* LL_USART_STOPBITS_1_5 */ |
|
case LL_USART_STOPBITS_2: |
|
default: |
|
return UART_CFG_STOP_BITS_2; |
|
} |
|
} |
|
|
|
static inline uint32_t uart_stm32_cfg2ll_databits(enum uart_config_data_bits db, |
|
enum uart_config_parity p) |
|
{ |
|
switch (db) { |
|
/* Some MCU's don't support 7B or 9B datawidth */ |
|
#ifdef LL_USART_DATAWIDTH_7B |
|
case UART_CFG_DATA_BITS_7: |
|
if (p == UART_CFG_PARITY_NONE) { |
|
return LL_USART_DATAWIDTH_7B; |
|
} else { |
|
return LL_USART_DATAWIDTH_8B; |
|
} |
|
#endif /* LL_USART_DATAWIDTH_7B */ |
|
#ifdef LL_USART_DATAWIDTH_9B |
|
case UART_CFG_DATA_BITS_9: |
|
return LL_USART_DATAWIDTH_9B; |
|
#endif /* LL_USART_DATAWIDTH_9B */ |
|
case UART_CFG_DATA_BITS_8: |
|
default: |
|
if (p == UART_CFG_PARITY_NONE) { |
|
return LL_USART_DATAWIDTH_8B; |
|
#ifdef LL_USART_DATAWIDTH_9B |
|
} else { |
|
return LL_USART_DATAWIDTH_9B; |
|
#endif |
|
} |
|
return LL_USART_DATAWIDTH_8B; |
|
} |
|
} |
|
|
|
static inline enum uart_config_data_bits uart_stm32_ll2cfg_databits(uint32_t db, |
|
uint32_t p) |
|
{ |
|
switch (db) { |
|
/* Some MCU's don't support 7B or 9B datawidth */ |
|
#ifdef LL_USART_DATAWIDTH_7B |
|
case LL_USART_DATAWIDTH_7B: |
|
if (p == LL_USART_PARITY_NONE) { |
|
return UART_CFG_DATA_BITS_7; |
|
} else { |
|
return UART_CFG_DATA_BITS_6; |
|
} |
|
#endif /* LL_USART_DATAWIDTH_7B */ |
|
#ifdef LL_USART_DATAWIDTH_9B |
|
case LL_USART_DATAWIDTH_9B: |
|
if (p == LL_USART_PARITY_NONE) { |
|
return UART_CFG_DATA_BITS_9; |
|
} else { |
|
return UART_CFG_DATA_BITS_8; |
|
} |
|
#endif /* LL_USART_DATAWIDTH_9B */ |
|
case LL_USART_DATAWIDTH_8B: |
|
default: |
|
if (p == LL_USART_PARITY_NONE) { |
|
return UART_CFG_DATA_BITS_8; |
|
} else { |
|
return UART_CFG_DATA_BITS_7; |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* @brief Get LL hardware flow control define from |
|
* Zephyr hardware flow control option. |
|
* @note Supports only UART_CFG_FLOW_CTRL_RTS_CTS. |
|
* @param fc: Zephyr hardware flow control option. |
|
* @retval LL_USART_HWCONTROL_RTS_CTS, or LL_USART_HWCONTROL_NONE. |
|
*/ |
|
static inline uint32_t uart_stm32_cfg2ll_hwctrl(enum uart_config_flow_control fc) |
|
{ |
|
if (fc == UART_CFG_FLOW_CTRL_RTS_CTS) { |
|
return LL_USART_HWCONTROL_RTS_CTS; |
|
} |
|
|
|
return LL_USART_HWCONTROL_NONE; |
|
} |
|
|
|
/** |
|
* @brief Get Zephyr hardware flow control option from |
|
* LL hardware flow control define. |
|
* @note Supports only LL_USART_HWCONTROL_RTS_CTS. |
|
* @param fc: LL hardware flow control definition. |
|
* @retval UART_CFG_FLOW_CTRL_RTS_CTS, or UART_CFG_FLOW_CTRL_NONE. |
|
*/ |
|
static inline enum uart_config_flow_control uart_stm32_ll2cfg_hwctrl(uint32_t fc) |
|
{ |
|
if (fc == LL_USART_HWCONTROL_RTS_CTS) { |
|
return UART_CFG_FLOW_CTRL_RTS_CTS; |
|
} |
|
|
|
return UART_CFG_FLOW_CTRL_NONE; |
|
} |
|
|
|
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE |
|
static int uart_stm32_configure(const struct device *dev, |
|
const struct uart_config *cfg) |
|
{ |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
const uint32_t parity = uart_stm32_cfg2ll_parity(cfg->parity); |
|
const uint32_t stopbits = uart_stm32_cfg2ll_stopbits(cfg->stop_bits); |
|
const uint32_t databits = uart_stm32_cfg2ll_databits(cfg->data_bits, |
|
cfg->parity); |
|
const uint32_t flowctrl = uart_stm32_cfg2ll_hwctrl(cfg->flow_ctrl); |
|
|
|
/* Hardware doesn't support mark or space parity */ |
|
if ((cfg->parity == UART_CFG_PARITY_MARK) || |
|
(cfg->parity == UART_CFG_PARITY_SPACE)) { |
|
return -ENOTSUP; |
|
} |
|
|
|
/* Driver does not supports parity + 9 databits */ |
|
if ((cfg->parity != UART_CFG_PARITY_NONE) && |
|
(cfg->data_bits == UART_CFG_DATA_BITS_9)) { |
|
return -ENOTSUP; |
|
} |
|
|
|
#if defined(LL_USART_STOPBITS_0_5) && HAS_LPUART_1 |
|
if (IS_LPUART_INSTANCE(UartInstance) && |
|
(cfg->stop_bits == UART_CFG_STOP_BITS_0_5)) { |
|
return -ENOTSUP; |
|
} |
|
#else |
|
if (cfg->stop_bits == UART_CFG_STOP_BITS_0_5) { |
|
return -ENOTSUP; |
|
} |
|
#endif |
|
|
|
#if defined(LL_USART_STOPBITS_1_5) && HAS_LPUART_1 |
|
if (IS_LPUART_INSTANCE(UartInstance) && |
|
(cfg->stop_bits == UART_CFG_STOP_BITS_1_5)) { |
|
return -ENOTSUP; |
|
} |
|
#else |
|
if (cfg->stop_bits == UART_CFG_STOP_BITS_1_5) { |
|
return -ENOTSUP; |
|
} |
|
#endif |
|
|
|
/* Driver doesn't support 5 or 6 databits and potentially 7 or 9 */ |
|
if ((cfg->data_bits == UART_CFG_DATA_BITS_5) || |
|
(cfg->data_bits == UART_CFG_DATA_BITS_6) |
|
#ifndef LL_USART_DATAWIDTH_7B |
|
|| (cfg->data_bits == UART_CFG_DATA_BITS_7) |
|
#endif /* LL_USART_DATAWIDTH_7B */ |
|
|| (cfg->data_bits == UART_CFG_DATA_BITS_9)) { |
|
return -ENOTSUP; |
|
} |
|
|
|
/* Driver supports only RTS CTS flow control */ |
|
if (cfg->flow_ctrl != UART_CFG_FLOW_CTRL_NONE) { |
|
if (!IS_UART_HWFLOW_INSTANCE(UartInstance) || |
|
UART_CFG_FLOW_CTRL_RTS_CTS != cfg->flow_ctrl) { |
|
return -ENOTSUP; |
|
} |
|
} |
|
|
|
LL_USART_Disable(UartInstance); |
|
|
|
if (parity != uart_stm32_get_parity(dev)) { |
|
uart_stm32_set_parity(dev, parity); |
|
} |
|
|
|
if (stopbits != uart_stm32_get_stopbits(dev)) { |
|
uart_stm32_set_stopbits(dev, stopbits); |
|
} |
|
|
|
if (databits != uart_stm32_get_databits(dev)) { |
|
uart_stm32_set_databits(dev, databits); |
|
} |
|
|
|
if (flowctrl != uart_stm32_get_hwctrl(dev)) { |
|
uart_stm32_set_hwctrl(dev, flowctrl); |
|
} |
|
|
|
if (cfg->baudrate != data->baud_rate) { |
|
uart_stm32_set_baudrate(dev, cfg->baudrate); |
|
data->baud_rate = cfg->baudrate; |
|
} |
|
|
|
LL_USART_Enable(UartInstance); |
|
return 0; |
|
}; |
|
|
|
static int uart_stm32_config_get(const struct device *dev, |
|
struct uart_config *cfg) |
|
{ |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
|
|
cfg->baudrate = data->baud_rate; |
|
cfg->parity = uart_stm32_ll2cfg_parity(uart_stm32_get_parity(dev)); |
|
cfg->stop_bits = uart_stm32_ll2cfg_stopbits( |
|
uart_stm32_get_stopbits(dev)); |
|
cfg->data_bits = uart_stm32_ll2cfg_databits( |
|
uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)); |
|
cfg->flow_ctrl = uart_stm32_ll2cfg_hwctrl( |
|
uart_stm32_get_hwctrl(dev)); |
|
return 0; |
|
} |
|
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */ |
|
|
|
static int uart_stm32_poll_in(const struct device *dev, unsigned char *c) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
/* Clear overrun error flag */ |
|
if (LL_USART_IsActiveFlag_ORE(UartInstance)) { |
|
LL_USART_ClearFlag_ORE(UartInstance); |
|
} |
|
|
|
if (!LL_USART_IsActiveFlag_RXNE(UartInstance)) { |
|
return -1; |
|
} |
|
|
|
*c = (unsigned char)LL_USART_ReceiveData8(UartInstance); |
|
|
|
return 0; |
|
} |
|
|
|
static void uart_stm32_poll_out(const struct device *dev, |
|
unsigned char c) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
|
|
/* Wait for TXE flag to be raised */ |
|
while (1) { |
|
if (atomic_cas(&data->tx_lock, 0, 1)) { |
|
if (LL_USART_IsActiveFlag_TXE(UartInstance)) { |
|
break; |
|
} |
|
atomic_set(&data->tx_lock, 0); |
|
} |
|
} |
|
|
|
#ifdef CONFIG_PM |
|
|
|
if (!data->tx_poll_stream_on) { |
|
data->tx_poll_stream_on = true; |
|
|
|
/* Don't allow system to suspend until stream |
|
* transmission has completed |
|
*/ |
|
uart_stm32_pm_constraint_set(dev); |
|
|
|
/* Enable TC interrupt so we can release suspend |
|
* constraint when done |
|
*/ |
|
LL_USART_EnableIT_TC(UartInstance); |
|
} |
|
#endif /* CONFIG_PM */ |
|
|
|
LL_USART_TransmitData8(UartInstance, (uint8_t)c); |
|
atomic_set(&data->tx_lock, 0); |
|
} |
|
|
|
static int uart_stm32_err_check(const struct device *dev) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
uint32_t err = 0U; |
|
|
|
/* Check for errors, but don't clear them here. |
|
* Some SoC clear all error flags when at least |
|
* one is cleared. (e.g. F4X, F1X, and F2X) |
|
*/ |
|
if (LL_USART_IsActiveFlag_ORE(UartInstance)) { |
|
err |= UART_ERROR_OVERRUN; |
|
} |
|
|
|
if (LL_USART_IsActiveFlag_PE(UartInstance)) { |
|
err |= UART_ERROR_PARITY; |
|
} |
|
|
|
if (LL_USART_IsActiveFlag_FE(UartInstance)) { |
|
err |= UART_ERROR_FRAMING; |
|
} |
|
|
|
if (err & UART_ERROR_OVERRUN) { |
|
LL_USART_ClearFlag_ORE(UartInstance); |
|
} |
|
|
|
if (err & UART_ERROR_PARITY) { |
|
LL_USART_ClearFlag_PE(UartInstance); |
|
} |
|
|
|
if (err & UART_ERROR_FRAMING) { |
|
LL_USART_ClearFlag_FE(UartInstance); |
|
} |
|
|
|
/* Clear noise error as well, |
|
* it is not represented by the errors enum |
|
*/ |
|
LL_USART_ClearFlag_NE(UartInstance); |
|
|
|
return err; |
|
} |
|
|
|
static inline void __uart_stm32_get_clock(const struct device *dev) |
|
{ |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
const struct device *clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); |
|
|
|
data->clock = clk; |
|
} |
|
|
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN |
|
|
|
static int uart_stm32_fifo_fill(const struct device *dev, |
|
const uint8_t *tx_data, |
|
int size) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
uint8_t num_tx = 0U; |
|
|
|
while ((size - num_tx > 0) && |
|
LL_USART_IsActiveFlag_TXE(UartInstance)) { |
|
/* TXE flag will be cleared with byte write to DR|RDR register */ |
|
|
|
/* Send a character (8bit , parity none) */ |
|
LL_USART_TransmitData8(UartInstance, tx_data[num_tx++]); |
|
} |
|
|
|
return num_tx; |
|
} |
|
|
|
static int uart_stm32_fifo_read(const struct device *dev, uint8_t *rx_data, |
|
const int size) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
uint8_t num_rx = 0U; |
|
|
|
while ((size - num_rx > 0) && |
|
LL_USART_IsActiveFlag_RXNE(UartInstance)) { |
|
/* RXNE flag will be cleared upon read from DR|RDR register */ |
|
|
|
/* Receive a character (8bit , parity none) */ |
|
rx_data[num_rx++] = LL_USART_ReceiveData8(UartInstance); |
|
|
|
/* Clear overrun error flag */ |
|
if (LL_USART_IsActiveFlag_ORE(UartInstance)) { |
|
LL_USART_ClearFlag_ORE(UartInstance); |
|
} |
|
} |
|
|
|
return num_rx; |
|
} |
|
|
|
static void uart_stm32_irq_tx_enable(const struct device *dev) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
|
|
while (atomic_cas(&data->tx_lock, 0, 1) == false) { |
|
} |
|
|
|
#ifdef CONFIG_PM |
|
data->tx_poll_stream_on = false; |
|
uart_stm32_pm_constraint_set(dev); |
|
#endif |
|
LL_USART_EnableIT_TC(UartInstance); |
|
} |
|
|
|
static void uart_stm32_irq_tx_disable(const struct device *dev) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
|
|
LL_USART_DisableIT_TC(UartInstance); |
|
|
|
atomic_set(&data->tx_lock, 0); |
|
|
|
#ifdef CONFIG_PM |
|
uart_stm32_pm_constraint_release(dev); |
|
#endif |
|
} |
|
|
|
static int uart_stm32_irq_tx_ready(const struct device *dev) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
return LL_USART_IsActiveFlag_TXE(UartInstance) && |
|
LL_USART_IsEnabledIT_TC(UartInstance); |
|
} |
|
|
|
static int uart_stm32_irq_tx_complete(const struct device *dev) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
return LL_USART_IsActiveFlag_TC(UartInstance); |
|
} |
|
|
|
static void uart_stm32_irq_rx_enable(const struct device *dev) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
LL_USART_EnableIT_RXNE(UartInstance); |
|
} |
|
|
|
static void uart_stm32_irq_rx_disable(const struct device *dev) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
LL_USART_DisableIT_RXNE(UartInstance); |
|
} |
|
|
|
static int uart_stm32_irq_rx_ready(const struct device *dev) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
return LL_USART_IsActiveFlag_RXNE(UartInstance); |
|
} |
|
|
|
static void uart_stm32_irq_err_enable(const struct device *dev) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
/* Enable FE, ORE interruptions */ |
|
LL_USART_EnableIT_ERROR(UartInstance); |
|
#if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT) |
|
/* Enable Line break detection */ |
|
if (IS_UART_LIN_INSTANCE(UartInstance)) { |
|
LL_USART_EnableIT_LBD(UartInstance); |
|
} |
|
#endif |
|
/* Enable parity error interruption */ |
|
LL_USART_EnableIT_PE(UartInstance); |
|
} |
|
|
|
static void uart_stm32_irq_err_disable(const struct device *dev) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
/* Disable FE, ORE interruptions */ |
|
LL_USART_DisableIT_ERROR(UartInstance); |
|
#if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT) |
|
/* Disable Line break detection */ |
|
if (IS_UART_LIN_INSTANCE(UartInstance)) { |
|
LL_USART_DisableIT_LBD(UartInstance); |
|
} |
|
#endif |
|
/* Disable parity error interruption */ |
|
LL_USART_DisableIT_PE(UartInstance); |
|
} |
|
|
|
static int uart_stm32_irq_is_pending(const struct device *dev) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
return ((LL_USART_IsActiveFlag_RXNE(UartInstance) && |
|
LL_USART_IsEnabledIT_RXNE(UartInstance)) || |
|
(LL_USART_IsActiveFlag_TC(UartInstance) && |
|
LL_USART_IsEnabledIT_TC(UartInstance))); |
|
} |
|
|
|
static int uart_stm32_irq_update(const struct device *dev) |
|
{ |
|
return 1; |
|
} |
|
|
|
static void uart_stm32_irq_callback_set(const struct device *dev, |
|
uart_irq_callback_user_data_t cb, |
|
void *cb_data) |
|
{ |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
|
|
data->user_cb = cb; |
|
data->user_data = cb_data; |
|
} |
|
|
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */ |
|
|
|
#ifdef CONFIG_UART_ASYNC_API |
|
|
|
static inline void async_user_callback(struct uart_stm32_data *data, |
|
struct uart_event *event) |
|
{ |
|
if (data->async_cb) { |
|
data->async_cb(data->uart_dev, event, data->async_user_data); |
|
} |
|
} |
|
|
|
static inline void async_evt_rx_rdy(struct uart_stm32_data *data) |
|
{ |
|
LOG_DBG("rx_rdy: (%d %d)", data->dma_rx.offset, data->dma_rx.counter); |
|
|
|
struct uart_event event = { |
|
.type = UART_RX_RDY, |
|
.data.rx.buf = data->dma_rx.buffer, |
|
.data.rx.len = data->dma_rx.counter - data->dma_rx.offset, |
|
.data.rx.offset = data->dma_rx.offset |
|
}; |
|
|
|
/* update the current pos for new data */ |
|
data->dma_rx.offset = data->dma_rx.counter; |
|
|
|
/* send event only for new data */ |
|
if (event.data.rx.len > 0) { |
|
async_user_callback(data, &event); |
|
} |
|
} |
|
|
|
static inline void async_evt_rx_err(struct uart_stm32_data *data, int err_code) |
|
{ |
|
LOG_DBG("rx error: %d", err_code); |
|
|
|
struct uart_event event = { |
|
.type = UART_RX_STOPPED, |
|
.data.rx_stop.reason = err_code, |
|
.data.rx_stop.data.len = data->dma_rx.counter, |
|
.data.rx_stop.data.offset = 0, |
|
.data.rx_stop.data.buf = data->dma_rx.buffer |
|
}; |
|
|
|
async_user_callback(data, &event); |
|
} |
|
|
|
static inline void async_evt_tx_done(struct uart_stm32_data *data) |
|
{ |
|
LOG_DBG("tx done: %d", data->dma_tx.counter); |
|
|
|
struct uart_event event = { |
|
.type = UART_TX_DONE, |
|
.data.tx.buf = data->dma_tx.buffer, |
|
.data.tx.len = data->dma_tx.counter |
|
}; |
|
|
|
/* Reset tx buffer */ |
|
data->dma_tx.buffer_length = 0; |
|
data->dma_tx.counter = 0; |
|
|
|
async_user_callback(data, &event); |
|
} |
|
|
|
static inline void async_evt_tx_abort(struct uart_stm32_data *data) |
|
{ |
|
LOG_DBG("tx abort: %d", data->dma_tx.counter); |
|
|
|
struct uart_event event = { |
|
.type = UART_TX_ABORTED, |
|
.data.tx.buf = data->dma_tx.buffer, |
|
.data.tx.len = data->dma_tx.counter |
|
}; |
|
|
|
/* Reset tx buffer */ |
|
data->dma_tx.buffer_length = 0; |
|
data->dma_tx.counter = 0; |
|
|
|
async_user_callback(data, &event); |
|
} |
|
|
|
static inline void async_evt_rx_buf_request(struct uart_stm32_data *data) |
|
{ |
|
struct uart_event evt = { |
|
.type = UART_RX_BUF_REQUEST, |
|
}; |
|
|
|
async_user_callback(data, &evt); |
|
} |
|
|
|
static inline void async_evt_rx_buf_release(struct uart_stm32_data *data) |
|
{ |
|
struct uart_event evt = { |
|
.type = UART_RX_BUF_RELEASED, |
|
.data.rx_buf.buf = data->dma_rx.buffer, |
|
}; |
|
|
|
async_user_callback(data, &evt); |
|
} |
|
|
|
static inline void async_timer_start(struct k_work_delayable *work, |
|
int32_t timeout) |
|
{ |
|
if ((timeout != SYS_FOREVER_US) && (timeout != 0)) { |
|
/* start timer */ |
|
LOG_DBG("async timer started for %d us", timeout); |
|
k_work_reschedule(work, K_USEC(timeout)); |
|
} |
|
} |
|
|
|
static void uart_stm32_dma_rx_flush(const struct device *dev) |
|
{ |
|
struct dma_status stat; |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
|
|
if (dma_get_status(data->dma_rx.dma_dev, |
|
data->dma_rx.dma_channel, &stat) == 0) { |
|
size_t rx_rcv_len = data->dma_rx.buffer_length - |
|
stat.pending_length; |
|
if (rx_rcv_len > data->dma_rx.offset) { |
|
data->dma_rx.counter = rx_rcv_len; |
|
|
|
async_evt_rx_rdy(data); |
|
} |
|
} |
|
} |
|
|
|
#endif /* CONFIG_UART_ASYNC_API */ |
|
|
|
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || \ |
|
defined(CONFIG_UART_ASYNC_API) || \ |
|
defined(CONFIG_PM) |
|
|
|
static void uart_stm32_isr(const struct device *dev) |
|
{ |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
#if defined(CONFIG_PM) || defined(CONFIG_UART_ASYNC_API) |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
#endif |
|
|
|
#ifdef CONFIG_PM |
|
if (LL_USART_IsEnabledIT_TC(UartInstance) && |
|
LL_USART_IsActiveFlag_TC(UartInstance)) { |
|
|
|
if (data->tx_poll_stream_on) { |
|
/* A poll stream transmition just completed, |
|
* allow system to suspend |
|
*/ |
|
LL_USART_DisableIT_TC(UartInstance); |
|
data->tx_poll_stream_on = false; |
|
uart_stm32_pm_constraint_release(dev); |
|
} |
|
/* Stream transmition was either async or IRQ based, |
|
* constraint will be released at the same time TC IT |
|
* is disabled |
|
*/ |
|
} |
|
#endif |
|
|
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN |
|
if (data->user_cb) { |
|
data->user_cb(dev, data->user_data); |
|
} |
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */ |
|
|
|
#ifdef CONFIG_UART_ASYNC_API |
|
if (LL_USART_IsEnabledIT_IDLE(UartInstance) && |
|
LL_USART_IsActiveFlag_IDLE(UartInstance)) { |
|
|
|
LL_USART_ClearFlag_IDLE(UartInstance); |
|
|
|
LOG_DBG("idle interrupt occurred"); |
|
|
|
/* Start the RX timer */ |
|
async_timer_start(&data->dma_rx.timeout_work, |
|
data->dma_rx.timeout); |
|
|
|
if (data->dma_rx.timeout == 0) { |
|
uart_stm32_dma_rx_flush(dev); |
|
} |
|
} else if (LL_USART_IsEnabledIT_TC(UartInstance) && |
|
LL_USART_IsActiveFlag_TC(UartInstance)) { |
|
|
|
LL_USART_DisableIT_TC(UartInstance); |
|
LL_USART_ClearFlag_TC(UartInstance); |
|
/* Generate TX_DONE event when transmission is done */ |
|
async_evt_tx_done(data); |
|
|
|
#ifdef CONFIG_PM |
|
uart_stm32_pm_constraint_release(dev); |
|
#endif |
|
} else if (LL_USART_IsEnabledIT_RXNE(UartInstance) && |
|
LL_USART_IsActiveFlag_RXNE(UartInstance)) { |
|
#ifdef USART_SR_RXNE |
|
/* clear the RXNE flag, because Rx data was not read */ |
|
LL_USART_ClearFlag_RXNE(UartInstance); |
|
#else |
|
/* clear the RXNE by flushing the fifo, because Rx data was not read */ |
|
LL_USART_RequestRxDataFlush(UartInstance); |
|
#endif /* USART_SR_RXNE */ |
|
} |
|
|
|
/* Clear errors */ |
|
uart_stm32_err_check(dev); |
|
#endif /* CONFIG_UART_ASYNC_API */ |
|
} |
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API || CONFIG_PM */ |
|
|
|
#ifdef CONFIG_UART_ASYNC_API |
|
|
|
static int uart_stm32_async_callback_set(const struct device *dev, |
|
uart_callback_t callback, |
|
void *user_data) |
|
{ |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
|
|
data->async_cb = callback; |
|
data->async_user_data = user_data; |
|
|
|
return 0; |
|
} |
|
|
|
static inline void uart_stm32_dma_tx_enable(const struct device *dev) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
LL_USART_EnableDMAReq_TX(UartInstance); |
|
} |
|
|
|
static inline void uart_stm32_dma_tx_disable(const struct device *dev) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
LL_USART_DisableDMAReq_TX(UartInstance); |
|
} |
|
|
|
static inline void uart_stm32_dma_rx_enable(const struct device *dev) |
|
{ |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
|
|
LL_USART_EnableDMAReq_RX(UartInstance); |
|
|
|
data->dma_rx.enabled = true; |
|
} |
|
|
|
static inline void uart_stm32_dma_rx_disable(const struct device *dev) |
|
{ |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
|
|
data->dma_rx.enabled = false; |
|
} |
|
|
|
static int uart_stm32_async_rx_disable(const struct device *dev) |
|
{ |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
struct uart_event disabled_event = { |
|
.type = UART_RX_DISABLED |
|
}; |
|
|
|
if (!data->dma_rx.enabled) { |
|
async_user_callback(data, &disabled_event); |
|
return -EFAULT; |
|
} |
|
|
|
LL_USART_DisableIT_IDLE(UartInstance); |
|
|
|
uart_stm32_dma_rx_flush(dev); |
|
|
|
async_evt_rx_buf_release(data); |
|
|
|
uart_stm32_dma_rx_disable(dev); |
|
|
|
(void)k_work_cancel_delayable(&data->dma_rx.timeout_work); |
|
|
|
dma_stop(data->dma_rx.dma_dev, data->dma_rx.dma_channel); |
|
|
|
data->rx_next_buffer = NULL; |
|
data->rx_next_buffer_len = 0; |
|
|
|
/* When async rx is disabled, enable interruptable instance of uart to function normally*/ |
|
LL_USART_EnableIT_RXNE(UartInstance); |
|
|
|
LOG_DBG("rx: disabled"); |
|
|
|
async_user_callback(data, &disabled_event); |
|
|
|
return 0; |
|
} |
|
|
|
void uart_stm32_dma_tx_cb(const struct device *dma_dev, void *user_data, |
|
uint32_t channel, int status) |
|
{ |
|
const struct device *uart_dev = user_data; |
|
struct uart_stm32_data *data = DEV_DATA(uart_dev); |
|
struct dma_status stat; |
|
unsigned int key = irq_lock(); |
|
|
|
/* Disable TX */ |
|
uart_stm32_dma_tx_disable(uart_dev); |
|
|
|
(void)k_work_cancel_delayable(&data->dma_tx.timeout_work); |
|
|
|
if (!dma_get_status(data->dma_tx.dma_dev, |
|
data->dma_tx.dma_channel, &stat)) { |
|
data->dma_tx.counter = data->dma_tx.buffer_length - |
|
stat.pending_length; |
|
} |
|
|
|
data->dma_tx.buffer_length = 0; |
|
|
|
irq_unlock(key); |
|
} |
|
|
|
static void uart_stm32_dma_replace_buffer(const struct device *dev) |
|
{ |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
|
|
/* Replace the buffer and relod the DMA */ |
|
LOG_DBG("Replacing RX buffer: %d", data->rx_next_buffer_len); |
|
|
|
/* reload DMA */ |
|
data->dma_rx.offset = 0; |
|
data->dma_rx.counter = 0; |
|
data->dma_rx.buffer = data->rx_next_buffer; |
|
data->dma_rx.buffer_length = data->rx_next_buffer_len; |
|
data->dma_rx.blk_cfg.block_size = data->dma_rx.buffer_length; |
|
data->dma_rx.blk_cfg.dest_address = (uint32_t)data->dma_rx.buffer; |
|
data->rx_next_buffer = NULL; |
|
data->rx_next_buffer_len = 0; |
|
|
|
dma_reload(data->dma_rx.dma_dev, data->dma_rx.dma_channel, |
|
data->dma_rx.blk_cfg.source_address, |
|
data->dma_rx.blk_cfg.dest_address, |
|
data->dma_rx.blk_cfg.block_size); |
|
|
|
dma_start(data->dma_rx.dma_dev, data->dma_rx.dma_channel); |
|
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
LL_USART_ClearFlag_IDLE(UartInstance); |
|
|
|
/* Request next buffer */ |
|
async_evt_rx_buf_request(data); |
|
} |
|
|
|
void uart_stm32_dma_rx_cb(const struct device *dma_dev, void *user_data, |
|
uint32_t channel, int status) |
|
{ |
|
const struct device *uart_dev = user_data; |
|
struct uart_stm32_data *data = DEV_DATA(uart_dev); |
|
|
|
if (status != 0) { |
|
async_evt_rx_err(data, status); |
|
return; |
|
} |
|
|
|
(void)k_work_cancel_delayable(&data->dma_rx.timeout_work); |
|
|
|
/* true since this functions occurs when buffer if full */ |
|
data->dma_rx.counter = data->dma_rx.buffer_length; |
|
|
|
async_evt_rx_rdy(data); |
|
|
|
if (data->rx_next_buffer != NULL) { |
|
async_evt_rx_buf_release(data); |
|
|
|
/* replace the buffer when the current |
|
* is full and not the same as the next |
|
* one. |
|
*/ |
|
uart_stm32_dma_replace_buffer(uart_dev); |
|
} else { |
|
/* Buffer full without valid next buffer, |
|
* an UART_RX_DISABLED event must be generated, |
|
* but uart_stm32_async_rx_disable() cannot be |
|
* called in ISR context. So force the RX timeout |
|
* to minimum value and let the RX timeout to do the job. |
|
*/ |
|
k_work_reschedule(&data->dma_rx.timeout_work, K_TICKS(1)); |
|
} |
|
} |
|
|
|
static int uart_stm32_async_tx(const struct device *dev, |
|
const uint8_t *tx_data, size_t buf_size, int32_t timeout) |
|
{ |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
int ret; |
|
|
|
if (data->dma_tx.dma_dev == NULL) { |
|
return -ENODEV; |
|
} |
|
|
|
if (data->dma_tx.buffer_length != 0) { |
|
return -EBUSY; |
|
} |
|
|
|
data->dma_tx.buffer = (uint8_t *)tx_data; |
|
data->dma_tx.buffer_length = buf_size; |
|
data->dma_tx.timeout = timeout; |
|
|
|
LOG_DBG("tx: l=%d", data->dma_tx.buffer_length); |
|
|
|
/* Clear TC flag */ |
|
LL_USART_ClearFlag_TC(UartInstance); |
|
|
|
/* Enable TC interrupt so we can signal correct TX done */ |
|
LL_USART_EnableIT_TC(UartInstance); |
|
|
|
/* set source address */ |
|
data->dma_tx.blk_cfg.source_address = (uint32_t)data->dma_tx.buffer; |
|
data->dma_tx.blk_cfg.block_size = data->dma_tx.buffer_length; |
|
|
|
ret = dma_config(data->dma_tx.dma_dev, data->dma_tx.dma_channel, |
|
&data->dma_tx.dma_cfg); |
|
|
|
if (ret != 0) { |
|
LOG_ERR("dma tx config error!"); |
|
return -EINVAL; |
|
} |
|
|
|
if (dma_start(data->dma_tx.dma_dev, data->dma_tx.dma_channel)) { |
|
LOG_ERR("UART err: TX DMA start failed!"); |
|
return -EFAULT; |
|
} |
|
|
|
/* Start TX timer */ |
|
async_timer_start(&data->dma_tx.timeout_work, data->dma_tx.timeout); |
|
|
|
#ifdef CONFIG_PM |
|
|
|
/* Do not allow system to suspend until transmission has completed */ |
|
uart_stm32_pm_constraint_set(dev); |
|
#endif |
|
|
|
/* Enable TX DMA requests */ |
|
uart_stm32_dma_tx_enable(dev); |
|
|
|
return 0; |
|
} |
|
|
|
static int uart_stm32_async_rx_enable(const struct device *dev, |
|
uint8_t *rx_buf, size_t buf_size, int32_t timeout) |
|
{ |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
int ret; |
|
|
|
if (data->dma_rx.dma_dev == NULL) { |
|
return -ENODEV; |
|
} |
|
|
|
if (data->dma_rx.enabled) { |
|
LOG_WRN("RX was already enabled"); |
|
return -EBUSY; |
|
} |
|
|
|
data->dma_rx.offset = 0; |
|
data->dma_rx.buffer = rx_buf; |
|
data->dma_rx.buffer_length = buf_size; |
|
data->dma_rx.counter = 0; |
|
data->dma_rx.timeout = timeout; |
|
|
|
/* Disable RX interrupts to let DMA to handle it */ |
|
LL_USART_DisableIT_RXNE(UartInstance); |
|
|
|
data->dma_rx.blk_cfg.block_size = buf_size; |
|
data->dma_rx.blk_cfg.dest_address = (uint32_t)data->dma_rx.buffer; |
|
|
|
ret = dma_config(data->dma_rx.dma_dev, data->dma_rx.dma_channel, |
|
&data->dma_rx.dma_cfg); |
|
|
|
if (ret != 0) { |
|
LOG_ERR("UART ERR: RX DMA config failed!"); |
|
return -EINVAL; |
|
} |
|
|
|
if (dma_start(data->dma_rx.dma_dev, data->dma_rx.dma_channel)) { |
|
LOG_ERR("UART ERR: RX DMA start failed!"); |
|
return -EFAULT; |
|
} |
|
|
|
/* Enable RX DMA requests */ |
|
uart_stm32_dma_rx_enable(dev); |
|
|
|
/* Enable IRQ IDLE to define the end of a |
|
* RX DMA transaction. |
|
*/ |
|
LL_USART_ClearFlag_IDLE(UartInstance); |
|
LL_USART_EnableIT_IDLE(UartInstance); |
|
|
|
LL_USART_EnableIT_ERROR(UartInstance); |
|
|
|
/* Request next buffer */ |
|
async_evt_rx_buf_request(data); |
|
|
|
LOG_DBG("async rx enabled"); |
|
|
|
return ret; |
|
} |
|
|
|
static int uart_stm32_async_tx_abort(const struct device *dev) |
|
{ |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
size_t tx_buffer_length = data->dma_tx.buffer_length; |
|
struct dma_status stat; |
|
|
|
if (tx_buffer_length == 0) { |
|
return -EFAULT; |
|
} |
|
|
|
(void)k_work_cancel_delayable(&data->dma_tx.timeout_work); |
|
if (!dma_get_status(data->dma_tx.dma_dev, |
|
data->dma_tx.dma_channel, &stat)) { |
|
data->dma_tx.counter = tx_buffer_length - stat.pending_length; |
|
} |
|
|
|
dma_stop(data->dma_tx.dma_dev, data->dma_tx.dma_channel); |
|
async_evt_tx_abort(data); |
|
|
|
return 0; |
|
} |
|
|
|
static void uart_stm32_async_rx_timeout(struct k_work *work) |
|
{ |
|
struct uart_dma_stream *rx_stream = CONTAINER_OF(work, |
|
struct uart_dma_stream, timeout_work); |
|
struct uart_stm32_data *data = CONTAINER_OF(rx_stream, |
|
struct uart_stm32_data, dma_rx); |
|
const struct device *dev = data->uart_dev; |
|
|
|
LOG_DBG("rx timeout"); |
|
|
|
if (data->dma_rx.counter == data->dma_rx.buffer_length) { |
|
uart_stm32_async_rx_disable(dev); |
|
} else { |
|
uart_stm32_dma_rx_flush(dev); |
|
} |
|
} |
|
|
|
static void uart_stm32_async_tx_timeout(struct k_work *work) |
|
{ |
|
struct uart_dma_stream *tx_stream = CONTAINER_OF(work, |
|
struct uart_dma_stream, timeout_work); |
|
struct uart_stm32_data *data = CONTAINER_OF(tx_stream, |
|
struct uart_stm32_data, dma_tx); |
|
const struct device *dev = data->uart_dev; |
|
|
|
uart_stm32_async_tx_abort(dev); |
|
|
|
LOG_DBG("tx: async timeout"); |
|
} |
|
|
|
static int uart_stm32_async_rx_buf_rsp(const struct device *dev, uint8_t *buf, |
|
size_t len) |
|
{ |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
|
|
LOG_DBG("replace buffer (%d)", len); |
|
data->rx_next_buffer = buf; |
|
data->rx_next_buffer_len = len; |
|
|
|
return 0; |
|
} |
|
|
|
static int uart_stm32_async_init(const struct device *dev) |
|
{ |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
|
|
data->uart_dev = dev; |
|
|
|
if (data->dma_rx.dma_dev != NULL) { |
|
if (!device_is_ready(data->dma_rx.dma_dev)) { |
|
return -ENODEV; |
|
} |
|
} |
|
|
|
if (data->dma_tx.dma_dev != NULL) { |
|
if (!device_is_ready(data->dma_rx.dma_dev)) { |
|
return -ENODEV; |
|
} |
|
} |
|
|
|
/* Disable both TX and RX DMA requests */ |
|
uart_stm32_dma_rx_disable(dev); |
|
uart_stm32_dma_tx_disable(dev); |
|
|
|
k_work_init_delayable(&data->dma_rx.timeout_work, |
|
uart_stm32_async_rx_timeout); |
|
k_work_init_delayable(&data->dma_tx.timeout_work, |
|
uart_stm32_async_tx_timeout); |
|
|
|
/* Configure dma rx config */ |
|
memset(&data->dma_rx.blk_cfg, 0, sizeof(data->dma_rx.blk_cfg)); |
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32F1X) || \ |
|
defined(CONFIG_SOC_SERIES_STM32F2X) || \ |
|
defined(CONFIG_SOC_SERIES_STM32F4X) || \ |
|
defined(CONFIG_SOC_SERIES_STM32L1X) |
|
data->dma_rx.blk_cfg.source_address = |
|
LL_USART_DMA_GetRegAddr(UartInstance); |
|
#else |
|
data->dma_rx.blk_cfg.source_address = |
|
LL_USART_DMA_GetRegAddr(UartInstance, |
|
LL_USART_DMA_REG_DATA_RECEIVE); |
|
#endif |
|
|
|
data->dma_rx.blk_cfg.dest_address = 0; /* dest not ready */ |
|
|
|
if (data->dma_rx.src_addr_increment) { |
|
data->dma_rx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
|
} else { |
|
data->dma_rx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
|
} |
|
|
|
if (data->dma_rx.dst_addr_increment) { |
|
data->dma_rx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
|
} else { |
|
data->dma_rx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
|
} |
|
|
|
/* RX disable circular buffer */ |
|
data->dma_rx.blk_cfg.source_reload_en = 0; |
|
data->dma_rx.blk_cfg.dest_reload_en = 0; |
|
data->dma_rx.blk_cfg.fifo_mode_control = data->dma_rx.fifo_threshold; |
|
|
|
data->dma_rx.dma_cfg.head_block = &data->dma_rx.blk_cfg; |
|
data->dma_rx.dma_cfg.user_data = (void *)dev; |
|
data->rx_next_buffer = NULL; |
|
data->rx_next_buffer_len = 0; |
|
|
|
/* Configure dma tx config */ |
|
memset(&data->dma_tx.blk_cfg, 0, sizeof(data->dma_tx.blk_cfg)); |
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32F1X) || \ |
|
defined(CONFIG_SOC_SERIES_STM32F2X) || \ |
|
defined(CONFIG_SOC_SERIES_STM32F4X) || \ |
|
defined(CONFIG_SOC_SERIES_STM32L1X) |
|
data->dma_tx.blk_cfg.dest_address = |
|
LL_USART_DMA_GetRegAddr(UartInstance); |
|
#else |
|
data->dma_tx.blk_cfg.dest_address = |
|
LL_USART_DMA_GetRegAddr(UartInstance, |
|
LL_USART_DMA_REG_DATA_TRANSMIT); |
|
#endif |
|
|
|
data->dma_tx.blk_cfg.source_address = 0; /* not ready */ |
|
|
|
if (data->dma_tx.src_addr_increment) { |
|
data->dma_tx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
|
} else { |
|
data->dma_tx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
|
} |
|
|
|
if (data->dma_tx.dst_addr_increment) { |
|
data->dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
|
} else { |
|
data->dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
|
} |
|
|
|
data->dma_tx.blk_cfg.fifo_mode_control = data->dma_tx.fifo_threshold; |
|
|
|
data->dma_tx.dma_cfg.head_block = &data->dma_tx.blk_cfg; |
|
data->dma_tx.dma_cfg.user_data = (void *)dev; |
|
|
|
return 0; |
|
} |
|
|
|
#endif /* CONFIG_UART_ASYNC_API */ |
|
|
|
static const struct uart_driver_api uart_stm32_driver_api = { |
|
.poll_in = uart_stm32_poll_in, |
|
.poll_out = uart_stm32_poll_out, |
|
.err_check = uart_stm32_err_check, |
|
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE |
|
.configure = uart_stm32_configure, |
|
.config_get = uart_stm32_config_get, |
|
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */ |
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN |
|
.fifo_fill = uart_stm32_fifo_fill, |
|
.fifo_read = uart_stm32_fifo_read, |
|
.irq_tx_enable = uart_stm32_irq_tx_enable, |
|
.irq_tx_disable = uart_stm32_irq_tx_disable, |
|
.irq_tx_ready = uart_stm32_irq_tx_ready, |
|
.irq_tx_complete = uart_stm32_irq_tx_complete, |
|
.irq_rx_enable = uart_stm32_irq_rx_enable, |
|
.irq_rx_disable = uart_stm32_irq_rx_disable, |
|
.irq_rx_ready = uart_stm32_irq_rx_ready, |
|
.irq_err_enable = uart_stm32_irq_err_enable, |
|
.irq_err_disable = uart_stm32_irq_err_disable, |
|
.irq_is_pending = uart_stm32_irq_is_pending, |
|
.irq_update = uart_stm32_irq_update, |
|
.irq_callback_set = uart_stm32_irq_callback_set, |
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */ |
|
#ifdef CONFIG_UART_ASYNC_API |
|
.callback_set = uart_stm32_async_callback_set, |
|
.tx = uart_stm32_async_tx, |
|
.tx_abort = uart_stm32_async_tx_abort, |
|
.rx_enable = uart_stm32_async_rx_enable, |
|
.rx_disable = uart_stm32_async_rx_disable, |
|
.rx_buf_rsp = uart_stm32_async_rx_buf_rsp, |
|
#endif /* CONFIG_UART_ASYNC_API */ |
|
}; |
|
|
|
/** |
|
* @brief Initialize UART channel |
|
* |
|
* This routine is called to reset the chip in a quiescent state. |
|
* It is assumed that this function is called only once per UART. |
|
* |
|
* @param dev UART device struct |
|
* |
|
* @return 0 |
|
*/ |
|
static int uart_stm32_init(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = DEV_CFG(dev); |
|
struct uart_stm32_data *data = DEV_DATA(dev); |
|
USART_TypeDef *UartInstance = UART_STRUCT(dev); |
|
uint32_t ll_parity; |
|
uint32_t ll_datawidth; |
|
int err; |
|
|
|
__uart_stm32_get_clock(dev); |
|
/* enable clock */ |
|
if (clock_control_on(data->clock, |
|
(clock_control_subsys_t *)&config->pclken) != 0) { |
|
return -EIO; |
|
} |
|
|
|
/* Configure dt provided device signals when available */ |
|
err = stm32_dt_pinctrl_configure(config->pinctrl_list, |
|
config->pinctrl_list_size, |
|
(uint32_t)UART_STRUCT(dev)); |
|
if (err < 0) { |
|
return err; |
|
} |
|
|
|
LL_USART_Disable(UartInstance); |
|
|
|
/* TX/RX direction */ |
|
LL_USART_SetTransferDirection(UartInstance, |
|
LL_USART_DIRECTION_TX_RX); |
|
|
|
/* Determine the datawidth and parity. If we use other parity than |
|
* 'none' we must use datawidth = 9 (to get 8 databit + 1 parity bit). |
|
*/ |
|
if (config->parity == 2) { |
|
/* 8 databit, 1 parity bit, parity even */ |
|
ll_parity = LL_USART_PARITY_EVEN; |
|
ll_datawidth = LL_USART_DATAWIDTH_9B; |
|
} else if (config->parity == 1) { |
|
/* 8 databit, 1 parity bit, parity odd */ |
|
ll_parity = LL_USART_PARITY_ODD; |
|
ll_datawidth = LL_USART_DATAWIDTH_9B; |
|
} else { /* Default to 8N0, but show warning if invalid value */ |
|
if (config->parity != 0) { |
|
LOG_WRN("Invalid parity setting '%d'." |
|
"Defaulting to 'none'.", config->parity); |
|
} |
|
/* 8 databit, parity none */ |
|
ll_parity = LL_USART_PARITY_NONE; |
|
ll_datawidth = LL_USART_DATAWIDTH_8B; |
|
} |
|
|
|
/* Set datawidth and parity, 1 start bit, 1 stop bit */ |
|
LL_USART_ConfigCharacter(UartInstance, |
|
ll_datawidth, |
|
ll_parity, |
|
LL_USART_STOPBITS_1); |
|
|
|
if (config->hw_flow_control) { |
|
uart_stm32_set_hwctrl(dev, LL_USART_HWCONTROL_RTS_CTS); |
|
} |
|
|
|
/* Set the default baudrate */ |
|
uart_stm32_set_baudrate(dev, data->baud_rate); |
|
|
|
LL_USART_Enable(UartInstance); |
|
|
|
#ifdef USART_ISR_TEACK |
|
/* Wait until TEACK flag is set */ |
|
while (!(LL_USART_IsActiveFlag_TEACK(UartInstance))) { |
|
} |
|
#endif /* !USART_ISR_TEACK */ |
|
|
|
#ifdef USART_ISR_REACK |
|
/* Wait until REACK flag is set */ |
|
while (!(LL_USART_IsActiveFlag_REACK(UartInstance))) { |
|
} |
|
#endif /* !USART_ISR_REACK */ |
|
|
|
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) |
|
config->uconf.irq_config_func(dev); |
|
#elif defined(CONFIG_PM) |
|
config->irq_config_func(dev); |
|
#endif /* defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) */ |
|
|
|
#ifdef CONFIG_UART_ASYNC_API |
|
return uart_stm32_async_init(dev); |
|
#else |
|
return 0; |
|
#endif |
|
} |
|
|
|
#ifdef CONFIG_UART_ASYNC_API |
|
|
|
/* src_dev and dest_dev should be 'MEMORY' or 'PERIPHERAL'. */ |
|
#define UART_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \ |
|
.dma_dev = DEVICE_DT_GET(STM32_DMA_CTLR(index, dir)), \ |
|
.dma_channel = DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \ |
|
.dma_cfg = { \ |
|
.dma_slot = STM32_DMA_SLOT(index, dir, slot),\ |
|
.channel_direction = STM32_DMA_CONFIG_DIRECTION( \ |
|
STM32_DMA_CHANNEL_CONFIG(index, dir)),\ |
|
.channel_priority = STM32_DMA_CONFIG_PRIORITY( \ |
|
STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
|
.source_data_size = STM32_DMA_CONFIG_##src_dev##_DATA_SIZE(\ |
|
STM32_DMA_CHANNEL_CONFIG(index, dir)),\ |
|
.dest_data_size = STM32_DMA_CONFIG_##dest_dev##_DATA_SIZE(\ |
|
STM32_DMA_CHANNEL_CONFIG(index, dir)),\ |
|
.source_burst_length = 1, /* SINGLE transfer */ \ |
|
.dest_burst_length = 1, \ |
|
.block_count = 1, \ |
|
.dma_callback = uart_stm32_dma_##dir##_cb, \ |
|
}, \ |
|
.src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC( \ |
|
STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
|
.dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC( \ |
|
STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
|
.fifo_threshold = STM32_DMA_FEATURES_FIFO_THRESHOLD( \ |
|
STM32_DMA_FEATURES(index, dir)), \ |
|
|
|
#endif |
|
|
|
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) || \ |
|
defined(CONFIG_PM) |
|
#define STM32_UART_IRQ_HANDLER_DECL(index) \ |
|
static void uart_stm32_irq_config_func_##index(const struct device *dev); |
|
#define STM32_UART_IRQ_HANDLER(index) \ |
|
static void uart_stm32_irq_config_func_##index(const struct device *dev) \ |
|
{ \ |
|
IRQ_CONNECT(DT_INST_IRQN(index), \ |
|
DT_INST_IRQ(index, priority), \ |
|
uart_stm32_isr, DEVICE_DT_INST_GET(index), \ |
|
0); \ |
|
irq_enable(DT_INST_IRQN(index)); \ |
|
} |
|
#else |
|
#define STM32_UART_IRQ_HANDLER_DECL(index) /* Not used */ |
|
#define STM32_UART_IRQ_HANDLER(index) /* Not used */ |
|
#endif |
|
|
|
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) |
|
#define STM32_UART_IRQ_HANDLER_FUNC(index) \ |
|
.irq_config_func = uart_stm32_irq_config_func_##index, |
|
#define STM32_UART_POLL_IRQ_HANDLER_FUNC(index) /* Not used */ |
|
#elif defined(CONFIG_PM) |
|
#define STM32_UART_IRQ_HANDLER_FUNC(index) /* Not used */ |
|
#define STM32_UART_POLL_IRQ_HANDLER_FUNC(index) \ |
|
.irq_config_func = uart_stm32_irq_config_func_##index, |
|
#else |
|
#define STM32_UART_IRQ_HANDLER_FUNC(index) /* Not used */ |
|
#define STM32_UART_POLL_IRQ_HANDLER_FUNC(index) /* Not used */ |
|
#endif |
|
|
|
#ifdef CONFIG_UART_ASYNC_API |
|
#define UART_DMA_CHANNEL(index, dir, DIR, src, dest) \ |
|
.dma_##dir = { \ |
|
COND_CODE_1(DT_INST_DMAS_HAS_NAME(index, dir), \ |
|
(UART_DMA_CHANNEL_INIT(index, dir, DIR, src, dest)), \ |
|
(NULL)) \ |
|
}, |
|
|
|
#else |
|
#define UART_DMA_CHANNEL(index, dir, DIR, src, dest) |
|
#endif |
|
|
|
#define STM32_UART_INIT(index) \ |
|
STM32_UART_IRQ_HANDLER_DECL(index) \ |
|
\ |
|
static const struct soc_gpio_pinctrl uart_pins_##index[] = \ |
|
ST_STM32_DT_INST_PINCTRL(index, 0); \ |
|
\ |
|
static const struct uart_stm32_config uart_stm32_cfg_##index = { \ |
|
.uconf = { \ |
|
.base = (uint8_t *)DT_INST_REG_ADDR(index), \ |
|
STM32_UART_IRQ_HANDLER_FUNC(index) \ |
|
}, \ |
|
.pclken = { .bus = DT_INST_CLOCKS_CELL(index, bus), \ |
|
.enr = DT_INST_CLOCKS_CELL(index, bits) \ |
|
}, \ |
|
.hw_flow_control = DT_INST_PROP(index, hw_flow_control), \ |
|
.parity = DT_INST_ENUM_IDX_OR(index, parity, UART_CFG_PARITY_NONE), \ |
|
STM32_UART_POLL_IRQ_HANDLER_FUNC(index) \ |
|
.pinctrl_list = uart_pins_##index, \ |
|
.pinctrl_list_size = ARRAY_SIZE(uart_pins_##index), \ |
|
}; \ |
|
\ |
|
static struct uart_stm32_data uart_stm32_data_##index = { \ |
|
.baud_rate = DT_INST_PROP(index, current_speed), \ |
|
UART_DMA_CHANNEL(index, rx, RX, PERIPHERAL, MEMORY) \ |
|
UART_DMA_CHANNEL(index, tx, TX, MEMORY, PERIPHERAL) \ |
|
}; \ |
|
\ |
|
DEVICE_DT_INST_DEFINE(index, \ |
|
&uart_stm32_init, \ |
|
NULL, \ |
|
&uart_stm32_data_##index, &uart_stm32_cfg_##index, \ |
|
PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, \ |
|
&uart_stm32_driver_api); \ |
|
\ |
|
STM32_UART_IRQ_HANDLER(index) |
|
|
|
DT_INST_FOREACH_STATUS_OKAY(STM32_UART_INIT)
|
|
|