You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
264 lines
5.0 KiB
264 lines
5.0 KiB
/* |
|
* Copyright (c) 2018 Intel Corporation |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
#include <timeout_q.h> |
|
#include <drivers/system_timer.h> |
|
#include <sys_clock.h> |
|
#include <spinlock.h> |
|
#include <ksched.h> |
|
#include <syscall_handler.h> |
|
|
|
#define LOCKED(lck) for (k_spinlock_key_t __i = {}, \ |
|
__key = k_spin_lock(lck); \ |
|
!__i.key; \ |
|
k_spin_unlock(lck, __key), __i.key = 1) |
|
|
|
static u64_t curr_tick; |
|
|
|
static sys_dlist_t timeout_list = SYS_DLIST_STATIC_INIT(&timeout_list); |
|
|
|
static struct k_spinlock timeout_lock; |
|
|
|
static bool can_wait_forever; |
|
|
|
/* Cycles left to process in the currently-executing z_clock_announce() */ |
|
static int announce_remaining; |
|
|
|
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME) |
|
int z_clock_hw_cycles_per_sec = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC; |
|
#endif |
|
|
|
static struct _timeout *first(void) |
|
{ |
|
sys_dnode_t *t = sys_dlist_peek_head(&timeout_list); |
|
|
|
return t == NULL ? NULL : CONTAINER_OF(t, struct _timeout, node); |
|
} |
|
|
|
static struct _timeout *next(struct _timeout *t) |
|
{ |
|
sys_dnode_t *n = sys_dlist_peek_next(&timeout_list, &t->node); |
|
|
|
return n == NULL ? NULL : CONTAINER_OF(n, struct _timeout, node); |
|
} |
|
|
|
static void remove_timeout(struct _timeout *t) |
|
{ |
|
if (next(t) != NULL) { |
|
next(t)->dticks += t->dticks; |
|
} |
|
|
|
sys_dlist_remove(&t->node); |
|
} |
|
|
|
static s32_t elapsed(void) |
|
{ |
|
return announce_remaining == 0 ? z_clock_elapsed() : 0; |
|
} |
|
|
|
static s32_t next_timeout(void) |
|
{ |
|
int maxw = can_wait_forever ? K_FOREVER : INT_MAX; |
|
struct _timeout *to = first(); |
|
s32_t ret = to == NULL ? maxw : max(0, to->dticks - elapsed()); |
|
|
|
#ifdef CONFIG_TIMESLICING |
|
if (_current_cpu->slice_ticks && _current_cpu->slice_ticks < ret) { |
|
ret = _current_cpu->slice_ticks; |
|
} |
|
#endif |
|
return ret; |
|
} |
|
|
|
void _add_timeout(struct _timeout *to, _timeout_func_t fn, s32_t ticks) |
|
{ |
|
__ASSERT(!sys_dnode_is_linked(&to->node), ""); |
|
to->fn = fn; |
|
ticks = max(1, ticks); |
|
|
|
LOCKED(&timeout_lock) { |
|
struct _timeout *t; |
|
|
|
to->dticks = ticks + elapsed(); |
|
for (t = first(); t != NULL; t = next(t)) { |
|
__ASSERT(t->dticks >= 0, ""); |
|
|
|
if (t->dticks > to->dticks) { |
|
t->dticks -= to->dticks; |
|
sys_dlist_insert_before(&timeout_list, |
|
&t->node, &to->node); |
|
break; |
|
} |
|
to->dticks -= t->dticks; |
|
} |
|
|
|
if (t == NULL) { |
|
sys_dlist_append(&timeout_list, &to->node); |
|
} |
|
|
|
if (to == first()) { |
|
z_clock_set_timeout(next_timeout(), false); |
|
} |
|
} |
|
} |
|
|
|
int _abort_timeout(struct _timeout *to) |
|
{ |
|
int ret = -EINVAL; |
|
|
|
LOCKED(&timeout_lock) { |
|
if (sys_dnode_is_linked(&to->node)) { |
|
remove_timeout(to); |
|
ret = 0; |
|
} |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
s32_t z_timeout_remaining(struct _timeout *timeout) |
|
{ |
|
s32_t ticks = 0; |
|
|
|
if (_is_inactive_timeout(timeout)) { |
|
return 0; |
|
} |
|
|
|
LOCKED(&timeout_lock) { |
|
for (struct _timeout *t = first(); t != NULL; t = next(t)) { |
|
ticks += t->dticks; |
|
if (timeout == t) { |
|
break; |
|
} |
|
} |
|
} |
|
|
|
return ticks; |
|
} |
|
|
|
s32_t _get_next_timeout_expiry(void) |
|
{ |
|
s32_t ret = K_FOREVER; |
|
|
|
LOCKED(&timeout_lock) { |
|
ret = next_timeout(); |
|
} |
|
return ret; |
|
} |
|
|
|
void z_set_timeout_expiry(s32_t ticks, bool idle) |
|
{ |
|
LOCKED(&timeout_lock) { |
|
int next = next_timeout(); |
|
bool sooner = (next == K_FOREVER) || (ticks < next); |
|
bool imminent = next <= 1; |
|
|
|
/* Only set new timeouts when they are sooner than |
|
* what we have. Also don't try to set a timeout when |
|
* one is about to expire: drivers have internal logic |
|
* that will bump the timeout to the "next" tick if |
|
* it's not considered to be settable as directed. |
|
*/ |
|
if (sooner && !imminent) { |
|
z_clock_set_timeout(ticks, idle); |
|
} |
|
} |
|
} |
|
|
|
void z_clock_announce(s32_t ticks) |
|
{ |
|
#ifdef CONFIG_TIMESLICING |
|
z_time_slice(ticks); |
|
#endif |
|
|
|
k_spinlock_key_t key = k_spin_lock(&timeout_lock); |
|
|
|
announce_remaining = ticks; |
|
|
|
while (first() != NULL && first()->dticks <= announce_remaining) { |
|
struct _timeout *t = first(); |
|
int dt = t->dticks; |
|
|
|
curr_tick += dt; |
|
announce_remaining -= dt; |
|
t->dticks = 0; |
|
remove_timeout(t); |
|
|
|
k_spin_unlock(&timeout_lock, key); |
|
t->fn(t); |
|
key = k_spin_lock(&timeout_lock); |
|
} |
|
|
|
if (first() != NULL) { |
|
first()->dticks -= announce_remaining; |
|
} |
|
|
|
curr_tick += announce_remaining; |
|
announce_remaining = 0; |
|
|
|
z_clock_set_timeout(_get_next_timeout_expiry(), false); |
|
|
|
k_spin_unlock(&timeout_lock, key); |
|
} |
|
|
|
int k_enable_sys_clock_always_on(void) |
|
{ |
|
int ret = !can_wait_forever; |
|
|
|
can_wait_forever = 0; |
|
return ret; |
|
} |
|
|
|
void k_disable_sys_clock_always_on(void) |
|
{ |
|
can_wait_forever = 1; |
|
} |
|
|
|
s64_t z_tick_get(void) |
|
{ |
|
u64_t t = 0U; |
|
|
|
LOCKED(&timeout_lock) { |
|
t = curr_tick + z_clock_elapsed(); |
|
} |
|
return t; |
|
} |
|
|
|
u32_t z_tick_get_32(void) |
|
{ |
|
#ifdef CONFIG_TICKLESS_KERNEL |
|
return (u32_t)z_tick_get(); |
|
#else |
|
return (u32_t)curr_tick; |
|
#endif |
|
} |
|
|
|
u32_t _impl_k_uptime_get_32(void) |
|
{ |
|
return __ticks_to_ms(z_tick_get_32()); |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
Z_SYSCALL_HANDLER(k_uptime_get_32) |
|
{ |
|
return _impl_k_uptime_get_32(); |
|
} |
|
#endif |
|
|
|
s64_t _impl_k_uptime_get(void) |
|
{ |
|
return __ticks_to_ms(z_tick_get()); |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
Z_SYSCALL_HANDLER(k_uptime_get, ret_p) |
|
{ |
|
u64_t *ret = (u64_t *)ret_p; |
|
|
|
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(ret, sizeof(*ret))); |
|
*ret = _impl_k_uptime_get(); |
|
return 0; |
|
} |
|
#endif
|
|
|