Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

282 lines
6.7 KiB

/*
* Copyright (c) 2016 BayLibre, SAS
* Copyright (c) 2017 Linaro Ltd
* Copyright (c) 2024 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <errno.h>
#include <soc.h>
#include <stm32_ll_i2c.h>
#include <stm32_ll_rcc.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/i2c/rtio.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/kernel.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/device_runtime.h>
#include <zephyr/sys/util.h>
#define LOG_LEVEL CONFIG_I2C_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(i2c_ll_stm32_v2_rtio);
#include "i2c_ll_stm32.h"
#include "i2c-priv.h"
static void i2c_stm32_disable_transfer_interrupts(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
I2C_TypeDef *i2c = cfg->i2c;
LL_I2C_DisableIT_TX(i2c);
LL_I2C_DisableIT_RX(i2c);
LL_I2C_DisableIT_STOP(i2c);
LL_I2C_DisableIT_NACK(i2c);
LL_I2C_DisableIT_TC(i2c);
LL_I2C_DisableIT_ERR(i2c);
}
static void i2c_stm32_enable_transfer_interrupts(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
I2C_TypeDef *i2c = cfg->i2c;
LL_I2C_EnableIT_STOP(i2c);
LL_I2C_EnableIT_NACK(i2c);
LL_I2C_EnableIT_TC(i2c);
LL_I2C_EnableIT_ERR(i2c);
}
static void i2c_stm32_master_mode_end(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
I2C_TypeDef *i2c = cfg->i2c;
i2c_stm32_disable_transfer_interrupts(dev);
if (LL_I2C_IsEnabledReloadMode(i2c)) {
LL_I2C_DisableReloadMode(i2c);
}
}
void i2c_stm32_event(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
struct i2c_rtio *ctx = data->ctx;
I2C_TypeDef *i2c = cfg->i2c;
int ret = 0;
if (data->xfer_len != 0) {
/* Send next byte */
if (LL_I2C_IsActiveFlag_TXIS(i2c)) {
LL_I2C_TransmitData8(i2c, *data->xfer_buf);
}
/* Receive next byte */
if (LL_I2C_IsActiveFlag_RXNE(i2c)) {
*data->xfer_buf = LL_I2C_ReceiveData8(i2c);
}
data->xfer_buf++;
data->xfer_len--;
}
/* NACK received */
if (LL_I2C_IsActiveFlag_NACK(i2c)) {
LL_I2C_ClearFlag_NACK(i2c);
/*
* AutoEndMode is always disabled in master mode,
* so send a stop condition manually
*/
LL_I2C_GenerateStopCondition(i2c);
ret = -EIO;
}
/* STOP received */
if (LL_I2C_IsActiveFlag_STOP(i2c)) {
LL_I2C_ClearFlag_STOP(i2c);
LL_I2C_DisableReloadMode(i2c);
i2c_stm32_master_mode_end(dev);
if (i2c_rtio_complete(ctx, ret)) {
i2c_stm32_start(dev);
return;
}
}
if (LL_I2C_IsActiveFlag_TC(i2c) ||
LL_I2C_IsActiveFlag_TCR(i2c)) {
/* Issue stop condition if necessary */
if ((data->xfer_flags & I2C_MSG_STOP) != 0) {
if (data->xfer_len == 0) {
LL_I2C_GenerateStopCondition(i2c);
} else {
LL_I2C_SetTransferSize(i2c, MIN(data->xfer_len, UINT8_MAX));
}
} else {
i2c_stm32_disable_transfer_interrupts(dev);
if ((data->xfer_len == 0) && i2c_rtio_complete(ctx, ret)) {
i2c_stm32_start(dev);
}
}
}
}
int i2c_stm32_error(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
struct i2c_rtio *ctx = data->ctx;
I2C_TypeDef *i2c = cfg->i2c;
int ret = 0;
if (LL_I2C_IsActiveFlag_ARLO(i2c)) {
LL_I2C_ClearFlag_ARLO(i2c);
ret = -EIO;
}
if (ret) {
i2c_stm32_master_mode_end(dev);
if (i2c_rtio_complete(ctx, ret)) {
i2c_stm32_start(dev);
}
}
return ret;
}
int i2c_stm32_msg_start(const struct device *dev, uint8_t flags,
uint8_t *buf, size_t buf_len, uint16_t i2c_addr)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
uint32_t transfer;
data->xfer_buf = buf;
data->xfer_len = buf_len;
data->xfer_flags = flags;
if ((flags & I2C_MSG_READ) != 0) {
transfer = LL_I2C_REQUEST_READ;
} else {
transfer = LL_I2C_REQUEST_WRITE;
}
if ((I2C_MSG_ADDR_10_BITS & flags) != 0) {
LL_I2C_SetMasterAddressingMode(i2c,
LL_I2C_ADDRESSING_MODE_10BIT);
LL_I2C_SetSlaveAddr(i2c, (uint32_t) i2c_addr);
} else {
LL_I2C_SetMasterAddressingMode(i2c,
LL_I2C_ADDRESSING_MODE_7BIT);
LL_I2C_SetSlaveAddr(i2c, (uint32_t) i2c_addr << 1);
}
if (buf_len > UINT8_MAX) {
LL_I2C_EnableReloadMode(i2c);
} else {
LL_I2C_DisableReloadMode(i2c);
}
LL_I2C_DisableAutoEndMode(i2c);
LL_I2C_SetTransferRequest(i2c, transfer);
LL_I2C_SetTransferSize(i2c, MIN(buf_len, UINT8_MAX));
LL_I2C_Enable(i2c);
LL_I2C_GenerateStartCondition(i2c);
i2c_stm32_enable_transfer_interrupts(dev);
if ((flags & I2C_MSG_READ) != 0) {
LL_I2C_EnableIT_RX(i2c);
} else {
LL_I2C_EnableIT_TX(i2c);
}
return 0;
}
int i2c_stm32_configure_timing(const struct device *dev, uint32_t clock)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
uint32_t i2c_hold_time_min, i2c_setup_time_min;
uint32_t i2c_h_min_time, i2c_l_min_time;
uint32_t presc = 1U;
uint32_t timing = 0U;
/* Look for an adequate preset timing value */
for (uint32_t i = 0; i < cfg->n_timings; i++) {
const struct i2c_config_timing *preset = &cfg->timings[i];
uint32_t speed = i2c_map_dt_bitrate(preset->i2c_speed);
if ((I2C_SPEED_GET(speed) == I2C_SPEED_GET(data->dev_config))
&& (preset->periph_clock == clock)) {
/* Found a matching periph clock and i2c speed */
LL_I2C_SetTiming(i2c, preset->timing_setting);
return 0;
}
}
/* No preset timing was provided, let's dynamically configure */
switch (I2C_SPEED_GET(data->dev_config)) {
case I2C_SPEED_STANDARD:
i2c_h_min_time = 4000U;
i2c_l_min_time = 4700U;
i2c_hold_time_min = 500U;
i2c_setup_time_min = 1250U;
break;
case I2C_SPEED_FAST:
i2c_h_min_time = 600U;
i2c_l_min_time = 1300U;
i2c_hold_time_min = 375U;
i2c_setup_time_min = 500U;
break;
default:
LOG_ERR("i2c: speed above \"fast\" requires manual timing configuration, "
"see \"timings\" property of st,stm32-i2c-v2 devicetree binding");
return -EINVAL;
}
/* Calculate period until prescaler matches */
do {
uint32_t t_presc = clock / presc;
uint32_t ns_presc = NSEC_PER_SEC / t_presc;
uint32_t sclh = i2c_h_min_time / ns_presc;
uint32_t scll = i2c_l_min_time / ns_presc;
uint32_t sdadel = i2c_hold_time_min / ns_presc;
uint32_t scldel = i2c_setup_time_min / ns_presc;
if ((sclh - 1) > 255 || (scll - 1) > 255) {
++presc;
continue;
}
if (sdadel > 15 || (scldel - 1) > 15) {
++presc;
continue;
}
timing = __LL_I2C_CONVERT_TIMINGS(presc - 1,
scldel - 1, sdadel, sclh - 1, scll - 1);
break;
} while (presc < 16);
if (presc >= 16U) {
LOG_DBG("I2C:failed to find prescaler value");
return -EINVAL;
}
LL_I2C_SetTiming(i2c, timing);
return 0;
}