Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

662 lines
18 KiB

/*
* Copyright (c) 2024 Microchip Technology Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @brief Microchip MEC5 ns16550 compatible UART Serial Driver
*/
#define DT_DRV_COMPAT microchip_mec5_uart
#include <errno.h>
#include <zephyr/devicetree.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/irq.h>
#include <zephyr/kernel.h>
#include <zephyr/logging/log.h>
#include <zephyr/spinlock.h>
#include <zephyr/sys/byteorder.h>
LOG_MODULE_REGISTER(uart_mec5, CONFIG_UART_LOG_LEVEL);
/* MEC5 HAL */
#include <device_mec5.h>
#include <mec_ecia_api.h>
#include <mec_uart_api.h>
#define UART_MEC_DFLT_CLK_FREQ 1843200u
#define UART_MEC_DEVCFG_FLAG_RX_FIFO_TRIG_POS 0
#define UART_MEC_DEVCFG_FLAG_RX_FIFO_TRIG_MSK 0x3u
#define UART_MEC_DEVCFG_FLAG_FIFO_DIS_POS 4
#define UART_MEC_DEVCFG_FLAG_USE_EXTCLK_POS 5
struct uart_mec5_devcfg {
struct mec_uart_regs *regs;
const struct pinctrl_dev_config *pcfg;
uint32_t clock_freq;
uint32_t flags;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
void (*irq_config_func)(const struct device *dev);
#endif
};
struct uart_mec5_dev_data {
const struct device *dev;
struct uart_config current_config;
struct uart_config ucfg;
struct k_spinlock lock;
enum mec_uart_ipend ipend;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t cb; /* Callback function pointer */
void *cb_data; /* Callback function arg */
uint32_t flags;
uint8_t rx_enabled;
uint8_t tx_enabled;
#endif
};
static const uint8_t mec5_xlat_word_len[4] = {
MEC_UART_WORD_LEN_5,
MEC_UART_WORD_LEN_6,
MEC_UART_WORD_LEN_7,
MEC_UART_WORD_LEN_8,
};
static const uint8_t mec5_xlat_stop_bits[4] = {
MEC_UART_STOP_BITS_1,
MEC_UART_STOP_BITS_1,
MEC_UART_STOP_BITS_2,
MEC_UART_STOP_BITS_2,
};
static const uint8_t mec5_xlat_parity[5] = {
(uint8_t)(MEC5_UART_CFG_PARITY_NONE >> MEC5_UART_CFG_PARITY_POS),
(uint8_t)(MEC5_UART_CFG_PARITY_ODD >> MEC5_UART_CFG_PARITY_POS),
(uint8_t)(MEC5_UART_CFG_PARITY_EVEN >> MEC5_UART_CFG_PARITY_POS),
(uint8_t)(MEC5_UART_CFG_PARITY_MARK >> MEC5_UART_CFG_PARITY_POS),
(uint8_t)(MEC5_UART_CFG_PARITY_SPACE >> MEC5_UART_CFG_PARITY_POS),
};
static int uart_mec5_xlat_cfg(const struct uart_config *cfg, uint32_t *cfg_word)
{
uint32_t temp;
if (!cfg || !cfg_word) {
return -EINVAL;
}
*cfg_word = 0u;
if (cfg->data_bits > UART_CFG_DATA_BITS_8) {
return -EINVAL;
}
temp = mec5_xlat_word_len[cfg->data_bits];
*cfg_word |= ((temp << MEC5_UART_CFG_WORD_LEN_POS) & MEC5_UART_CFG_WORD_LEN_MSK);
if (cfg->stop_bits > UART_CFG_STOP_BITS_2) {
return -EINVAL;
}
temp = mec5_xlat_stop_bits[cfg->stop_bits];
*cfg_word |= ((temp << MEC5_UART_CFG_STOP_BITS_POS) & MEC5_UART_CFG_STOP_BITS_MSK);
if (cfg->parity > UART_CFG_PARITY_SPACE) {
return -EINVAL;
}
temp = mec5_xlat_parity[cfg->parity];
*cfg_word |= ((temp << MEC5_UART_CFG_PARITY_POS) & MEC5_UART_CFG_PARITY_MSK);
return 0;
}
/* Configure UART TX and RX FIFOs based on device tree.
* Both FIFOs are fixed 16-byte.
* RX FIFO has a configurable interrupt trigger level of 1, 4, 8, or 14 bytes.
*/
static uint32_t uart_mec5_fifo_config(uint32_t mcfg, uint32_t cfg_flags)
{
uint32_t new_mcfg = mcfg;
uint32_t temp = 0;
if (!(cfg_flags & BIT(UART_MEC_DEVCFG_FLAG_FIFO_DIS_POS))) {
new_mcfg |= BIT(MEC5_UART_CFG_FIFO_EN_POS);
temp = (cfg_flags & UART_MEC_DEVCFG_FLAG_RX_FIFO_TRIG_MSK) >>
UART_MEC_DEVCFG_FLAG_RX_FIFO_TRIG_POS;
switch (temp) {
case 0:
new_mcfg |= MEC5_UART_CFG_RX_FIFO_TRIG_LVL_1;
break;
case 1:
new_mcfg |= MEC5_UART_CFG_RX_FIFO_TRIG_LVL_4;
break;
case 2:
new_mcfg |= MEC5_UART_CFG_RX_FIFO_TRIG_LVL_8;
break;
default:
new_mcfg |= MEC5_UART_CFG_RX_FIFO_TRIG_LVL_14;
break;
}
}
return new_mcfg;
}
static int config_mec5_uart(const struct device *dev, const struct uart_config *cfg)
{
const struct uart_mec5_devcfg *devcfg = dev->config;
struct mec_uart_regs *const regs = devcfg->regs;
struct uart_mec5_dev_data *const data = dev->data;
int ret = 0;
uint32_t mcfg = 0, extclk = 0;
data->ipend = MEC_UART_IPEND_NONE;
ret = uart_mec5_xlat_cfg(cfg, &mcfg);
if (ret) {
return ret;
}
mcfg = uart_mec5_fifo_config(mcfg, devcfg->flags);
mcfg |= BIT(MEC5_UART_CFG_GIRQ_EN_POS);
if (devcfg->flags & BIT(UART_MEC_DEVCFG_FLAG_USE_EXTCLK_POS)) {
extclk = devcfg->clock_freq;
}
ret = mec_hal_uart_init(regs, cfg->baudrate, mcfg, extclk);
if (ret != MEC_RET_OK) {
return -EIO;
}
memcpy(&data->ucfg, cfg, sizeof(struct uart_config));
return ret;
};
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
/* run-time driver configuration API */
static int uart_mec5_configure(const struct device *dev, const struct uart_config *cfg)
{
const struct uart_mec5_devcfg *devcfg = dev->config;
struct uart_mec5_dev_data *const data = dev->data;
int ret = 0;
k_spinlock_key_t key = k_spin_lock(&data->lock);
ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret) {
LOG_ERR("MEC5 UART pinctrl error (%d)", ret);
}
ret = config_mec5_uart(dev, cfg);
if (ret) {
LOG_ERR("MEC5 UART config error (%d)", ret);
return ret;
}
data->current_config = *cfg;
k_spin_unlock(&data->lock, key);
return ret;
}
static int uart_mec5_config_get(const struct device *dev, struct uart_config *cfg)
{
struct uart_mec5_dev_data *const data = dev->data;
if (!cfg) {
return -EINVAL;
}
k_spinlock_key_t key = k_spin_lock(&data->lock);
*cfg = data->current_config;
k_spin_unlock(&data->lock, key);
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
/* Called by kernel during driver initialization phase */
static int uart_mec5_init(const struct device *dev)
{
const struct uart_mec5_devcfg *devcfg = dev->config;
struct uart_mec5_dev_data *data = dev->data;
int ret = 0;
ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret) {
LOG_ERR("MEC5 UART init pinctrl error (%d)", ret);
return ret;
}
ret = config_mec5_uart(dev, &data->ucfg);
if (ret != 0) {
return -EIO;
}
return ret;
}
/*
* Poll the UART for input.
* return 0 is a byte arrived else -1 if no data.
*/
static int uart_mec5_poll_in(const struct device *dev, unsigned char *cptr)
{
const struct uart_mec5_devcfg *devcfg = dev->config;
struct mec_uart_regs *const regs = devcfg->regs;
struct uart_mec5_dev_data *data = dev->data;
k_spinlock_key_t key = k_spin_lock(&data->lock);
int ret = 0;
ret = mec_hal_uart_rx_byte(regs, (uint8_t *)cptr);
if (ret == MEC_RET_ERR_NO_DATA) {
k_spin_unlock(&data->lock, key);
return -1;
}
k_spin_unlock(&data->lock, key);
return 0;
}
/* Block until UART can accept data byte. */
static void uart_mec5_poll_out(const struct device *dev, unsigned char out_data)
{
const struct uart_mec5_devcfg *devcfg = dev->config;
struct mec_uart_regs *const regs = devcfg->regs;
struct uart_mec5_dev_data *data = dev->data;
k_spinlock_key_t key = k_spin_lock(&data->lock);
int ret = 0;
do {
ret = mec_hal_uart_tx_byte(regs, (uint8_t)out_data);
} while (ret == MEC_RET_ERR_BUSY);
k_spin_unlock(&data->lock, key);
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static inline void irq_tx_enable(const struct device *dev)
{
const struct uart_mec5_devcfg *devcfg = dev->config;
struct mec_uart_regs *const regs = devcfg->regs;
struct uart_mec5_dev_data *data = dev->data;
k_spinlock_key_t key = k_spin_lock(&data->lock);
mec_hal_uart_intr_mask(regs, MEC_UART_IEN_FLAG_ETHREI, MEC_UART_IEN_FLAG_ETHREI);
k_spin_unlock(&data->lock, key);
}
static inline void irq_tx_disable(const struct device *dev)
{
const struct uart_mec5_devcfg *devcfg = dev->config;
struct uart_mec5_dev_data *data = dev->data;
struct mec_uart_regs *const regs = devcfg->regs;
k_spinlock_key_t key = k_spin_lock(&data->lock);
mec_hal_uart_intr_mask(regs, MEC_UART_IEN_FLAG_ETHREI, 0);
k_spin_unlock(&data->lock, key);
}
static inline void irq_rx_enable(const struct device *dev)
{
const struct uart_mec5_devcfg *const devcfg = dev->config;
struct uart_mec5_dev_data *data = dev->data;
struct mec_uart_regs *const regs = devcfg->regs;
k_spinlock_key_t key = k_spin_lock(&data->lock);
mec_hal_uart_intr_mask(regs, MEC_UART_IEN_FLAG_ERDAI, MEC_UART_IEN_FLAG_ERDAI);
k_spin_unlock(&data->lock, key);
}
static inline void irq_rx_disable(const struct device *dev)
{
const struct uart_mec5_devcfg *const devcfg = dev->config;
struct uart_mec5_dev_data *data = dev->data;
struct mec_uart_regs *const regs = devcfg->regs;
k_spinlock_key_t key = k_spin_lock(&data->lock);
mec_hal_uart_intr_mask(regs, MEC_UART_IEN_FLAG_ERDAI, 0);
k_spin_unlock(&data->lock, key);
}
static int uart_mec5_fifo_fill(const struct device *dev, const uint8_t *tx_data, int len)
{
const struct uart_mec5_devcfg *const devcfg = dev->config;
struct uart_mec5_dev_data *data = dev->data;
struct mec_uart_regs *const regs = devcfg->regs;
int num_tx = 0, ret = 0;
if (len < 0) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&data->lock);
while (num_tx < len) {
ret = mec_hal_uart_tx_byte(regs, tx_data[num_tx]);
if (ret == MEC_RET_ERR_BUSY) {
break;
}
num_tx++;
}
if (data->tx_enabled) {
irq_tx_enable(dev);
}
k_spin_unlock(&data->lock, key);
return num_tx;
}
static int uart_mec5_fifo_read(const struct device *dev, uint8_t *rx_data, const int size)
{
const struct uart_mec5_devcfg *const devcfg = dev->config;
struct uart_mec5_dev_data *data = dev->data;
struct mec_uart_regs *const regs = devcfg->regs;
int num_rx = 0, ret = 0;
if (size < 0) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&data->lock);
uint8_t *pdata = rx_data;
while (num_rx < size) {
ret = mec_hal_uart_rx_byte(regs, pdata);
if (ret != MEC_RET_OK) {
break;
}
pdata++;
num_rx++;
}
if (data->rx_enabled) {
irq_rx_enable(dev);
}
k_spin_unlock(&data->lock, key);
return num_rx;
}
static void uart_mec5_irq_tx_enable(const struct device *dev)
{
struct uart_mec5_dev_data *data = dev->data;
k_spinlock_key_t key = k_spin_lock(&data->lock);
data->tx_enabled = 1;
irq_tx_enable(dev);
k_spin_unlock(&data->lock, key);
}
static void uart_mec5_irq_tx_disable(const struct device *dev)
{
struct uart_mec5_dev_data *data = dev->data;
k_spinlock_key_t key = k_spin_lock(&data->lock);
irq_tx_disable(dev);
data->tx_enabled = 0;
k_spin_unlock(&data->lock, key);
}
static int uart_mec5_irq_tx_ready(const struct device *dev)
{
struct uart_mec5_dev_data *data = dev->data;
k_spinlock_key_t key = k_spin_lock(&data->lock);
int ret = 0;
if (data->ipend == MEC_UART_IPEND_TX) {
ret = 1;
}
k_spin_unlock(&data->lock, key);
return ret;
}
static void uart_mec5_irq_rx_enable(const struct device *dev)
{
struct uart_mec5_dev_data *data = dev->data;
k_spinlock_key_t key = k_spin_lock(&data->lock);
data->rx_enabled = 1;
irq_rx_enable(dev);
k_spin_unlock(&data->lock, key);
}
static void uart_mec5_irq_rx_disable(const struct device *dev)
{
struct uart_mec5_dev_data *data = dev->data;
k_spinlock_key_t key = k_spin_lock(&data->lock);
irq_rx_disable(dev);
data->rx_enabled = 0;
k_spin_unlock(&data->lock, key);
}
/* check if UART TX shift register is empty. Empty TX shift register indicates
* the UART does not need clocks and can be put into a low power state.
* return 1 nothing remains to be transmitted, 0 otherwise.
*/
static int uart_mec5_irq_tx_complete(const struct device *dev)
{
const struct uart_mec5_devcfg *const devcfg = dev->config;
struct mec_uart_regs *const regs = devcfg->regs;
struct uart_mec5_dev_data *data = dev->data;
k_spinlock_key_t key = k_spin_lock(&data->lock);
int ret = mec_hal_uart_is_tx_empty(regs);
k_spin_unlock(&data->lock, key);
return ret;
}
static int uart_mec5_irq_rx_ready(const struct device *dev)
{
struct uart_mec5_dev_data *data = dev->data;
int ret = 0;
k_spinlock_key_t key = k_spin_lock(&data->lock);
if (data->ipend == MEC_UART_IPEND_RX_DATA) {
ret = 1;
}
k_spin_unlock(&data->lock, key);
return ret;
}
static void irq_error_enable(const struct device *dev, uint8_t enable)
{
const struct uart_mec5_devcfg *const devcfg = dev->config;
struct mec_uart_regs *const regs = devcfg->regs;
uint8_t msk = 0;
if (enable) {
msk = MEC_UART_IEN_FLAG_ELSI;
}
mec_hal_uart_intr_mask(regs, MEC_UART_IEN_FLAG_ELSI, msk);
}
/*
* Enable received line status interrupt active when one or more of the following errors
* occur: overrun, parity, framing, or break.
*/
static void uart_mec5_irq_err_enable(const struct device *dev)
{
struct uart_mec5_dev_data *data = dev->data;
k_spinlock_key_t key = k_spin_lock(&data->lock);
irq_error_enable(dev, 1u);
k_spin_unlock(&data->lock, key);
}
static void uart_mec5_irq_err_disable(const struct device *dev)
{
struct uart_mec5_dev_data *data = dev->data;
k_spinlock_key_t key = k_spin_lock(&data->lock);
irq_error_enable(dev, 0);
k_spin_unlock(&data->lock, key);
}
static int uart_mec5_irq_is_pending(const struct device *dev)
{
struct uart_mec5_dev_data *data = dev->data;
k_spinlock_key_t key = k_spin_lock(&data->lock);
int ret = 0;
if (data->ipend != MEC_UART_IPEND_NONE) {
ret = 1;
}
k_spin_unlock(&data->lock, key);
return ret;
}
static int uart_mec5_irq_update(const struct device *dev)
{
const struct uart_mec5_devcfg *const devcfg = dev->config;
struct mec_uart_regs *const regs = devcfg->regs;
struct uart_mec5_dev_data *data = dev->data;
k_spinlock_key_t key = k_spin_lock(&data->lock);
data->ipend = MEC_UART_IPEND_NONE;
mec_hal_uart_pending_status(regs, &data->ipend);
switch (data->ipend) {
case MEC_UART_IPEND_NONE:
break;
case MEC_UART_IPEND_TX:
irq_tx_disable(dev);
break;
case MEC_UART_IPEND_RX_DATA:
irq_rx_disable(dev);
break;
case MEC_UART_IPEND_RX_ERR:
irq_error_enable(dev, 0);
break;
case MEC_UART_IPEND_MODEM:
__fallthrough; /* fall through */
default:
k_panic();
break;
}
k_spin_unlock(&data->lock, key);
return 1;
}
static void uart_mec5_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct uart_mec5_dev_data *data = dev->data;
k_spinlock_key_t key = k_spin_lock(&data->lock);
data->cb = cb;
data->cb_data = cb_data;
k_spin_unlock(&data->lock, key);
}
static void uart_mec5_isr(const struct device *dev)
{
struct uart_mec5_dev_data *data = dev->data;
if (data->cb) {
data->cb(dev, data->cb_data);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static DEVICE_API(uart, uart_mec5_driver_api) = {
.poll_in = uart_mec5_poll_in,
.poll_out = uart_mec5_poll_out,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = uart_mec5_configure,
.config_get = uart_mec5_config_get,
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_mec5_fifo_fill,
.fifo_read = uart_mec5_fifo_read,
.irq_tx_enable = uart_mec5_irq_tx_enable,
.irq_tx_disable = uart_mec5_irq_tx_disable,
.irq_tx_ready = uart_mec5_irq_tx_ready,
.irq_rx_enable = uart_mec5_irq_rx_enable,
.irq_rx_disable = uart_mec5_irq_rx_disable,
.irq_tx_complete = uart_mec5_irq_tx_complete,
.irq_rx_ready = uart_mec5_irq_rx_ready,
.irq_err_enable = uart_mec5_irq_err_enable,
.irq_err_disable = uart_mec5_irq_err_disable,
.irq_is_pending = uart_mec5_irq_is_pending,
.irq_update = uart_mec5_irq_update,
.irq_callback_set = uart_mec5_irq_callback_set,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define UART_MEC5_CONFIGURE(n) \
do { \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), uart_mec5_isr, \
DEVICE_DT_INST_GET(n), 0); \
\
irq_enable(DT_INST_IRQN(n)); \
} while (0)
#else
#define UART_MEC5_CONFIGURE(n)
#endif
#define UART_MEC5_DCFG_FLAGS(i) \
((DT_INST_ENUM_IDX_OR(i, rx_fifo_trig, 2) & 0x3u) | \
((DT_INST_PROP_OR(i, fifo_mode_disable, 0) & 0x1u) << 4) | \
((DT_INST_PROP_OR(i, use_extclk, 0) & 0x1u) << 5))
#define DEV_DATA_FLOW_CTRL(n) DT_INST_PROP_OR(n, hw_flow_control, UART_CFG_FLOW_CTRL_NONE)
#define UART_MEC5_DEVICE(i) \
PINCTRL_DT_INST_DEFINE(i); \
static const struct uart_mec5_devcfg uart_mec5_##i##_devcfg = { \
.regs = (struct mec_uart_regs *)DT_INST_REG_ADDR(i), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(i), \
.clock_freq = DT_INST_PROP_OR(i, clock_frequency, UART_MEC_DFLT_CLK_FREQ), \
.flags = UART_MEC5_DCFG_FLAGS(i), \
}; \
static struct uart_mec5_dev_data uart_mec5_##i##_dev_data = { \
.ucfg.baudrate = DT_INST_PROP_OR(i, current_speed, 0), \
.ucfg.parity = UART_CFG_PARITY_NONE, \
.ucfg.stop_bits = UART_CFG_STOP_BITS_1, \
.ucfg.data_bits = UART_CFG_DATA_BITS_8, \
.ucfg.flow_ctrl = DEV_DATA_FLOW_CTRL(i), \
}; \
static int uart_mec5_##i##_init(const struct device *dev) \
{ \
UART_MEC5_CONFIGURE(i); \
return uart_mec5_init(dev); \
} \
DEVICE_DT_INST_DEFINE(i, uart_mec5_##i##_init, NULL, &uart_mec5_##i##_dev_data, \
&uart_mec5_##i##_devcfg, PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, \
&uart_mec5_driver_api);
DT_INST_FOREACH_STATUS_OKAY(UART_MEC5_DEVICE)