You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1822 lines
46 KiB
1822 lines
46 KiB
/* |
|
* Copyright (c) 2018 Intel Corporation |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
#include <zephyr/kernel.h> |
|
#include <ksched.h> |
|
#include <zephyr/spinlock.h> |
|
#include <wait_q.h> |
|
#include <kthread.h> |
|
#include <priority_q.h> |
|
#include <kswap.h> |
|
#include <kernel_arch_func.h> |
|
#include <zephyr/internal/syscall_handler.h> |
|
#include <zephyr/drivers/timer/system_timer.h> |
|
#include <stdbool.h> |
|
#include <kernel_internal.h> |
|
#include <zephyr/logging/log.h> |
|
#include <zephyr/sys/atomic.h> |
|
#include <zephyr/sys/math_extras.h> |
|
#include <zephyr/timing/timing.h> |
|
#include <zephyr/sys/util.h> |
|
|
|
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL); |
|
|
|
struct k_spinlock _sched_spinlock; |
|
|
|
static void update_cache(int preempt_ok); |
|
static void halt_thread(struct k_thread *thread, uint8_t new_state); |
|
static void add_to_waitq_locked(struct k_thread *thread, _wait_q_t *wait_q); |
|
|
|
|
|
|
|
static inline int is_preempt(struct k_thread *thread) |
|
{ |
|
/* explanation in kernel_struct.h */ |
|
return thread->base.preempt <= _PREEMPT_THRESHOLD; |
|
} |
|
|
|
BUILD_ASSERT(CONFIG_NUM_COOP_PRIORITIES >= CONFIG_NUM_METAIRQ_PRIORITIES, |
|
"You need to provide at least as many CONFIG_NUM_COOP_PRIORITIES as " |
|
"CONFIG_NUM_METAIRQ_PRIORITIES as Meta IRQs are just a special class of cooperative " |
|
"threads."); |
|
|
|
static inline int is_metairq(struct k_thread *thread) |
|
{ |
|
#if CONFIG_NUM_METAIRQ_PRIORITIES > 0 |
|
return (thread->base.prio - K_HIGHEST_THREAD_PRIO) |
|
< CONFIG_NUM_METAIRQ_PRIORITIES; |
|
#else |
|
ARG_UNUSED(thread); |
|
return 0; |
|
#endif /* CONFIG_NUM_METAIRQ_PRIORITIES */ |
|
} |
|
|
|
#if CONFIG_ASSERT |
|
static inline bool is_thread_dummy(struct k_thread *thread) |
|
{ |
|
return (thread->base.thread_state & _THREAD_DUMMY) != 0U; |
|
} |
|
#endif /* CONFIG_ASSERT */ |
|
|
|
/* |
|
* Return value same as e.g. memcmp |
|
* > 0 -> thread 1 priority > thread 2 priority |
|
* = 0 -> thread 1 priority == thread 2 priority |
|
* < 0 -> thread 1 priority < thread 2 priority |
|
* Do not rely on the actual value returned aside from the above. |
|
* (Again, like memcmp.) |
|
*/ |
|
int32_t z_sched_prio_cmp(struct k_thread *thread_1, |
|
struct k_thread *thread_2) |
|
{ |
|
/* `prio` is <32b, so the below cannot overflow. */ |
|
int32_t b1 = thread_1->base.prio; |
|
int32_t b2 = thread_2->base.prio; |
|
|
|
if (b1 != b2) { |
|
return b2 - b1; |
|
} |
|
|
|
#ifdef CONFIG_SCHED_DEADLINE |
|
/* If we assume all deadlines live within the same "half" of |
|
* the 32 bit modulus space (this is a documented API rule), |
|
* then the latest deadline in the queue minus the earliest is |
|
* guaranteed to be (2's complement) non-negative. We can |
|
* leverage that to compare the values without having to check |
|
* the current time. |
|
*/ |
|
uint32_t d1 = thread_1->base.prio_deadline; |
|
uint32_t d2 = thread_2->base.prio_deadline; |
|
|
|
if (d1 != d2) { |
|
/* Sooner deadline means higher effective priority. |
|
* Doing the calculation with unsigned types and casting |
|
* to signed isn't perfect, but at least reduces this |
|
* from UB on overflow to impdef. |
|
*/ |
|
return (int32_t) (d2 - d1); |
|
} |
|
#endif /* CONFIG_SCHED_DEADLINE */ |
|
return 0; |
|
} |
|
|
|
static ALWAYS_INLINE bool should_preempt(struct k_thread *thread, |
|
int preempt_ok) |
|
{ |
|
/* Preemption is OK if it's being explicitly allowed by |
|
* software state (e.g. the thread called k_yield()) |
|
*/ |
|
if (preempt_ok != 0) { |
|
return true; |
|
} |
|
|
|
__ASSERT(_current != NULL, ""); |
|
|
|
/* Or if we're pended/suspended/dummy (duh) */ |
|
if (z_is_thread_prevented_from_running(_current)) { |
|
return true; |
|
} |
|
|
|
/* Edge case on ARM where a thread can be pended out of an |
|
* interrupt handler before the "synchronous" swap starts |
|
* context switching. Platforms with atomic swap can never |
|
* hit this. |
|
*/ |
|
if (IS_ENABLED(CONFIG_SWAP_NONATOMIC) |
|
&& z_is_thread_timeout_active(thread)) { |
|
return true; |
|
} |
|
|
|
/* Otherwise we have to be running a preemptible thread or |
|
* switching to a metairq |
|
*/ |
|
if (is_preempt(_current) || is_metairq(thread)) { |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
#ifdef CONFIG_SCHED_CPU_MASK |
|
static ALWAYS_INLINE struct k_thread *_priq_dumb_mask_best(sys_dlist_t *pq) |
|
{ |
|
/* With masks enabled we need to be prepared to walk the list |
|
* looking for one we can run |
|
*/ |
|
struct k_thread *thread; |
|
|
|
SYS_DLIST_FOR_EACH_CONTAINER(pq, thread, base.qnode_dlist) { |
|
if ((thread->base.cpu_mask & BIT(_current_cpu->id)) != 0) { |
|
return thread; |
|
} |
|
} |
|
return NULL; |
|
} |
|
#endif /* CONFIG_SCHED_CPU_MASK */ |
|
|
|
#if defined(CONFIG_SCHED_DUMB) || defined(CONFIG_WAITQ_DUMB) |
|
static ALWAYS_INLINE void z_priq_dumb_add(sys_dlist_t *pq, |
|
struct k_thread *thread) |
|
{ |
|
struct k_thread *t; |
|
|
|
__ASSERT_NO_MSG(!z_is_idle_thread_object(thread)); |
|
|
|
SYS_DLIST_FOR_EACH_CONTAINER(pq, t, base.qnode_dlist) { |
|
if (z_sched_prio_cmp(thread, t) > 0) { |
|
sys_dlist_insert(&t->base.qnode_dlist, |
|
&thread->base.qnode_dlist); |
|
return; |
|
} |
|
} |
|
|
|
sys_dlist_append(pq, &thread->base.qnode_dlist); |
|
} |
|
#endif /* CONFIG_SCHED_DUMB || CONFIG_WAITQ_DUMB */ |
|
|
|
static ALWAYS_INLINE void *thread_runq(struct k_thread *thread) |
|
{ |
|
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY |
|
int cpu, m = thread->base.cpu_mask; |
|
|
|
/* Edge case: it's legal per the API to "make runnable" a |
|
* thread with all CPUs masked off (i.e. one that isn't |
|
* actually runnable!). Sort of a wart in the API and maybe |
|
* we should address this in docs/assertions instead to avoid |
|
* the extra test. |
|
*/ |
|
cpu = m == 0 ? 0 : u32_count_trailing_zeros(m); |
|
|
|
return &_kernel.cpus[cpu].ready_q.runq; |
|
#else |
|
ARG_UNUSED(thread); |
|
return &_kernel.ready_q.runq; |
|
#endif /* CONFIG_SCHED_CPU_MASK_PIN_ONLY */ |
|
} |
|
|
|
static ALWAYS_INLINE void *curr_cpu_runq(void) |
|
{ |
|
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY |
|
return &arch_curr_cpu()->ready_q.runq; |
|
#else |
|
return &_kernel.ready_q.runq; |
|
#endif /* CONFIG_SCHED_CPU_MASK_PIN_ONLY */ |
|
} |
|
|
|
static ALWAYS_INLINE void runq_add(struct k_thread *thread) |
|
{ |
|
_priq_run_add(thread_runq(thread), thread); |
|
} |
|
|
|
static ALWAYS_INLINE void runq_remove(struct k_thread *thread) |
|
{ |
|
_priq_run_remove(thread_runq(thread), thread); |
|
} |
|
|
|
static ALWAYS_INLINE struct k_thread *runq_best(void) |
|
{ |
|
return _priq_run_best(curr_cpu_runq()); |
|
} |
|
|
|
/* _current is never in the run queue until context switch on |
|
* SMP configurations, see z_requeue_current() |
|
*/ |
|
static inline bool should_queue_thread(struct k_thread *thread) |
|
{ |
|
return !IS_ENABLED(CONFIG_SMP) || thread != _current; |
|
} |
|
|
|
static ALWAYS_INLINE void queue_thread(struct k_thread *thread) |
|
{ |
|
thread->base.thread_state |= _THREAD_QUEUED; |
|
if (should_queue_thread(thread)) { |
|
runq_add(thread); |
|
} |
|
#ifdef CONFIG_SMP |
|
if (thread == _current) { |
|
/* add current to end of queue means "yield" */ |
|
_current_cpu->swap_ok = true; |
|
} |
|
#endif /* CONFIG_SMP */ |
|
} |
|
|
|
static ALWAYS_INLINE void dequeue_thread(struct k_thread *thread) |
|
{ |
|
thread->base.thread_state &= ~_THREAD_QUEUED; |
|
if (should_queue_thread(thread)) { |
|
runq_remove(thread); |
|
} |
|
} |
|
|
|
static void signal_pending_ipi(void) |
|
{ |
|
/* Synchronization note: you might think we need to lock these |
|
* two steps, but an IPI is idempotent. It's OK if we do it |
|
* twice. All we require is that if a CPU sees the flag true, |
|
* it is guaranteed to send the IPI, and if a core sets |
|
* pending_ipi, the IPI will be sent the next time through |
|
* this code. |
|
*/ |
|
#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_IPI_SUPPORTED) |
|
if (arch_num_cpus() > 1) { |
|
if (_kernel.pending_ipi) { |
|
_kernel.pending_ipi = false; |
|
arch_sched_ipi(); |
|
} |
|
} |
|
#endif /* CONFIG_SMP && CONFIG_SCHED_IPI_SUPPORTED */ |
|
} |
|
|
|
#ifdef CONFIG_SMP |
|
/* Called out of z_swap() when CONFIG_SMP. The current thread can |
|
* never live in the run queue until we are inexorably on the context |
|
* switch path on SMP, otherwise there is a deadlock condition where a |
|
* set of CPUs pick a cycle of threads to run and wait for them all to |
|
* context switch forever. |
|
*/ |
|
void z_requeue_current(struct k_thread *thread) |
|
{ |
|
if (z_is_thread_queued(thread)) { |
|
runq_add(thread); |
|
} |
|
signal_pending_ipi(); |
|
} |
|
|
|
/* Return true if the thread is aborting, else false */ |
|
static inline bool is_aborting(struct k_thread *thread) |
|
{ |
|
return (thread->base.thread_state & _THREAD_ABORTING) != 0U; |
|
} |
|
|
|
/* Return true if the thread is aborting or suspending, else false */ |
|
static inline bool is_halting(struct k_thread *thread) |
|
{ |
|
return (thread->base.thread_state & |
|
(_THREAD_ABORTING | _THREAD_SUSPENDING)) != 0U; |
|
} |
|
#endif /* CONFIG_SMP */ |
|
|
|
/* Clear the halting bits (_THREAD_ABORTING and _THREAD_SUSPENDING) */ |
|
static inline void clear_halting(struct k_thread *thread) |
|
{ |
|
thread->base.thread_state &= ~(_THREAD_ABORTING | _THREAD_SUSPENDING); |
|
} |
|
|
|
static ALWAYS_INLINE struct k_thread *next_up(void) |
|
{ |
|
#ifdef CONFIG_SMP |
|
if (is_halting(_current)) { |
|
halt_thread(_current, is_aborting(_current) ? |
|
_THREAD_DEAD : _THREAD_SUSPENDED); |
|
} |
|
#endif /* CONFIG_SMP */ |
|
|
|
struct k_thread *thread = runq_best(); |
|
|
|
#if (CONFIG_NUM_METAIRQ_PRIORITIES > 0) && \ |
|
(CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES) |
|
/* MetaIRQs must always attempt to return back to a |
|
* cooperative thread they preempted and not whatever happens |
|
* to be highest priority now. The cooperative thread was |
|
* promised it wouldn't be preempted (by non-metairq threads)! |
|
*/ |
|
struct k_thread *mirqp = _current_cpu->metairq_preempted; |
|
|
|
if (mirqp != NULL && (thread == NULL || !is_metairq(thread))) { |
|
if (!z_is_thread_prevented_from_running(mirqp)) { |
|
thread = mirqp; |
|
} else { |
|
_current_cpu->metairq_preempted = NULL; |
|
} |
|
} |
|
#endif |
|
/* CONFIG_NUM_METAIRQ_PRIORITIES > 0 && |
|
* CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES |
|
*/ |
|
|
|
#ifndef CONFIG_SMP |
|
/* In uniprocessor mode, we can leave the current thread in |
|
* the queue (actually we have to, otherwise the assembly |
|
* context switch code for all architectures would be |
|
* responsible for putting it back in z_swap and ISR return!), |
|
* which makes this choice simple. |
|
*/ |
|
return (thread != NULL) ? thread : _current_cpu->idle_thread; |
|
#else |
|
/* Under SMP, the "cache" mechanism for selecting the next |
|
* thread doesn't work, so we have more work to do to test |
|
* _current against the best choice from the queue. Here, the |
|
* thread selected above represents "the best thread that is |
|
* not current". |
|
* |
|
* Subtle note on "queued": in SMP mode, _current does not |
|
* live in the queue, so this isn't exactly the same thing as |
|
* "ready", it means "is _current already added back to the |
|
* queue such that we don't want to re-add it". |
|
*/ |
|
bool queued = z_is_thread_queued(_current); |
|
bool active = !z_is_thread_prevented_from_running(_current); |
|
|
|
if (thread == NULL) { |
|
thread = _current_cpu->idle_thread; |
|
} |
|
|
|
if (active) { |
|
int32_t cmp = z_sched_prio_cmp(_current, thread); |
|
|
|
/* Ties only switch if state says we yielded */ |
|
if ((cmp > 0) || ((cmp == 0) && !_current_cpu->swap_ok)) { |
|
thread = _current; |
|
} |
|
|
|
if (!should_preempt(thread, _current_cpu->swap_ok)) { |
|
thread = _current; |
|
} |
|
} |
|
|
|
/* Put _current back into the queue */ |
|
if (thread != _current && active && |
|
!z_is_idle_thread_object(_current) && !queued) { |
|
queue_thread(_current); |
|
} |
|
|
|
/* Take the new _current out of the queue */ |
|
if (z_is_thread_queued(thread)) { |
|
dequeue_thread(thread); |
|
} |
|
|
|
_current_cpu->swap_ok = false; |
|
return thread; |
|
#endif /* CONFIG_SMP */ |
|
} |
|
|
|
static void move_thread_to_end_of_prio_q(struct k_thread *thread) |
|
{ |
|
if (z_is_thread_queued(thread)) { |
|
dequeue_thread(thread); |
|
} |
|
queue_thread(thread); |
|
update_cache(thread == _current); |
|
} |
|
|
|
static void flag_ipi(void) |
|
{ |
|
#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_IPI_SUPPORTED) |
|
if (arch_num_cpus() > 1) { |
|
_kernel.pending_ipi = true; |
|
} |
|
#endif /* CONFIG_SMP && CONFIG_SCHED_IPI_SUPPORTED */ |
|
} |
|
|
|
#ifdef CONFIG_TIMESLICING |
|
|
|
static int slice_ticks = DIV_ROUND_UP(CONFIG_TIMESLICE_SIZE * Z_HZ_ticks, Z_HZ_ms); |
|
static int slice_max_prio = CONFIG_TIMESLICE_PRIORITY; |
|
static struct _timeout slice_timeouts[CONFIG_MP_MAX_NUM_CPUS]; |
|
static bool slice_expired[CONFIG_MP_MAX_NUM_CPUS]; |
|
|
|
#ifdef CONFIG_SWAP_NONATOMIC |
|
/* If z_swap() isn't atomic, then it's possible for a timer interrupt |
|
* to try to timeslice away _current after it has already pended |
|
* itself but before the corresponding context switch. Treat that as |
|
* a noop condition in z_time_slice(). |
|
*/ |
|
static struct k_thread *pending_current; |
|
#endif /* CONFIG_SWAP_NONATOMIC */ |
|
|
|
static inline int slice_time(struct k_thread *thread) |
|
{ |
|
int ret = slice_ticks; |
|
|
|
#ifdef CONFIG_TIMESLICE_PER_THREAD |
|
if (thread->base.slice_ticks != 0) { |
|
ret = thread->base.slice_ticks; |
|
} |
|
#else |
|
ARG_UNUSED(thread); |
|
#endif /* CONFIG_TIMESLICE_PER_THREAD */ |
|
return ret; |
|
} |
|
|
|
static inline bool sliceable(struct k_thread *thread) |
|
{ |
|
bool ret = is_preempt(thread) |
|
&& slice_time(thread) != 0 |
|
&& !z_is_prio_higher(thread->base.prio, slice_max_prio) |
|
&& !z_is_thread_prevented_from_running(thread) |
|
&& !z_is_idle_thread_object(thread); |
|
|
|
#ifdef CONFIG_TIMESLICE_PER_THREAD |
|
ret |= thread->base.slice_ticks != 0; |
|
#endif /* CONFIG_TIMESLICE_PER_THREAD */ |
|
|
|
return ret; |
|
} |
|
|
|
static void slice_timeout(struct _timeout *timeout) |
|
{ |
|
int cpu = ARRAY_INDEX(slice_timeouts, timeout); |
|
|
|
slice_expired[cpu] = true; |
|
|
|
/* We need an IPI if we just handled a timeslice expiration |
|
* for a different CPU. Ideally this would be able to target |
|
* the specific core, but that's not part of the API yet. |
|
*/ |
|
if (IS_ENABLED(CONFIG_SMP) && cpu != _current_cpu->id) { |
|
flag_ipi(); |
|
} |
|
} |
|
|
|
void z_reset_time_slice(struct k_thread *thread) |
|
{ |
|
int cpu = _current_cpu->id; |
|
|
|
z_abort_timeout(&slice_timeouts[cpu]); |
|
slice_expired[cpu] = false; |
|
if (sliceable(thread)) { |
|
z_add_timeout(&slice_timeouts[cpu], slice_timeout, |
|
K_TICKS(slice_time(thread) - 1)); |
|
} |
|
} |
|
|
|
void k_sched_time_slice_set(int32_t slice, int prio) |
|
{ |
|
K_SPINLOCK(&_sched_spinlock) { |
|
slice_ticks = k_ms_to_ticks_ceil32(slice); |
|
slice_max_prio = prio; |
|
z_reset_time_slice(_current); |
|
} |
|
} |
|
|
|
#ifdef CONFIG_TIMESLICE_PER_THREAD |
|
void k_thread_time_slice_set(struct k_thread *thread, int32_t thread_slice_ticks, |
|
k_thread_timeslice_fn_t expired, void *data) |
|
{ |
|
K_SPINLOCK(&_sched_spinlock) { |
|
thread->base.slice_ticks = thread_slice_ticks; |
|
thread->base.slice_expired = expired; |
|
thread->base.slice_data = data; |
|
} |
|
} |
|
#endif /* CONFIG_TIMESLICE_PER_THREAD */ |
|
|
|
/* Called out of each timer interrupt */ |
|
void z_time_slice(void) |
|
{ |
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); |
|
struct k_thread *curr = _current; |
|
|
|
#ifdef CONFIG_SWAP_NONATOMIC |
|
if (pending_current == curr) { |
|
z_reset_time_slice(curr); |
|
k_spin_unlock(&_sched_spinlock, key); |
|
return; |
|
} |
|
pending_current = NULL; |
|
#endif /* CONFIG_SWAP_NONATOMIC */ |
|
|
|
if (slice_expired[_current_cpu->id] && sliceable(curr)) { |
|
#ifdef CONFIG_TIMESLICE_PER_THREAD |
|
if (curr->base.slice_expired) { |
|
k_spin_unlock(&_sched_spinlock, key); |
|
curr->base.slice_expired(curr, curr->base.slice_data); |
|
key = k_spin_lock(&_sched_spinlock); |
|
} |
|
#endif /* CONFIG_TIMESLICE_PER_THREAD */ |
|
if (!z_is_thread_prevented_from_running(curr)) { |
|
move_thread_to_end_of_prio_q(curr); |
|
} |
|
z_reset_time_slice(curr); |
|
} |
|
k_spin_unlock(&_sched_spinlock, key); |
|
} |
|
#endif /* CONFIG_TIMESLICING */ |
|
|
|
/* Track cooperative threads preempted by metairqs so we can return to |
|
* them specifically. Called at the moment a new thread has been |
|
* selected to run. |
|
*/ |
|
static void update_metairq_preempt(struct k_thread *thread) |
|
{ |
|
#if (CONFIG_NUM_METAIRQ_PRIORITIES > 0) && \ |
|
(CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES) |
|
if (is_metairq(thread) && !is_metairq(_current) && |
|
!is_preempt(_current)) { |
|
/* Record new preemption */ |
|
_current_cpu->metairq_preempted = _current; |
|
} else if (!is_metairq(thread) && !z_is_idle_thread_object(thread)) { |
|
/* Returning from existing preemption */ |
|
_current_cpu->metairq_preempted = NULL; |
|
} |
|
#else |
|
ARG_UNUSED(thread); |
|
#endif |
|
/* CONFIG_NUM_METAIRQ_PRIORITIES > 0 && |
|
* CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES |
|
*/ |
|
} |
|
|
|
static void update_cache(int preempt_ok) |
|
{ |
|
#ifndef CONFIG_SMP |
|
struct k_thread *thread = next_up(); |
|
|
|
if (should_preempt(thread, preempt_ok)) { |
|
#ifdef CONFIG_TIMESLICING |
|
if (thread != _current) { |
|
z_reset_time_slice(thread); |
|
} |
|
#endif /* CONFIG_TIMESLICING */ |
|
update_metairq_preempt(thread); |
|
_kernel.ready_q.cache = thread; |
|
} else { |
|
_kernel.ready_q.cache = _current; |
|
} |
|
|
|
#else |
|
/* The way this works is that the CPU record keeps its |
|
* "cooperative swapping is OK" flag until the next reschedule |
|
* call or context switch. It doesn't need to be tracked per |
|
* thread because if the thread gets preempted for whatever |
|
* reason the scheduler will make the same decision anyway. |
|
*/ |
|
_current_cpu->swap_ok = preempt_ok; |
|
#endif /* CONFIG_SMP */ |
|
} |
|
|
|
static bool thread_active_elsewhere(struct k_thread *thread) |
|
{ |
|
/* True if the thread is currently running on another CPU. |
|
* There are more scalable designs to answer this question in |
|
* constant time, but this is fine for now. |
|
*/ |
|
#ifdef CONFIG_SMP |
|
int currcpu = _current_cpu->id; |
|
|
|
unsigned int num_cpus = arch_num_cpus(); |
|
|
|
for (int i = 0; i < num_cpus; i++) { |
|
if ((i != currcpu) && |
|
(_kernel.cpus[i].current == thread)) { |
|
return true; |
|
} |
|
} |
|
#endif /* CONFIG_SMP */ |
|
ARG_UNUSED(thread); |
|
return false; |
|
} |
|
|
|
static void ready_thread(struct k_thread *thread) |
|
{ |
|
#ifdef CONFIG_KERNEL_COHERENCE |
|
__ASSERT_NO_MSG(arch_mem_coherent(thread)); |
|
#endif /* CONFIG_KERNEL_COHERENCE */ |
|
|
|
/* If thread is queued already, do not try and added it to the |
|
* run queue again |
|
*/ |
|
if (!z_is_thread_queued(thread) && z_is_thread_ready(thread)) { |
|
SYS_PORT_TRACING_OBJ_FUNC(k_thread, sched_ready, thread); |
|
|
|
queue_thread(thread); |
|
update_cache(0); |
|
flag_ipi(); |
|
} |
|
} |
|
|
|
void z_ready_thread(struct k_thread *thread) |
|
{ |
|
K_SPINLOCK(&_sched_spinlock) { |
|
if (!thread_active_elsewhere(thread)) { |
|
ready_thread(thread); |
|
} |
|
} |
|
} |
|
|
|
void z_move_thread_to_end_of_prio_q(struct k_thread *thread) |
|
{ |
|
K_SPINLOCK(&_sched_spinlock) { |
|
move_thread_to_end_of_prio_q(thread); |
|
} |
|
} |
|
|
|
void z_sched_start(struct k_thread *thread) |
|
{ |
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); |
|
|
|
if (z_has_thread_started(thread)) { |
|
k_spin_unlock(&_sched_spinlock, key); |
|
return; |
|
} |
|
|
|
z_mark_thread_as_started(thread); |
|
ready_thread(thread); |
|
z_reschedule(&_sched_spinlock, key); |
|
} |
|
|
|
/** |
|
* @brief Halt a thread |
|
* |
|
* If the target thread is running on another CPU, flag it as needing to |
|
* abort and send an IPI (if supported) to force a schedule point and wait |
|
* until the target thread is switched out (ISRs will spin to wait and threads |
|
* will block to wait). If the target thread is not running on another CPU, |
|
* then it is safe to act immediately. |
|
* |
|
* Upon entry to this routine, the scheduler lock is already held. It is |
|
* released before this routine returns. |
|
* |
|
* @param thread Thread to suspend or abort |
|
* @param key Current key for _sched_spinlock |
|
* @param terminate True if aborting thread, false if suspending thread |
|
*/ |
|
static void z_thread_halt(struct k_thread *thread, k_spinlock_key_t key, |
|
bool terminate) |
|
{ |
|
#ifdef CONFIG_SMP |
|
if (is_halting(_current) && arch_is_in_isr()) { |
|
/* Another CPU (in an ISR) or thread is waiting for the |
|
* current thread to halt. Halt it now to help avoid a |
|
* potential deadlock. |
|
*/ |
|
halt_thread(_current, |
|
is_aborting(_current) ? _THREAD_DEAD |
|
: _THREAD_SUSPENDED); |
|
} |
|
|
|
bool active = thread_active_elsewhere(thread); |
|
|
|
if (active) { |
|
/* It's running somewhere else, flag and poke */ |
|
thread->base.thread_state |= (terminate ? _THREAD_ABORTING |
|
: _THREAD_SUSPENDING); |
|
|
|
/* We might spin to wait, so a true synchronous IPI is needed |
|
* here, not deferred! |
|
*/ |
|
#ifdef CONFIG_SCHED_IPI_SUPPORTED |
|
arch_sched_ipi(); |
|
#endif /* CONFIG_SCHED_IPI_SUPPORTED */ |
|
} |
|
|
|
if (is_halting(thread) && (thread != _current)) { |
|
if (arch_is_in_isr()) { |
|
/* ISRs can only spin waiting another CPU */ |
|
k_spin_unlock(&_sched_spinlock, key); |
|
while (is_halting(thread)) { |
|
} |
|
|
|
/* Now we know it's halting, but not necessarily |
|
* halted (suspended or aborted). Wait for the switch |
|
* to happen! |
|
*/ |
|
key = k_spin_lock(&_sched_spinlock); |
|
z_sched_switch_spin(thread); |
|
k_spin_unlock(&_sched_spinlock, key); |
|
} else if (active) { |
|
/* Threads can wait on a queue */ |
|
add_to_waitq_locked(_current, terminate ? |
|
&thread->join_queue : |
|
&thread->halt_queue); |
|
z_swap(&_sched_spinlock, key); |
|
} |
|
return; /* lock has been released */ |
|
} |
|
#endif /* CONFIG_SMP */ |
|
halt_thread(thread, terminate ? _THREAD_DEAD : _THREAD_SUSPENDED); |
|
if ((thread == _current) && !arch_is_in_isr()) { |
|
z_swap(&_sched_spinlock, key); |
|
__ASSERT(!terminate, "aborted _current back from dead"); |
|
} else { |
|
k_spin_unlock(&_sched_spinlock, key); |
|
} |
|
} |
|
|
|
void z_impl_k_thread_suspend(struct k_thread *thread) |
|
{ |
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, suspend, thread); |
|
|
|
(void)z_abort_thread_timeout(thread); |
|
|
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); |
|
|
|
if ((thread->base.thread_state & _THREAD_SUSPENDED) != 0U) { |
|
|
|
/* The target thread is already suspended. Nothing to do. */ |
|
|
|
k_spin_unlock(&_sched_spinlock, key); |
|
return; |
|
} |
|
|
|
z_thread_halt(thread, key, false); |
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, suspend, thread); |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline void z_vrfy_k_thread_suspend(struct k_thread *thread) |
|
{ |
|
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
|
z_impl_k_thread_suspend(thread); |
|
} |
|
#include <syscalls/k_thread_suspend_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
void z_impl_k_thread_resume(struct k_thread *thread) |
|
{ |
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, resume, thread); |
|
|
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); |
|
|
|
/* Do not try to resume a thread that was not suspended */ |
|
if (!z_is_thread_suspended(thread)) { |
|
k_spin_unlock(&_sched_spinlock, key); |
|
return; |
|
} |
|
|
|
z_mark_thread_as_not_suspended(thread); |
|
ready_thread(thread); |
|
|
|
z_reschedule(&_sched_spinlock, key); |
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, resume, thread); |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline void z_vrfy_k_thread_resume(struct k_thread *thread) |
|
{ |
|
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
|
z_impl_k_thread_resume(thread); |
|
} |
|
#include <syscalls/k_thread_resume_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
static _wait_q_t *pended_on_thread(struct k_thread *thread) |
|
{ |
|
__ASSERT_NO_MSG(thread->base.pended_on); |
|
|
|
return thread->base.pended_on; |
|
} |
|
|
|
static void unready_thread(struct k_thread *thread) |
|
{ |
|
if (z_is_thread_queued(thread)) { |
|
dequeue_thread(thread); |
|
} |
|
update_cache(thread == _current); |
|
} |
|
|
|
/* _sched_spinlock must be held */ |
|
static void add_to_waitq_locked(struct k_thread *thread, _wait_q_t *wait_q) |
|
{ |
|
unready_thread(thread); |
|
z_mark_thread_as_pending(thread); |
|
|
|
SYS_PORT_TRACING_FUNC(k_thread, sched_pend, thread); |
|
|
|
if (wait_q != NULL) { |
|
thread->base.pended_on = wait_q; |
|
z_priq_wait_add(&wait_q->waitq, thread); |
|
} |
|
} |
|
|
|
static void add_thread_timeout(struct k_thread *thread, k_timeout_t timeout) |
|
{ |
|
if (!K_TIMEOUT_EQ(timeout, K_FOREVER)) { |
|
z_add_thread_timeout(thread, timeout); |
|
} |
|
} |
|
|
|
static void pend_locked(struct k_thread *thread, _wait_q_t *wait_q, |
|
k_timeout_t timeout) |
|
{ |
|
#ifdef CONFIG_KERNEL_COHERENCE |
|
__ASSERT_NO_MSG(wait_q == NULL || arch_mem_coherent(wait_q)); |
|
#endif /* CONFIG_KERNEL_COHERENCE */ |
|
add_to_waitq_locked(thread, wait_q); |
|
add_thread_timeout(thread, timeout); |
|
} |
|
|
|
void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q, |
|
k_timeout_t timeout) |
|
{ |
|
__ASSERT_NO_MSG(thread == _current || is_thread_dummy(thread)); |
|
K_SPINLOCK(&_sched_spinlock) { |
|
pend_locked(thread, wait_q, timeout); |
|
} |
|
} |
|
|
|
static inline void unpend_thread_no_timeout(struct k_thread *thread) |
|
{ |
|
_priq_wait_remove(&pended_on_thread(thread)->waitq, thread); |
|
z_mark_thread_as_not_pending(thread); |
|
thread->base.pended_on = NULL; |
|
} |
|
|
|
ALWAYS_INLINE void z_unpend_thread_no_timeout(struct k_thread *thread) |
|
{ |
|
K_SPINLOCK(&_sched_spinlock) { |
|
if (thread->base.pended_on != NULL) { |
|
unpend_thread_no_timeout(thread); |
|
} |
|
} |
|
} |
|
|
|
void z_sched_wake_thread(struct k_thread *thread, bool is_timeout) |
|
{ |
|
K_SPINLOCK(&_sched_spinlock) { |
|
bool killed = (thread->base.thread_state & |
|
(_THREAD_DEAD | _THREAD_ABORTING)); |
|
|
|
#ifdef CONFIG_EVENTS |
|
bool do_nothing = thread->no_wake_on_timeout && is_timeout; |
|
|
|
thread->no_wake_on_timeout = false; |
|
|
|
if (do_nothing) { |
|
continue; |
|
} |
|
#endif /* CONFIG_EVENTS */ |
|
|
|
if (!killed) { |
|
/* The thread is not being killed */ |
|
if (thread->base.pended_on != NULL) { |
|
unpend_thread_no_timeout(thread); |
|
} |
|
z_mark_thread_as_started(thread); |
|
if (is_timeout) { |
|
z_mark_thread_as_not_suspended(thread); |
|
} |
|
ready_thread(thread); |
|
} |
|
} |
|
|
|
} |
|
|
|
#ifdef CONFIG_SYS_CLOCK_EXISTS |
|
/* Timeout handler for *_thread_timeout() APIs */ |
|
void z_thread_timeout(struct _timeout *timeout) |
|
{ |
|
struct k_thread *thread = CONTAINER_OF(timeout, |
|
struct k_thread, base.timeout); |
|
|
|
z_sched_wake_thread(thread, true); |
|
} |
|
#endif /* CONFIG_SYS_CLOCK_EXISTS */ |
|
|
|
int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key, |
|
_wait_q_t *wait_q, k_timeout_t timeout) |
|
{ |
|
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC) |
|
pending_current = _current; |
|
#endif /* CONFIG_TIMESLICING && CONFIG_SWAP_NONATOMIC */ |
|
__ASSERT_NO_MSG(sizeof(_sched_spinlock) == 0 || lock != &_sched_spinlock); |
|
|
|
/* We do a "lock swap" prior to calling z_swap(), such that |
|
* the caller's lock gets released as desired. But we ensure |
|
* that we hold the scheduler lock and leave local interrupts |
|
* masked until we reach the context swich. z_swap() itself |
|
* has similar code; the duplication is because it's a legacy |
|
* API that doesn't expect to be called with scheduler lock |
|
* held. |
|
*/ |
|
(void) k_spin_lock(&_sched_spinlock); |
|
pend_locked(_current, wait_q, timeout); |
|
k_spin_release(lock); |
|
return z_swap(&_sched_spinlock, key); |
|
} |
|
|
|
struct k_thread *z_unpend1_no_timeout(_wait_q_t *wait_q) |
|
{ |
|
struct k_thread *thread = NULL; |
|
|
|
K_SPINLOCK(&_sched_spinlock) { |
|
thread = _priq_wait_best(&wait_q->waitq); |
|
|
|
if (thread != NULL) { |
|
unpend_thread_no_timeout(thread); |
|
} |
|
} |
|
|
|
return thread; |
|
} |
|
|
|
struct k_thread *z_unpend_first_thread(_wait_q_t *wait_q) |
|
{ |
|
struct k_thread *thread = NULL; |
|
|
|
K_SPINLOCK(&_sched_spinlock) { |
|
thread = _priq_wait_best(&wait_q->waitq); |
|
|
|
if (thread != NULL) { |
|
unpend_thread_no_timeout(thread); |
|
(void)z_abort_thread_timeout(thread); |
|
} |
|
} |
|
|
|
return thread; |
|
} |
|
|
|
void z_unpend_thread(struct k_thread *thread) |
|
{ |
|
z_unpend_thread_no_timeout(thread); |
|
(void)z_abort_thread_timeout(thread); |
|
} |
|
|
|
/* Priority set utility that does no rescheduling, it just changes the |
|
* run queue state, returning true if a reschedule is needed later. |
|
*/ |
|
bool z_thread_prio_set(struct k_thread *thread, int prio) |
|
{ |
|
bool need_sched = 0; |
|
|
|
K_SPINLOCK(&_sched_spinlock) { |
|
need_sched = z_is_thread_ready(thread); |
|
|
|
if (need_sched) { |
|
/* Don't requeue on SMP if it's the running thread */ |
|
if (!IS_ENABLED(CONFIG_SMP) || z_is_thread_queued(thread)) { |
|
dequeue_thread(thread); |
|
thread->base.prio = prio; |
|
queue_thread(thread); |
|
} else { |
|
thread->base.prio = prio; |
|
} |
|
update_cache(1); |
|
} else { |
|
thread->base.prio = prio; |
|
} |
|
} |
|
|
|
SYS_PORT_TRACING_OBJ_FUNC(k_thread, sched_priority_set, thread, prio); |
|
|
|
return need_sched; |
|
} |
|
|
|
static inline bool resched(uint32_t key) |
|
{ |
|
#ifdef CONFIG_SMP |
|
_current_cpu->swap_ok = 0; |
|
#endif /* CONFIG_SMP */ |
|
|
|
return arch_irq_unlocked(key) && !arch_is_in_isr(); |
|
} |
|
|
|
/* |
|
* Check if the next ready thread is the same as the current thread |
|
* and save the trip if true. |
|
*/ |
|
static inline bool need_swap(void) |
|
{ |
|
/* the SMP case will be handled in C based z_swap() */ |
|
#ifdef CONFIG_SMP |
|
return true; |
|
#else |
|
struct k_thread *new_thread; |
|
|
|
/* Check if the next ready thread is the same as the current thread */ |
|
new_thread = _kernel.ready_q.cache; |
|
return new_thread != _current; |
|
#endif /* CONFIG_SMP */ |
|
} |
|
|
|
void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key) |
|
{ |
|
if (resched(key.key) && need_swap()) { |
|
z_swap(lock, key); |
|
} else { |
|
k_spin_unlock(lock, key); |
|
signal_pending_ipi(); |
|
} |
|
} |
|
|
|
void z_reschedule_irqlock(uint32_t key) |
|
{ |
|
if (resched(key) && need_swap()) { |
|
z_swap_irqlock(key); |
|
} else { |
|
irq_unlock(key); |
|
signal_pending_ipi(); |
|
} |
|
} |
|
|
|
void k_sched_lock(void) |
|
{ |
|
K_SPINLOCK(&_sched_spinlock) { |
|
SYS_PORT_TRACING_FUNC(k_thread, sched_lock); |
|
|
|
z_sched_lock(); |
|
} |
|
} |
|
|
|
void k_sched_unlock(void) |
|
{ |
|
K_SPINLOCK(&_sched_spinlock) { |
|
__ASSERT(_current->base.sched_locked != 0U, ""); |
|
__ASSERT(!arch_is_in_isr(), ""); |
|
|
|
++_current->base.sched_locked; |
|
update_cache(0); |
|
} |
|
|
|
LOG_DBG("scheduler unlocked (%p:%d)", |
|
_current, _current->base.sched_locked); |
|
|
|
SYS_PORT_TRACING_FUNC(k_thread, sched_unlock); |
|
|
|
z_reschedule_unlocked(); |
|
} |
|
|
|
struct k_thread *z_swap_next_thread(void) |
|
{ |
|
#ifdef CONFIG_SMP |
|
struct k_thread *ret = next_up(); |
|
|
|
if (ret == _current) { |
|
/* When not swapping, have to signal IPIs here. In |
|
* the context switch case it must happen later, after |
|
* _current gets requeued. |
|
*/ |
|
signal_pending_ipi(); |
|
} |
|
return ret; |
|
#else |
|
return _kernel.ready_q.cache; |
|
#endif /* CONFIG_SMP */ |
|
} |
|
|
|
#ifdef CONFIG_USE_SWITCH |
|
/* Just a wrapper around _current = xxx with tracing */ |
|
static inline void set_current(struct k_thread *new_thread) |
|
{ |
|
z_thread_mark_switched_out(); |
|
_current_cpu->current = new_thread; |
|
} |
|
|
|
/** |
|
* @brief Determine next thread to execute upon completion of an interrupt |
|
* |
|
* Thread preemption is performed by context switching after the completion |
|
* of a non-recursed interrupt. This function determines which thread to |
|
* switch to if any. This function accepts as @p interrupted either: |
|
* |
|
* - The handle for the interrupted thread in which case the thread's context |
|
* must already be fully saved and ready to be picked up by a different CPU. |
|
* |
|
* - NULL if more work is required to fully save the thread's state after |
|
* it is known that a new thread is to be scheduled. It is up to the caller |
|
* to store the handle resulting from the thread that is being switched out |
|
* in that thread's "switch_handle" field after its |
|
* context has fully been saved, following the same requirements as with |
|
* the @ref arch_switch() function. |
|
* |
|
* If a new thread needs to be scheduled then its handle is returned. |
|
* Otherwise the same value provided as @p interrupted is returned back. |
|
* Those handles are the same opaque types used by the @ref arch_switch() |
|
* function. |
|
* |
|
* @warning |
|
* The @ref _current value may have changed after this call and not refer |
|
* to the interrupted thread anymore. It might be necessary to make a local |
|
* copy before calling this function. |
|
* |
|
* @param interrupted Handle for the thread that was interrupted or NULL. |
|
* @retval Handle for the next thread to execute, or @p interrupted when |
|
* no new thread is to be scheduled. |
|
*/ |
|
void *z_get_next_switch_handle(void *interrupted) |
|
{ |
|
z_check_stack_sentinel(); |
|
|
|
#ifdef CONFIG_SMP |
|
void *ret = NULL; |
|
|
|
K_SPINLOCK(&_sched_spinlock) { |
|
struct k_thread *old_thread = _current, *new_thread; |
|
|
|
if (IS_ENABLED(CONFIG_SMP)) { |
|
old_thread->switch_handle = NULL; |
|
} |
|
new_thread = next_up(); |
|
|
|
z_sched_usage_switch(new_thread); |
|
|
|
if (old_thread != new_thread) { |
|
update_metairq_preempt(new_thread); |
|
z_sched_switch_spin(new_thread); |
|
arch_cohere_stacks(old_thread, interrupted, new_thread); |
|
|
|
_current_cpu->swap_ok = 0; |
|
set_current(new_thread); |
|
|
|
#ifdef CONFIG_TIMESLICING |
|
z_reset_time_slice(new_thread); |
|
#endif /* CONFIG_TIMESLICING */ |
|
|
|
#ifdef CONFIG_SPIN_VALIDATE |
|
/* Changed _current! Update the spinlock |
|
* bookkeeping so the validation doesn't get |
|
* confused when the "wrong" thread tries to |
|
* release the lock. |
|
*/ |
|
z_spin_lock_set_owner(&_sched_spinlock); |
|
#endif /* CONFIG_SPIN_VALIDATE */ |
|
|
|
/* A queued (runnable) old/current thread |
|
* needs to be added back to the run queue |
|
* here, and atomically with its switch handle |
|
* being set below. This is safe now, as we |
|
* will not return into it. |
|
*/ |
|
if (z_is_thread_queued(old_thread)) { |
|
runq_add(old_thread); |
|
} |
|
} |
|
old_thread->switch_handle = interrupted; |
|
ret = new_thread->switch_handle; |
|
if (IS_ENABLED(CONFIG_SMP)) { |
|
/* Active threads MUST have a null here */ |
|
new_thread->switch_handle = NULL; |
|
} |
|
} |
|
signal_pending_ipi(); |
|
return ret; |
|
#else |
|
z_sched_usage_switch(_kernel.ready_q.cache); |
|
_current->switch_handle = interrupted; |
|
set_current(_kernel.ready_q.cache); |
|
return _current->switch_handle; |
|
#endif /* CONFIG_SMP */ |
|
} |
|
#endif /* CONFIG_USE_SWITCH */ |
|
|
|
int z_unpend_all(_wait_q_t *wait_q) |
|
{ |
|
int need_sched = 0; |
|
struct k_thread *thread; |
|
|
|
while ((thread = z_waitq_head(wait_q)) != NULL) { |
|
z_unpend_thread(thread); |
|
z_ready_thread(thread); |
|
need_sched = 1; |
|
} |
|
|
|
return need_sched; |
|
} |
|
|
|
void init_ready_q(struct _ready_q *ready_q) |
|
{ |
|
#if defined(CONFIG_SCHED_SCALABLE) |
|
ready_q->runq = (struct _priq_rb) { |
|
.tree = { |
|
.lessthan_fn = z_priq_rb_lessthan, |
|
} |
|
}; |
|
#elif defined(CONFIG_SCHED_MULTIQ) |
|
for (int i = 0; i < ARRAY_SIZE(_kernel.ready_q.runq.queues); i++) { |
|
sys_dlist_init(&ready_q->runq.queues[i]); |
|
} |
|
#else |
|
sys_dlist_init(&ready_q->runq); |
|
#endif |
|
} |
|
|
|
void z_sched_init(void) |
|
{ |
|
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY |
|
for (int i = 0; i < CONFIG_MP_MAX_NUM_CPUS; i++) { |
|
init_ready_q(&_kernel.cpus[i].ready_q); |
|
} |
|
#else |
|
init_ready_q(&_kernel.ready_q); |
|
#endif /* CONFIG_SCHED_CPU_MASK_PIN_ONLY */ |
|
} |
|
|
|
int z_impl_k_thread_priority_get(k_tid_t thread) |
|
{ |
|
return thread->base.prio; |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline int z_vrfy_k_thread_priority_get(k_tid_t thread) |
|
{ |
|
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
|
return z_impl_k_thread_priority_get(thread); |
|
} |
|
#include <syscalls/k_thread_priority_get_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
void z_impl_k_thread_priority_set(k_tid_t thread, int prio) |
|
{ |
|
/* |
|
* Use NULL, since we cannot know what the entry point is (we do not |
|
* keep track of it) and idle cannot change its priority. |
|
*/ |
|
Z_ASSERT_VALID_PRIO(prio, NULL); |
|
__ASSERT(!arch_is_in_isr(), ""); |
|
|
|
bool need_sched = z_thread_prio_set((struct k_thread *)thread, prio); |
|
|
|
flag_ipi(); |
|
if (need_sched && _current->base.sched_locked == 0U) { |
|
z_reschedule_unlocked(); |
|
} |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline void z_vrfy_k_thread_priority_set(k_tid_t thread, int prio) |
|
{ |
|
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
|
K_OOPS(K_SYSCALL_VERIFY_MSG(_is_valid_prio(prio, NULL), |
|
"invalid thread priority %d", prio)); |
|
#ifndef CONFIG_USERSPACE_THREAD_MAY_RAISE_PRIORITY |
|
K_OOPS(K_SYSCALL_VERIFY_MSG((int8_t)prio >= thread->base.prio, |
|
"thread priority may only be downgraded (%d < %d)", |
|
prio, thread->base.prio)); |
|
#endif /* CONFIG_USERSPACE_THREAD_MAY_RAISE_PRIORITY */ |
|
z_impl_k_thread_priority_set(thread, prio); |
|
} |
|
#include <syscalls/k_thread_priority_set_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
#ifdef CONFIG_SCHED_DEADLINE |
|
void z_impl_k_thread_deadline_set(k_tid_t tid, int deadline) |
|
{ |
|
struct k_thread *thread = tid; |
|
int32_t newdl = k_cycle_get_32() + deadline; |
|
|
|
/* The prio_deadline field changes the sorting order, so can't |
|
* change it while the thread is in the run queue (dlists |
|
* actually are benign as long as we requeue it before we |
|
* release the lock, but an rbtree will blow up if we break |
|
* sorting!) |
|
*/ |
|
K_SPINLOCK(&_sched_spinlock) { |
|
if (z_is_thread_queued(thread)) { |
|
dequeue_thread(thread); |
|
thread->base.prio_deadline = newdl; |
|
queue_thread(thread); |
|
} else { |
|
thread->base.prio_deadline = newdl; |
|
} |
|
} |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline void z_vrfy_k_thread_deadline_set(k_tid_t tid, int deadline) |
|
{ |
|
struct k_thread *thread = tid; |
|
|
|
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
|
K_OOPS(K_SYSCALL_VERIFY_MSG(deadline > 0, |
|
"invalid thread deadline %d", |
|
(int)deadline)); |
|
|
|
z_impl_k_thread_deadline_set((k_tid_t)thread, deadline); |
|
} |
|
#include <syscalls/k_thread_deadline_set_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
#endif /* CONFIG_SCHED_DEADLINE */ |
|
|
|
bool k_can_yield(void) |
|
{ |
|
return !(k_is_pre_kernel() || k_is_in_isr() || |
|
z_is_idle_thread_object(_current)); |
|
} |
|
|
|
void z_impl_k_yield(void) |
|
{ |
|
__ASSERT(!arch_is_in_isr(), ""); |
|
|
|
SYS_PORT_TRACING_FUNC(k_thread, yield); |
|
|
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); |
|
|
|
if (!IS_ENABLED(CONFIG_SMP) || |
|
z_is_thread_queued(_current)) { |
|
dequeue_thread(_current); |
|
} |
|
queue_thread(_current); |
|
update_cache(1); |
|
z_swap(&_sched_spinlock, key); |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline void z_vrfy_k_yield(void) |
|
{ |
|
z_impl_k_yield(); |
|
} |
|
#include <syscalls/k_yield_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
static int32_t z_tick_sleep(k_ticks_t ticks) |
|
{ |
|
uint32_t expected_wakeup_ticks; |
|
|
|
__ASSERT(!arch_is_in_isr(), ""); |
|
|
|
LOG_DBG("thread %p for %lu ticks", _current, (unsigned long)ticks); |
|
|
|
#ifdef CONFIG_MULTITHREADING |
|
/* wait of 0 ms is treated as a 'yield' */ |
|
if (ticks == 0) { |
|
k_yield(); |
|
return 0; |
|
} |
|
#endif /* CONFIG_MULTITHREADING */ |
|
|
|
if (Z_TICK_ABS(ticks) <= 0) { |
|
expected_wakeup_ticks = ticks + sys_clock_tick_get_32(); |
|
} else { |
|
expected_wakeup_ticks = Z_TICK_ABS(ticks); |
|
} |
|
|
|
#ifdef CONFIG_MULTITHREADING |
|
k_timeout_t timeout = Z_TIMEOUT_TICKS(ticks); |
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); |
|
|
|
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC) |
|
pending_current = _current; |
|
#endif /* CONFIG_TIMESLICING && CONFIG_SWAP_NONATOMIC */ |
|
unready_thread(_current); |
|
z_add_thread_timeout(_current, timeout); |
|
z_mark_thread_as_suspended(_current); |
|
|
|
(void)z_swap(&_sched_spinlock, key); |
|
|
|
__ASSERT(!z_is_thread_state_set(_current, _THREAD_SUSPENDED), ""); |
|
|
|
ticks = (k_ticks_t)expected_wakeup_ticks - sys_clock_tick_get_32(); |
|
if (ticks > 0) { |
|
return ticks; |
|
} |
|
#else |
|
/* busy wait to be time coherent since subsystems may depend on it */ |
|
z_impl_k_busy_wait(k_ticks_to_us_ceil32(expected_wakeup_ticks)); |
|
#endif /* CONFIG_MULTITHREADING */ |
|
|
|
return 0; |
|
} |
|
|
|
int32_t z_impl_k_sleep(k_timeout_t timeout) |
|
{ |
|
k_ticks_t ticks; |
|
|
|
__ASSERT(!arch_is_in_isr(), ""); |
|
|
|
SYS_PORT_TRACING_FUNC_ENTER(k_thread, sleep, timeout); |
|
|
|
/* in case of K_FOREVER, we suspend */ |
|
if (K_TIMEOUT_EQ(timeout, K_FOREVER)) { |
|
#ifdef CONFIG_MULTITHREADING |
|
k_thread_suspend(_current); |
|
#else |
|
/* In Single Thread, just wait for an interrupt saving power */ |
|
k_cpu_idle(); |
|
#endif /* CONFIG_MULTITHREADING */ |
|
SYS_PORT_TRACING_FUNC_EXIT(k_thread, sleep, timeout, (int32_t) K_TICKS_FOREVER); |
|
|
|
return (int32_t) K_TICKS_FOREVER; |
|
} |
|
|
|
ticks = timeout.ticks; |
|
|
|
ticks = z_tick_sleep(ticks); |
|
|
|
int32_t ret = k_ticks_to_ms_ceil64(ticks); |
|
|
|
SYS_PORT_TRACING_FUNC_EXIT(k_thread, sleep, timeout, ret); |
|
|
|
return ret; |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline int32_t z_vrfy_k_sleep(k_timeout_t timeout) |
|
{ |
|
return z_impl_k_sleep(timeout); |
|
} |
|
#include <syscalls/k_sleep_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
int32_t z_impl_k_usleep(int us) |
|
{ |
|
int32_t ticks; |
|
|
|
SYS_PORT_TRACING_FUNC_ENTER(k_thread, usleep, us); |
|
|
|
ticks = k_us_to_ticks_ceil64(us); |
|
ticks = z_tick_sleep(ticks); |
|
|
|
int32_t ret = k_ticks_to_us_ceil64(ticks); |
|
|
|
SYS_PORT_TRACING_FUNC_EXIT(k_thread, usleep, us, ret); |
|
|
|
return ret; |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline int32_t z_vrfy_k_usleep(int us) |
|
{ |
|
return z_impl_k_usleep(us); |
|
} |
|
#include <syscalls/k_usleep_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
void z_impl_k_wakeup(k_tid_t thread) |
|
{ |
|
SYS_PORT_TRACING_OBJ_FUNC(k_thread, wakeup, thread); |
|
|
|
if (z_is_thread_pending(thread)) { |
|
return; |
|
} |
|
|
|
if (z_abort_thread_timeout(thread) < 0) { |
|
/* Might have just been sleeping forever */ |
|
if (thread->base.thread_state != _THREAD_SUSPENDED) { |
|
return; |
|
} |
|
} |
|
|
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); |
|
|
|
z_mark_thread_as_not_suspended(thread); |
|
|
|
if (!thread_active_elsewhere(thread)) { |
|
ready_thread(thread); |
|
} |
|
|
|
if (arch_is_in_isr()) { |
|
k_spin_unlock(&_sched_spinlock, key); |
|
} else { |
|
z_reschedule(&_sched_spinlock, key); |
|
} |
|
} |
|
|
|
#ifdef CONFIG_TRACE_SCHED_IPI |
|
extern void z_trace_sched_ipi(void); |
|
#endif /* CONFIG_TRACE_SCHED_IPI */ |
|
|
|
#ifdef CONFIG_SMP |
|
void z_sched_ipi(void) |
|
{ |
|
/* NOTE: When adding code to this, make sure this is called |
|
* at appropriate location when !CONFIG_SCHED_IPI_SUPPORTED. |
|
*/ |
|
#ifdef CONFIG_TRACE_SCHED_IPI |
|
z_trace_sched_ipi(); |
|
#endif /* CONFIG_TRACE_SCHED_IPI */ |
|
|
|
#ifdef CONFIG_TIMESLICING |
|
if (sliceable(_current)) { |
|
z_time_slice(); |
|
} |
|
#endif /* CONFIG_TIMESLICING */ |
|
} |
|
#endif /* CONFIG_SMP */ |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline void z_vrfy_k_wakeup(k_tid_t thread) |
|
{ |
|
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
|
z_impl_k_wakeup(thread); |
|
} |
|
#include <syscalls/k_wakeup_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
k_tid_t z_impl_k_sched_current_thread_query(void) |
|
{ |
|
#ifdef CONFIG_SMP |
|
/* In SMP, _current is a field read from _current_cpu, which |
|
* can race with preemption before it is read. We must lock |
|
* local interrupts when reading it. |
|
*/ |
|
unsigned int k = arch_irq_lock(); |
|
#endif /* CONFIG_SMP */ |
|
|
|
k_tid_t ret = _current_cpu->current; |
|
|
|
#ifdef CONFIG_SMP |
|
arch_irq_unlock(k); |
|
#endif /* CONFIG_SMP */ |
|
return ret; |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline k_tid_t z_vrfy_k_sched_current_thread_query(void) |
|
{ |
|
return z_impl_k_sched_current_thread_query(); |
|
} |
|
#include <syscalls/k_sched_current_thread_query_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
int z_impl_k_is_preempt_thread(void) |
|
{ |
|
return !arch_is_in_isr() && is_preempt(_current); |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline int z_vrfy_k_is_preempt_thread(void) |
|
{ |
|
return z_impl_k_is_preempt_thread(); |
|
} |
|
#include <syscalls/k_is_preempt_thread_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
static inline void unpend_all(_wait_q_t *wait_q) |
|
{ |
|
struct k_thread *thread; |
|
|
|
while ((thread = z_waitq_head(wait_q)) != NULL) { |
|
unpend_thread_no_timeout(thread); |
|
(void)z_abort_thread_timeout(thread); |
|
arch_thread_return_value_set(thread, 0); |
|
ready_thread(thread); |
|
} |
|
} |
|
|
|
#ifdef CONFIG_THREAD_ABORT_HOOK |
|
extern void thread_abort_hook(struct k_thread *thread); |
|
#endif /* CONFIG_THREAD_ABORT_HOOK */ |
|
|
|
/** |
|
* @brief Dequeues the specified thread |
|
* |
|
* Dequeues the specified thread and move it into the specified new state. |
|
* |
|
* @param thread Identify the thread to halt |
|
* @param new_state New thread state (_THREAD_DEAD or _THREAD_SUSPENDED) |
|
*/ |
|
static void halt_thread(struct k_thread *thread, uint8_t new_state) |
|
{ |
|
/* We hold the lock, and the thread is known not to be running |
|
* anywhere. |
|
*/ |
|
if ((thread->base.thread_state & new_state) == 0U) { |
|
thread->base.thread_state |= new_state; |
|
clear_halting(thread); |
|
if (z_is_thread_queued(thread)) { |
|
dequeue_thread(thread); |
|
} |
|
|
|
if (new_state == _THREAD_DEAD) { |
|
if (thread->base.pended_on != NULL) { |
|
unpend_thread_no_timeout(thread); |
|
} |
|
(void)z_abort_thread_timeout(thread); |
|
unpend_all(&thread->join_queue); |
|
} |
|
#ifdef CONFIG_SMP |
|
unpend_all(&thread->halt_queue); |
|
#endif /* CONFIG_SMP */ |
|
update_cache(1); |
|
|
|
if (new_state == _THREAD_SUSPENDED) { |
|
return; |
|
} |
|
|
|
#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING) |
|
arch_float_disable(thread); |
|
#endif /* CONFIG_FPU && CONFIG_FPU_SHARING */ |
|
|
|
SYS_PORT_TRACING_FUNC(k_thread, sched_abort, thread); |
|
|
|
z_thread_monitor_exit(thread); |
|
#ifdef CONFIG_THREAD_ABORT_HOOK |
|
thread_abort_hook(thread); |
|
#endif /* CONFIG_THREAD_ABORT_HOOK */ |
|
|
|
#ifdef CONFIG_OBJ_CORE_THREAD |
|
#ifdef CONFIG_OBJ_CORE_STATS_THREAD |
|
k_obj_core_stats_deregister(K_OBJ_CORE(thread)); |
|
#endif /* CONFIG_OBJ_CORE_STATS_THREAD */ |
|
k_obj_core_unlink(K_OBJ_CORE(thread)); |
|
#endif /* CONFIG_OBJ_CORE_THREAD */ |
|
|
|
#ifdef CONFIG_USERSPACE |
|
z_mem_domain_exit_thread(thread); |
|
k_thread_perms_all_clear(thread); |
|
k_object_uninit(thread->stack_obj); |
|
k_object_uninit(thread); |
|
#endif /* CONFIG_USERSPACE */ |
|
} |
|
} |
|
|
|
void z_thread_abort(struct k_thread *thread) |
|
{ |
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); |
|
|
|
if (z_is_thread_essential(thread)) { |
|
k_spin_unlock(&_sched_spinlock, key); |
|
__ASSERT(false, "aborting essential thread %p", thread); |
|
k_panic(); |
|
return; |
|
} |
|
|
|
if ((thread->base.thread_state & _THREAD_DEAD) != 0U) { |
|
k_spin_unlock(&_sched_spinlock, key); |
|
return; |
|
} |
|
|
|
z_thread_halt(thread, key, true); |
|
} |
|
|
|
#if !defined(CONFIG_ARCH_HAS_THREAD_ABORT) |
|
void z_impl_k_thread_abort(struct k_thread *thread) |
|
{ |
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, abort, thread); |
|
|
|
z_thread_abort(thread); |
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, abort, thread); |
|
} |
|
#endif /* !CONFIG_ARCH_HAS_THREAD_ABORT */ |
|
|
|
int z_impl_k_thread_join(struct k_thread *thread, k_timeout_t timeout) |
|
{ |
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); |
|
int ret = 0; |
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, join, thread, timeout); |
|
|
|
if ((thread->base.thread_state & _THREAD_DEAD) != 0U) { |
|
z_sched_switch_spin(thread); |
|
ret = 0; |
|
} else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) { |
|
ret = -EBUSY; |
|
} else if ((thread == _current) || |
|
(thread->base.pended_on == &_current->join_queue)) { |
|
ret = -EDEADLK; |
|
} else { |
|
__ASSERT(!arch_is_in_isr(), "cannot join in ISR"); |
|
add_to_waitq_locked(_current, &thread->join_queue); |
|
add_thread_timeout(_current, timeout); |
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_thread, join, thread, timeout); |
|
ret = z_swap(&_sched_spinlock, key); |
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, join, thread, timeout, ret); |
|
|
|
return ret; |
|
} |
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, join, thread, timeout, ret); |
|
|
|
k_spin_unlock(&_sched_spinlock, key); |
|
return ret; |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
/* Special case: don't oops if the thread is uninitialized. This is because |
|
* the initialization bit does double-duty for thread objects; if false, means |
|
* the thread object is truly uninitialized, or the thread ran and exited for |
|
* some reason. |
|
* |
|
* Return true in this case indicating we should just do nothing and return |
|
* success to the caller. |
|
*/ |
|
static bool thread_obj_validate(struct k_thread *thread) |
|
{ |
|
struct k_object *ko = k_object_find(thread); |
|
int ret = k_object_validate(ko, K_OBJ_THREAD, _OBJ_INIT_TRUE); |
|
|
|
switch (ret) { |
|
case 0: |
|
return false; |
|
case -EINVAL: |
|
return true; |
|
default: |
|
#ifdef CONFIG_LOG |
|
k_object_dump_error(ret, thread, ko, K_OBJ_THREAD); |
|
#endif /* CONFIG_LOG */ |
|
K_OOPS(K_SYSCALL_VERIFY_MSG(ret, "access denied")); |
|
} |
|
CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ |
|
} |
|
|
|
static inline int z_vrfy_k_thread_join(struct k_thread *thread, |
|
k_timeout_t timeout) |
|
{ |
|
if (thread_obj_validate(thread)) { |
|
return 0; |
|
} |
|
|
|
return z_impl_k_thread_join(thread, timeout); |
|
} |
|
#include <syscalls/k_thread_join_mrsh.c> |
|
|
|
static inline void z_vrfy_k_thread_abort(k_tid_t thread) |
|
{ |
|
if (thread_obj_validate(thread)) { |
|
return; |
|
} |
|
|
|
K_OOPS(K_SYSCALL_VERIFY_MSG(!z_is_thread_essential(thread), |
|
"aborting essential thread %p", thread)); |
|
|
|
z_impl_k_thread_abort((struct k_thread *)thread); |
|
} |
|
#include <syscalls/k_thread_abort_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
/* |
|
* future scheduler.h API implementations |
|
*/ |
|
bool z_sched_wake(_wait_q_t *wait_q, int swap_retval, void *swap_data) |
|
{ |
|
struct k_thread *thread; |
|
bool ret = false; |
|
|
|
K_SPINLOCK(&_sched_spinlock) { |
|
thread = _priq_wait_best(&wait_q->waitq); |
|
|
|
if (thread != NULL) { |
|
z_thread_return_value_set_with_data(thread, |
|
swap_retval, |
|
swap_data); |
|
unpend_thread_no_timeout(thread); |
|
(void)z_abort_thread_timeout(thread); |
|
ready_thread(thread); |
|
ret = true; |
|
} |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
int z_sched_wait(struct k_spinlock *lock, k_spinlock_key_t key, |
|
_wait_q_t *wait_q, k_timeout_t timeout, void **data) |
|
{ |
|
int ret = z_pend_curr(lock, key, wait_q, timeout); |
|
|
|
if (data != NULL) { |
|
*data = _current->base.swap_data; |
|
} |
|
return ret; |
|
} |
|
|
|
int z_sched_waitq_walk(_wait_q_t *wait_q, |
|
int (*func)(struct k_thread *, void *), void *data) |
|
{ |
|
struct k_thread *thread; |
|
int status = 0; |
|
|
|
K_SPINLOCK(&_sched_spinlock) { |
|
_WAIT_Q_FOR_EACH(wait_q, thread) { |
|
|
|
/* |
|
* Invoke the callback function on each waiting thread |
|
* for as long as there are both waiting threads AND |
|
* it returns 0. |
|
*/ |
|
|
|
status = func(thread, data); |
|
if (status != 0) { |
|
break; |
|
} |
|
} |
|
} |
|
|
|
return status; |
|
}
|
|
|