Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

174 lines
5.4 KiB

/*
* Copyright (c) 2025 Michael Hope <michaelh@juju.nz>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT wch_gptm_pwm
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/pwm.h>
#include <zephyr/dt-bindings/pwm/pwm.h>
#include <hal_ch32fun.h>
/* Each of the 4 channels uses 1 byte of CHCTLR{1,2} */
#define CHCTLR_CHANNEL_MASK 0xFF
/* 'Invalid', i.e. low before any inversion. */
#define CHCTLR_OCXM_INVALID 0x04
/* 'Valid', i.e. high before any inversion. */
#define CHCTLR_OCXM_VALID 0x05
#define CHCTLR_OCXM_PWM_MODE1 0x06
/* Start bit offset for OC{1,3}M */
#define CHCTLR_OCXM_ODD_SHIFT 4
/* Start bit offset for OC{2,4}M */
#define CHCTLR_OCXM_EVEN_SHIFT 12
/* Each of the 4 channels uses 1 nibble of CCER */
#define CCER_MASK (TIM_CC1P | TIM_CC1E)
#ifdef TIM2_CTLR1_CEN
/* ch32fun.h uses a different set of names for the CH32V00x series. Remap. */
typedef GPTM_TypeDef TIM_TypeDef;
#define TIM_CEN TIM2_CTLR1_CEN
#define TIM_OC1M TIM2_CHCTLR1_OC1M
#define TIM_OC2M TIM2_CHCTLR1_OC2M
#define TIM_OC3M TIM2_CHCTLR2_OC3M
#define TIM_OC4M TIM2_CHCTLR2_OC4M
#define TIM_CC1P TIM2_CCER_CC1P
#define TIM_CC1E TIM2_CCER_CC1E
#define TIM_ARPE TIM2_CTLR1_ARPE
#endif
struct pwm_wch_gptm_config {
TIM_TypeDef *regs;
const struct device *clock_dev;
uint8_t clock_id;
uint16_t prescaler;
const struct pinctrl_dev_config *pin_cfg;
};
static int pwm_wch_gptm_set_cycles(const struct device *dev, uint32_t channel,
uint32_t period_cycles, uint32_t pulse_cycles, pwm_flags_t flags)
{
const struct pwm_wch_gptm_config *config = dev->config;
TIM_TypeDef *regs = config->regs;
uint16_t ocxm;
if (period_cycles > UINT16_MAX) {
return -EINVAL;
}
if (period_cycles == 0) {
ocxm = CHCTLR_OCXM_INVALID;
} else if (pulse_cycles >= period_cycles) {
/*
* If pulse_cycles == period_cycles then there is a one cycle glitch in the output.
* Mitigate by setting the output to 'always on'.
*/
ocxm = CHCTLR_OCXM_VALID;
} else {
ocxm = CHCTLR_OCXM_PWM_MODE1;
}
switch (channel) {
case 0:
regs->CH1CVR = pulse_cycles;
regs->CHCTLR1 = (regs->CHCTLR1 & ~TIM_OC1M) | (ocxm << CHCTLR_OCXM_ODD_SHIFT);
break;
case 1:
regs->CH2CVR = pulse_cycles;
regs->CHCTLR1 = (regs->CHCTLR1 & ~TIM_OC2M) | (ocxm << CHCTLR_OCXM_EVEN_SHIFT);
break;
case 2:
regs->CH3CVR = pulse_cycles;
regs->CHCTLR2 = (regs->CHCTLR2 & ~TIM_OC3M) | (ocxm << CHCTLR_OCXM_ODD_SHIFT);
break;
case 3:
regs->CH4CVR = pulse_cycles;
regs->CHCTLR2 = (regs->CHCTLR2 & ~TIM_OC4M) | (ocxm << CHCTLR_OCXM_EVEN_SHIFT);
break;
default:
return -EINVAL;
}
if (period_cycles != 0) {
/*
* Note that the period is ATRLR+1. The earlier checks handle the case where
* pulse_cycles is zero or equal to period_cycles.
*/
regs->ATRLR = period_cycles - 1;
}
/* Set the polarity and enable */
uint16_t shift = 4 * channel;
if ((flags & PWM_POLARITY_INVERTED) != 0) {
regs->CCER =
(regs->CCER & ~(CCER_MASK << shift)) | ((TIM_CC1P | TIM_CC1E) << shift);
} else {
regs->CCER = (regs->CCER & ~(CCER_MASK << shift)) | (TIM_CC1E << shift);
}
return 0;
}
static int pwm_wch_gptm_get_cycles_per_sec(const struct device *dev, uint32_t channel,
uint64_t *cycles)
{
const struct pwm_wch_gptm_config *config = dev->config;
clock_control_subsys_t clock_sys = (clock_control_subsys_t *)(uintptr_t)config->clock_id;
uint32_t clock_rate;
int err;
err = clock_control_get_rate(config->clock_dev, clock_sys, &clock_rate);
if (err != 0) {
return err;
}
*cycles = clock_rate / (config->prescaler + 1);
return 0;
}
static const struct pwm_driver_api pwm_wch_gptm_driver_api = {
.set_cycles = pwm_wch_gptm_set_cycles,
.get_cycles_per_sec = pwm_wch_gptm_get_cycles_per_sec,
};
static int pwm_wch_gptm_init(const struct device *dev)
{
const struct pwm_wch_gptm_config *config = dev->config;
TIM_TypeDef *regs = config->regs;
int err;
clock_control_on(config->clock_dev, (clock_control_subsys_t *)(uintptr_t)config->clock_id);
err = pinctrl_apply_state(config->pin_cfg, PINCTRL_STATE_DEFAULT);
if (err != 0) {
return err;
}
/* Disable and configure the counter */
regs->CTLR1 = TIM_ARPE;
regs->PSC = config->prescaler;
regs->CTLR1 |= TIM_CEN;
return 0;
}
#define PWM_WCH_GPTM_INIT(idx) \
PINCTRL_DT_INST_DEFINE(idx); \
\
static const struct pwm_wch_gptm_config pwm_wch_gptm_##idx##_config = { \
.regs = (TIM_TypeDef *)DT_REG_ADDR(DT_INST_PARENT(idx)), \
.prescaler = DT_PROP(DT_INST_PARENT(idx), prescaler), \
.clock_dev = DEVICE_DT_GET(DT_CLOCKS_CTLR(DT_INST_PARENT(idx))), \
.clock_id = DT_CLOCKS_CELL(DT_INST_PARENT(idx), id), \
.pin_cfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx), \
}; \
\
DEVICE_DT_INST_DEFINE(idx, &pwm_wch_gptm_init, NULL, NULL, &pwm_wch_gptm_##idx##_config, \
POST_KERNEL, CONFIG_PWM_INIT_PRIORITY, &pwm_wch_gptm_driver_api);
DT_INST_FOREACH_STATUS_OKAY(PWM_WCH_GPTM_INIT)