You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
349 lines
8.2 KiB
349 lines
8.2 KiB
/* |
|
* Copyright (c) 2018 Intel Corporation |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
#include <kernel.h> |
|
#include <string.h> |
|
#include <misc/__assert.h> |
|
#include <misc/mempool_base.h> |
|
#include <misc/mempool.h> |
|
|
|
static bool level_empty(struct sys_mem_pool_base *p, int l) |
|
{ |
|
return sys_dlist_is_empty(&p->levels[l].free_list); |
|
} |
|
|
|
static void *block_ptr(struct sys_mem_pool_base *p, size_t lsz, int block) |
|
{ |
|
return p->buf + lsz * block; |
|
} |
|
|
|
static int block_num(struct sys_mem_pool_base *p, void *block, int sz) |
|
{ |
|
return (block - p->buf) / sz; |
|
} |
|
|
|
/* Places a 32 bit output pointer in word, and an integer bit index |
|
* within that word as the return value |
|
*/ |
|
static int get_bit_ptr(struct sys_mem_pool_base *p, int level, int bn, |
|
u32_t **word) |
|
{ |
|
u32_t *bitarray = level <= p->max_inline_level ? |
|
&p->levels[level].bits : p->levels[level].bits_p; |
|
|
|
*word = &bitarray[bn / 32]; |
|
|
|
return bn & 0x1f; |
|
} |
|
|
|
static void set_free_bit(struct sys_mem_pool_base *p, int level, int bn) |
|
{ |
|
u32_t *word; |
|
int bit = get_bit_ptr(p, level, bn, &word); |
|
|
|
*word |= (1<<bit); |
|
} |
|
|
|
static void clear_free_bit(struct sys_mem_pool_base *p, int level, int bn) |
|
{ |
|
u32_t *word; |
|
int bit = get_bit_ptr(p, level, bn, &word); |
|
|
|
*word &= ~(1<<bit); |
|
} |
|
|
|
/* Returns all four of the free bits for the specified blocks |
|
* "partners" in the bottom 4 bits of the return value |
|
*/ |
|
static int partner_bits(struct sys_mem_pool_base *p, int level, int bn) |
|
{ |
|
u32_t *word; |
|
int bit = get_bit_ptr(p, level, bn, &word); |
|
|
|
return (*word >> (4*(bit / 4))) & 0xf; |
|
} |
|
|
|
static size_t buf_size(struct sys_mem_pool_base *p) |
|
{ |
|
return p->n_max * p->max_sz; |
|
} |
|
|
|
static bool block_fits(struct sys_mem_pool_base *p, void *block, size_t bsz) |
|
{ |
|
return (block + bsz - 1 - p->buf) < buf_size(p); |
|
} |
|
|
|
void _sys_mem_pool_base_init(struct sys_mem_pool_base *p) |
|
{ |
|
int i; |
|
size_t buflen = p->n_max * p->max_sz, sz = p->max_sz; |
|
u32_t *bits = p->buf + buflen; |
|
|
|
for (i = 0; i < p->n_levels; i++) { |
|
int nblocks = buflen / sz; |
|
|
|
sys_dlist_init(&p->levels[i].free_list); |
|
|
|
if (nblocks < 32) { |
|
p->max_inline_level = i; |
|
} else { |
|
p->levels[i].bits_p = bits; |
|
bits += (nblocks + 31)/32; |
|
} |
|
|
|
sz = _ALIGN4(sz / 4); |
|
} |
|
|
|
for (i = 0; i < p->n_max; i++) { |
|
void *block = block_ptr(p, p->max_sz, i); |
|
|
|
sys_dlist_append(&p->levels[0].free_list, block); |
|
set_free_bit(p, 0, i); |
|
} |
|
} |
|
|
|
/* A note on synchronization: |
|
* |
|
* For k_mem_pools which are interrupt safe, all manipulation of the actual |
|
* pool data happens in one of alloc_block()/free_block() or break_block(). |
|
* All of these transition between a state where the caller "holds" a block |
|
* pointer that is marked used in the store and one where she doesn't (or else |
|
* they will fail, e.g. if there isn't a free block). So that is the basic |
|
* operation that needs synchronization, which we can do piecewise as needed in |
|
* small one-block chunks to preserve latency. At most (in free_block) a |
|
* single locked operation consists of four bit sets and dlist removals. If the |
|
* overall allocation operation fails, we just free the block we have (putting |
|
* a block back into the list cannot fail) and return failure. |
|
* |
|
* For user mode compatible sys_mem_pool pools, a semaphore is used at the API |
|
* level since using that does not introduce latency issues like locking |
|
* interrupts does. |
|
*/ |
|
|
|
static inline int pool_irq_lock(struct sys_mem_pool_base *p) |
|
{ |
|
if (p->flags & SYS_MEM_POOL_KERNEL) { |
|
return irq_lock(); |
|
} else { |
|
return 0; |
|
} |
|
} |
|
|
|
static inline void pool_irq_unlock(struct sys_mem_pool_base *p, int key) |
|
{ |
|
if (p->flags & SYS_MEM_POOL_KERNEL) { |
|
irq_unlock(key); |
|
} |
|
} |
|
|
|
static void *block_alloc(struct sys_mem_pool_base *p, int l, size_t lsz) |
|
{ |
|
sys_dnode_t *block; |
|
int key = pool_irq_lock(p); |
|
|
|
block = sys_dlist_get(&p->levels[l].free_list); |
|
if (block) { |
|
clear_free_bit(p, l, block_num(p, block, lsz)); |
|
} |
|
pool_irq_unlock(p, key); |
|
|
|
return block; |
|
} |
|
|
|
static void block_free(struct sys_mem_pool_base *p, int level, |
|
size_t *lsizes, int bn) |
|
{ |
|
int i, key, lsz = lsizes[level]; |
|
void *block = block_ptr(p, lsz, bn); |
|
|
|
key = pool_irq_lock(p); |
|
|
|
set_free_bit(p, level, bn); |
|
|
|
if (level && partner_bits(p, level, bn) == 0xf) { |
|
for (i = 0; i < 4; i++) { |
|
int b = (bn & ~3) + i; |
|
|
|
clear_free_bit(p, level, b); |
|
if (b != bn && |
|
block_fits(p, block_ptr(p, lsz, b), lsz)) { |
|
sys_dlist_remove(block_ptr(p, lsz, b)); |
|
} |
|
} |
|
|
|
pool_irq_unlock(p, key); |
|
|
|
/* tail recursion! */ |
|
block_free(p, level-1, lsizes, bn / 4); |
|
return; |
|
} |
|
|
|
if (block_fits(p, block, lsz)) { |
|
sys_dlist_append(&p->levels[level].free_list, block); |
|
} |
|
|
|
pool_irq_unlock(p, key); |
|
} |
|
|
|
/* Takes a block of a given level, splits it into four blocks of the |
|
* next smaller level, puts three into the free list as in |
|
* block_free() but without the need to check adjacent bits or |
|
* recombine, and returns the remaining smaller block. |
|
*/ |
|
static void *block_break(struct sys_mem_pool_base *p, void *block, int l, |
|
size_t *lsizes) |
|
{ |
|
int i, bn, key; |
|
|
|
key = pool_irq_lock(p); |
|
|
|
bn = block_num(p, block, lsizes[l]); |
|
|
|
for (i = 1; i < 4; i++) { |
|
int lbn = 4*bn + i; |
|
int lsz = lsizes[l + 1]; |
|
void *block2 = (lsz * i) + (char *)block; |
|
|
|
set_free_bit(p, l + 1, lbn); |
|
if (block_fits(p, block2, lsz)) { |
|
sys_dlist_append(&p->levels[l + 1].free_list, block2); |
|
} |
|
} |
|
|
|
pool_irq_unlock(p, key); |
|
|
|
return block; |
|
} |
|
|
|
int _sys_mem_pool_block_alloc(struct sys_mem_pool_base *p, size_t size, |
|
u32_t *level_p, u32_t *block_p, void **data_p) |
|
{ |
|
int i, from_l; |
|
int alloc_l = -1, free_l = -1; |
|
void *data; |
|
size_t lsizes[p->n_levels]; |
|
|
|
/* Walk down through levels, finding the one from which we |
|
* want to allocate and the smallest one with a free entry |
|
* from which we can split an allocation if needed. Along the |
|
* way, we populate an array of sizes for each level so we |
|
* don't need to waste RAM storing it. |
|
*/ |
|
lsizes[0] = _ALIGN4(p->max_sz); |
|
for (i = 0; i < p->n_levels; i++) { |
|
if (i > 0) { |
|
lsizes[i] = _ALIGN4(lsizes[i-1] / 4); |
|
} |
|
|
|
if (lsizes[i] < size) { |
|
break; |
|
} |
|
|
|
alloc_l = i; |
|
if (!level_empty(p, i)) { |
|
free_l = i; |
|
} |
|
} |
|
|
|
if (alloc_l < 0 || free_l < 0) { |
|
*data_p = NULL; |
|
return -ENOMEM; |
|
} |
|
|
|
/* Iteratively break the smallest enclosing block... */ |
|
data = block_alloc(p, free_l, lsizes[free_l]); |
|
|
|
if (!data) { |
|
/* This can happen if we race with another allocator. |
|
* It's OK, just back out and the timeout code will |
|
* retry. Note mild overloading: -EAGAIN isn't for |
|
* propagation to the caller, it's to tell the loop in |
|
* k_mem_pool_alloc() to try again synchronously. But |
|
* it means exactly what it says. |
|
* |
|
* This doesn't happen for user mode memory pools as this |
|
* entire function runs with a semaphore held. |
|
*/ |
|
return -EAGAIN; |
|
} |
|
|
|
for (from_l = free_l; from_l < alloc_l; from_l++) { |
|
data = block_break(p, data, from_l, lsizes); |
|
} |
|
|
|
*level_p = alloc_l; |
|
*block_p = block_num(p, data, lsizes[alloc_l]); |
|
*data_p = data; |
|
|
|
return 0; |
|
} |
|
|
|
void _sys_mem_pool_block_free(struct sys_mem_pool_base *p, u32_t level, |
|
u32_t block) |
|
{ |
|
size_t lsizes[p->n_levels]; |
|
int i; |
|
|
|
/* As in _sys_mem_pool_block_alloc(), we build a table of level sizes |
|
* to avoid having to store it in precious RAM bytes. |
|
* Overhead here is somewhat higher because block_free() |
|
* doesn't inherently need to traverse all the larger |
|
* sublevels. |
|
*/ |
|
lsizes[0] = _ALIGN4(p->max_sz); |
|
for (i = 1; i <= level; i++) { |
|
lsizes[i] = _ALIGN4(lsizes[i-1] / 4); |
|
} |
|
|
|
block_free(p, level, lsizes, block); |
|
} |
|
|
|
/* |
|
* Functions specific to user-mode blocks |
|
*/ |
|
|
|
void *sys_mem_pool_alloc(struct sys_mem_pool *p, size_t size) |
|
{ |
|
struct sys_mem_pool_block *blk; |
|
int level, block; |
|
char *ret; |
|
|
|
k_mutex_lock(p->mutex, K_FOREVER); |
|
|
|
size += sizeof(struct sys_mem_pool_block); |
|
if (_sys_mem_pool_block_alloc(&p->base, size, &level, &block, |
|
(void **)&ret)) { |
|
ret = NULL; |
|
goto out; |
|
} |
|
|
|
blk = (struct sys_mem_pool_block *)ret; |
|
blk->level = level; |
|
blk->block = block; |
|
blk->pool = p; |
|
ret += sizeof(*blk); |
|
out: |
|
k_mutex_unlock(p->mutex); |
|
return ret; |
|
} |
|
|
|
void sys_mem_pool_free(void *ptr) |
|
{ |
|
struct sys_mem_pool_block *blk; |
|
struct sys_mem_pool *p; |
|
|
|
if (!ptr) { |
|
return; |
|
} |
|
|
|
blk = (struct sys_mem_pool_block *)((char *)ptr - sizeof(*blk)); |
|
p = blk->pool; |
|
|
|
k_mutex_lock(p->mutex, K_FOREVER); |
|
_sys_mem_pool_block_free(&p->base, blk->level, blk->block); |
|
k_mutex_unlock(p->mutex); |
|
} |
|
|
|
|