Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1189 lines
34 KiB

/*
* Copyright (c) 2025 Silicon Laboratories Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT silabs_usart_uart
#include <errno.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/clock_control_silabs.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/irq.h>
#include <zephyr/logging/log.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/policy.h>
#include <em_usart.h>
#ifdef CONFIG_UART_SILABS_USART_ASYNC
#include <zephyr/drivers/dma.h>
#include <zephyr/drivers/dma/dma_silabs_ldma.h>
#endif
LOG_MODULE_REGISTER(uart_silabs_usart, CONFIG_UART_LOG_LEVEL);
#define SILABS_USART_TIMER_COMPARE_VALUE 0xff
#define SILABS_USART_TIMEOUT_TO_TIMERCOUNTER(timeout, baudrate) \
((timeout * NSEC_PER_USEC) / ((NSEC_PER_SEC / baudrate) * SILABS_USART_TIMER_COMPARE_VALUE))
#ifdef CONFIG_UART_SILABS_USART_ASYNC
struct uart_dma_channel {
const struct device *dma_dev;
uint32_t dma_channel;
struct dma_block_config blk_cfg;
struct dma_config dma_cfg;
uint8_t priority;
uint8_t *buffer;
size_t buffer_length;
volatile size_t counter;
size_t offset;
int32_t timeout_cnt;
int32_t timeout;
bool enabled;
};
#endif
struct uart_silabs_config {
const struct pinctrl_dev_config *pcfg;
const struct device *clock_dev;
const struct silabs_clock_control_cmu_config clock_cfg;
USART_TypeDef *base;
void (*irq_config_func)(const struct device *dev);
};
enum uart_silabs_pm_lock {
UART_SILABS_PM_LOCK_TX,
UART_SILABS_PM_LOCK_TX_POLL,
UART_SILABS_PM_LOCK_RX,
UART_SILABS_PM_LOCK_COUNT,
};
struct uart_silabs_data {
struct uart_config *uart_cfg;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t callback;
void *cb_data;
#endif
#ifdef CONFIG_UART_SILABS_USART_ASYNC
const struct device *uart_dev;
uart_callback_t async_cb;
void *async_user_data;
struct uart_dma_channel dma_rx;
struct uart_dma_channel dma_tx;
uint8_t *rx_next_buffer;
size_t rx_next_buffer_len;
#endif
#ifdef CONFIG_PM
ATOMIC_DEFINE(pm_lock, UART_SILABS_PM_LOCK_COUNT);
#endif
};
static int uart_silabs_pm_action(const struct device *dev, enum pm_device_action action);
/**
* @brief Get PM lock on low power states
*
* @param dev UART device struct
* @param lock UART PM lock type
*
* @return true if lock was taken, false otherwise
*/
static bool uart_silabs_pm_lock_get(const struct device *dev, enum uart_silabs_pm_lock lock)
{
#ifdef CONFIG_PM
struct uart_silabs_data *data = dev->data;
bool was_locked = atomic_test_and_set_bit(data->pm_lock, lock);
if (!was_locked) {
/* Lock out low-power states that would interfere with UART traffic */
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
pm_policy_state_lock_get(PM_STATE_STANDBY, PM_ALL_SUBSTATES);
}
return !was_locked;
#else
return false;
#endif
}
/**
* @brief Release PM lock on low power states
*
* @param dev UART device struct
* @param lock UART PM lock type
*
* @return true if lock was released, false otherwise
*/
static bool uart_silabs_pm_lock_put(const struct device *dev, enum uart_silabs_pm_lock lock)
{
#ifdef CONFIG_PM
struct uart_silabs_data *data = dev->data;
bool was_locked = atomic_test_and_clear_bit(data->pm_lock, lock);
if (was_locked) {
/* Unlock low-power states that would interfere with UART traffic */
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
pm_policy_state_lock_put(PM_STATE_STANDBY, PM_ALL_SUBSTATES);
}
return was_locked;
#else
return false;
#endif
}
static int uart_silabs_poll_in(const struct device *dev, unsigned char *c)
{
const struct uart_silabs_config *config = dev->config;
uint32_t flags = USART_StatusGet(config->base);
if (flags & USART_STATUS_RXDATAV) {
*c = USART_Rx(config->base);
return 0;
}
return -1;
}
static void uart_silabs_poll_out(const struct device *dev, unsigned char c)
{
const struct uart_silabs_config *config = dev->config;
if (uart_silabs_pm_lock_get(dev, UART_SILABS_PM_LOCK_TX_POLL)) {
USART_IntEnable(config->base, USART_IF_TXC);
}
USART_Tx(config->base, c);
}
static int uart_silabs_err_check(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
uint32_t flags = USART_IntGet(config->base);
int err = 0;
if (flags & USART_IF_RXOF) {
err |= UART_ERROR_OVERRUN;
}
if (flags & USART_IF_PERR) {
err |= UART_ERROR_PARITY;
}
if (flags & USART_IF_FERR) {
err |= UART_ERROR_FRAMING;
}
USART_IntClear(config->base, USART_IF_RXOF | USART_IF_PERR | USART_IF_FERR);
return err;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int uart_silabs_fifo_fill(const struct device *dev, const uint8_t *tx_data, int len)
{
const struct uart_silabs_config *config = dev->config;
int i = 0;
while ((i < len) && (config->base->STATUS & USART_STATUS_TXBL)) {
config->base->TXDATA = tx_data[i++];
}
return i;
}
static int uart_silabs_fifo_read(const struct device *dev, uint8_t *rx_data, const int len)
{
const struct uart_silabs_config *config = dev->config;
int i = 0;
while ((i < len) && (config->base->STATUS & USART_STATUS_RXDATAV)) {
rx_data[i++] = (uint8_t)config->base->RXDATA;
}
return i;
}
static void uart_silabs_irq_tx_enable(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
(void)uart_silabs_pm_lock_get(dev, UART_SILABS_PM_LOCK_TX);
USART_IntEnable(config->base, USART_IEN_TXBL | USART_IEN_TXC);
}
static void uart_silabs_irq_tx_disable(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
USART_IntDisable(config->base, USART_IEN_TXBL | USART_IEN_TXC);
(void)uart_silabs_pm_lock_put(dev, UART_SILABS_PM_LOCK_TX);
}
static int uart_silabs_irq_tx_complete(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
uint32_t flags = USART_IntGet(config->base);
USART_IntClear(config->base, USART_IF_TXC);
return !!(flags & USART_IF_TXC);
}
static int uart_silabs_irq_tx_ready(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
uint32_t flags = USART_IntGetEnabled(config->base);
return !!(flags & USART_IF_TXBL);
}
static void uart_silabs_irq_rx_enable(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
(void)uart_silabs_pm_lock_get(dev, UART_SILABS_PM_LOCK_RX);
USART_IntEnable(config->base, USART_IEN_RXDATAV);
}
static void uart_silabs_irq_rx_disable(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
USART_IntDisable(config->base, USART_IEN_RXDATAV);
(void)uart_silabs_pm_lock_put(dev, UART_SILABS_PM_LOCK_RX);
}
static int uart_silabs_irq_rx_full(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
uint32_t flags = USART_IntGet(config->base);
return !!(flags & USART_IF_RXDATAV);
}
static int uart_silabs_irq_rx_ready(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
return (config->base->IEN & USART_IEN_RXDATAV) && uart_silabs_irq_rx_full(dev);
}
static void uart_silabs_irq_err_enable(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
USART_IntEnable(config->base, USART_IF_RXOF | USART_IF_PERR | USART_IF_FERR);
}
static void uart_silabs_irq_err_disable(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
USART_IntDisable(config->base, USART_IF_RXOF | USART_IF_PERR | USART_IF_FERR);
}
static int uart_silabs_irq_is_pending(const struct device *dev)
{
return uart_silabs_irq_tx_ready(dev) || uart_silabs_irq_rx_ready(dev);
}
static int uart_silabs_irq_update(const struct device *dev)
{
return 1;
}
static void uart_silabs_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct uart_silabs_data *data = dev->data;
data->callback = cb;
data->cb_data = cb_data;
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_UART_SILABS_USART_ASYNC
static inline void async_user_callback(struct uart_silabs_data *data, struct uart_event *event)
{
if (data->async_cb) {
data->async_cb(data->uart_dev, event, data->async_user_data);
}
}
static inline void async_evt_rx_rdy(struct uart_silabs_data *data)
{
struct uart_event event = {
.type = UART_RX_RDY,
.data.rx.buf = data->dma_rx.buffer,
.data.rx.len = data->dma_rx.counter - data->dma_rx.offset,
.data.rx.offset = data->dma_rx.offset
};
data->dma_rx.offset = data->dma_rx.counter;
if (event.data.rx.len > 0) {
async_user_callback(data, &event);
}
}
static inline void async_evt_tx_done(struct uart_silabs_data *data)
{
struct uart_event event = {
.type = UART_TX_DONE,
.data.tx.buf = data->dma_tx.buffer,
.data.tx.len = data->dma_tx.counter
};
data->dma_tx.buffer_length = 0;
data->dma_tx.counter = 0;
async_user_callback(data, &event);
}
static inline void async_evt_tx_abort(struct uart_silabs_data *data)
{
struct uart_event event = {
.type = UART_TX_ABORTED,
.data.tx.buf = data->dma_tx.buffer,
.data.tx.len = data->dma_tx.counter
};
data->dma_tx.buffer_length = 0;
data->dma_tx.counter = 0;
async_user_callback(data, &event);
}
static inline void async_evt_rx_err(struct uart_silabs_data *data, int err_code)
{
struct uart_event event = {
.type = UART_RX_STOPPED,
.data.rx_stop.reason = err_code,
.data.rx_stop.data.len = data->dma_rx.counter,
.data.rx_stop.data.offset = 0,
.data.rx_stop.data.buf = data->dma_rx.buffer
};
async_user_callback(data, &event);
}
static inline void async_evt_rx_buf_release(struct uart_silabs_data *data)
{
struct uart_event evt = {
.type = UART_RX_BUF_RELEASED,
.data.rx_buf.buf = data->dma_rx.buffer,
};
async_user_callback(data, &evt);
}
static inline void async_evt_rx_buf_request(struct uart_silabs_data *data)
{
struct uart_event evt = {
.type = UART_RX_BUF_REQUEST,
};
async_user_callback(data, &evt);
}
static int uart_silabs_async_callback_set(const struct device *dev, uart_callback_t callback,
void *user_data)
{
struct uart_silabs_data *data = dev->data;
data->async_cb = callback;
data->async_user_data = user_data;
return 0;
}
static void uart_silabs_dma_replace_buffer(const struct device *dev)
{
struct uart_silabs_data *data = dev->data;
data->dma_rx.offset = 0;
data->dma_rx.counter = 0;
data->dma_rx.buffer = data->rx_next_buffer;
data->dma_rx.buffer_length = data->rx_next_buffer_len;
data->rx_next_buffer = NULL;
data->rx_next_buffer_len = 0;
async_evt_rx_buf_request(data);
}
static void uart_silabs_dma_rx_flush(struct uart_silabs_data *data)
{
struct dma_status stat;
size_t rx_rcv_len;
if (!dma_get_status(data->dma_rx.dma_dev, data->dma_rx.dma_channel, &stat)) {
rx_rcv_len = data->dma_rx.buffer_length - stat.pending_length;
if (rx_rcv_len > data->dma_rx.offset) {
data->dma_rx.counter = rx_rcv_len;
async_evt_rx_rdy(data);
}
}
}
void uart_silabs_dma_rx_cb(const struct device *dma_dev, void *user_data, uint32_t channel,
int status)
{
const struct device *uart_dev = user_data;
struct uart_silabs_data *data = uart_dev->data;
struct uart_event disabled_event = {.type = UART_RX_DISABLED};
if (status < 0) {
async_evt_rx_err(data, status);
return;
}
data->dma_rx.counter = data->dma_rx.buffer_length;
async_evt_rx_rdy(data);
if (data->rx_next_buffer) {
async_evt_rx_buf_release(data);
uart_silabs_dma_replace_buffer(uart_dev);
} else {
dma_stop(data->dma_rx.dma_dev, data->dma_rx.dma_channel);
data->dma_rx.enabled = false;
async_evt_rx_buf_release(data);
async_user_callback(data, &disabled_event);
}
}
void uart_silabs_dma_tx_cb(const struct device *dma_dev, void *user_data, uint32_t channel,
int status)
{
const struct device *uart_dev = user_data;
struct uart_silabs_data *data = uart_dev->data;
dma_stop(data->dma_tx.dma_dev, data->dma_tx.dma_channel);
data->dma_tx.enabled = false;
}
static int uart_silabs_async_tx(const struct device *dev, const uint8_t *tx_data, size_t buf_size,
int32_t timeout)
{
const struct uart_silabs_config *config = dev->config;
struct uart_silabs_data *data = dev->data;
int ret;
if (!data->dma_tx.dma_dev) {
return -ENODEV;
}
if (data->dma_tx.buffer_length) {
return -EBUSY;
}
data->dma_tx.buffer = (uint8_t *)tx_data;
data->dma_tx.buffer_length = buf_size;
/* User timeout is expressed as number of TCMP2 interrupt which occurs every
* SILABS_USART_TIMER_COMPARE_VALUE baud-times
*/
if (data->uart_cfg->baudrate > 0 && timeout >= 0) {
data->dma_tx.timeout =
SILABS_USART_TIMEOUT_TO_TIMERCOUNTER(timeout, data->uart_cfg->baudrate);
} else {
data->dma_tx.timeout = 0;
}
data->dma_tx.blk_cfg.source_address = (uint32_t)data->dma_tx.buffer;
data->dma_tx.blk_cfg.block_size = data->dma_tx.buffer_length;
(void)uart_silabs_pm_lock_get(dev, UART_SILABS_PM_LOCK_TX);
USART_IntClear(config->base, USART_IF_TXC | USART_IF_TCMP2);
USART_IntEnable(config->base, USART_IF_TXC);
if (timeout >= 0) {
USART_IntEnable(config->base, USART_IF_TCMP2);
}
ret = dma_config(data->dma_tx.dma_dev, data->dma_tx.dma_channel, &data->dma_tx.dma_cfg);
if (ret) {
LOG_ERR("dma tx config error!");
return ret;
}
ret = dma_start(data->dma_tx.dma_dev, data->dma_tx.dma_channel);
if (ret) {
LOG_ERR("UART err: TX DMA start failed!");
return ret;
}
data->dma_tx.enabled = true;
return 0;
}
static int uart_silabs_async_tx_abort(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
struct uart_silabs_data *data = dev->data;
size_t tx_buffer_length = data->dma_tx.buffer_length;
struct dma_status stat;
if (!tx_buffer_length) {
return -EFAULT;
}
USART_IntDisable(config->base, USART_IF_TXC);
USART_IntDisable(config->base, USART_IF_TCMP2);
USART_IntClear(config->base, USART_IF_TXC | USART_IF_TCMP2);
(void)uart_silabs_pm_lock_put(dev, UART_SILABS_PM_LOCK_TX);
if (!dma_get_status(data->dma_tx.dma_dev, data->dma_tx.dma_channel, &stat)) {
data->dma_tx.counter = tx_buffer_length - stat.pending_length;
}
dma_stop(data->dma_tx.dma_dev, data->dma_tx.dma_channel);
data->dma_tx.enabled = false;
async_evt_tx_abort(data);
return 0;
}
static int uart_silabs_async_rx_enable(const struct device *dev, uint8_t *rx_buf, size_t buf_size,
int32_t timeout)
{
const struct uart_silabs_config *config = dev->config;
struct uart_silabs_data *data = dev->data;
int ret;
if (!data->dma_rx.dma_dev) {
return -ENODEV;
}
if (data->dma_rx.enabled) {
LOG_WRN("RX was already enabled");
return -EBUSY;
}
data->dma_rx.offset = 0;
data->dma_rx.buffer = rx_buf;
data->dma_rx.buffer_length = buf_size;
data->dma_rx.counter = 0;
/* User timeout is expressed as number of TCMP1 interrupt which occurs every
* SILABS_USART_TIMER_COMPARE_VALUE baud-times
*/
if (data->uart_cfg->baudrate > 0 && timeout >= 0) {
data->dma_rx.timeout =
SILABS_USART_TIMEOUT_TO_TIMERCOUNTER(timeout, data->uart_cfg->baudrate);
} else {
data->dma_rx.timeout = 0;
}
data->dma_rx.blk_cfg.block_size = buf_size;
data->dma_rx.blk_cfg.dest_address = (uint32_t)data->dma_rx.buffer;
ret = dma_config(data->dma_rx.dma_dev, data->dma_rx.dma_channel, &data->dma_rx.dma_cfg);
if (ret) {
LOG_ERR("UART ERR: RX DMA config failed!");
return -EINVAL;
}
if (dma_start(data->dma_rx.dma_dev, data->dma_rx.dma_channel)) {
LOG_ERR("UART ERR: RX DMA start failed!");
return -EFAULT;
}
(void)uart_silabs_pm_lock_get(dev, UART_SILABS_PM_LOCK_RX);
USART_IntClear(config->base, USART_IF_RXOF | USART_IF_TCMP1);
USART_IntEnable(config->base, USART_IF_RXOF);
if (timeout >= 0) {
USART_IntEnable(config->base, USART_IF_TCMP1);
}
data->dma_rx.enabled = true;
async_evt_rx_buf_request(data);
return ret;
}
static int uart_silabs_async_rx_disable(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
USART_TypeDef *usart = config->base;
struct uart_silabs_data *data = dev->data;
struct uart_event disabled_event = {.type = UART_RX_DISABLED};
if (!data->dma_rx.enabled) {
return -EFAULT;
}
dma_stop(data->dma_rx.dma_dev, data->dma_rx.dma_channel);
USART_IntDisable(usart, USART_IF_RXOF);
USART_IntDisable(usart, USART_IF_TCMP1);
USART_IntClear(usart, USART_IF_RXOF | USART_IF_TCMP1);
(void)uart_silabs_pm_lock_put(dev, UART_SILABS_PM_LOCK_RX);
if (!data->dma_rx.enabled) {
usart->CMD = USART_CMD_CLEARRX;
}
uart_silabs_dma_rx_flush(data);
async_evt_rx_buf_release(data);
if (data->rx_next_buffer) {
struct uart_event rx_next_buf_release_evt = {
.type = UART_RX_BUF_RELEASED,
.data.rx_buf.buf = data->rx_next_buffer,
};
async_user_callback(data, &rx_next_buf_release_evt);
}
data->rx_next_buffer = NULL;
data->rx_next_buffer_len = 0;
data->dma_rx.enabled = false;
async_user_callback(data, &disabled_event);
return 0;
}
static int uart_silabs_async_rx_buf_rsp(const struct device *dev, uint8_t *buf, size_t len)
{
struct uart_silabs_data *data = dev->data;
unsigned int key;
int ret;
key = irq_lock();
if (data->rx_next_buffer) {
return -EBUSY;
} else if (!data->dma_rx.enabled) {
return -EACCES;
}
data->rx_next_buffer = buf;
data->rx_next_buffer_len = len;
data->dma_rx.blk_cfg.dest_address = (uint32_t)buf;
data->dma_rx.blk_cfg.block_size = len;
irq_unlock(key);
ret = silabs_ldma_append_block(data->dma_rx.dma_dev, data->dma_rx.dma_channel,
&data->dma_rx.dma_cfg);
if (ret) {
LOG_ERR("UART ERR: RX DMA append failed!");
return -EINVAL;
}
return ret;
}
static int uart_silabs_async_init(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
USART_TypeDef *usart = config->base;
struct uart_silabs_data *data = dev->data;
data->uart_dev = dev;
if (data->dma_rx.dma_dev) {
if (!device_is_ready(data->dma_rx.dma_dev)) {
return -ENODEV;
}
data->dma_rx.dma_channel = dma_request_channel(data->dma_rx.dma_dev, NULL);
}
if (data->dma_tx.dma_dev) {
if (!device_is_ready(data->dma_tx.dma_dev)) {
return -ENODEV;
}
data->dma_tx.dma_channel = dma_request_channel(data->dma_tx.dma_dev, NULL);
}
data->dma_rx.enabled = false;
data->dma_tx.enabled = false;
memset(&data->dma_rx.blk_cfg, 0, sizeof(data->dma_rx.blk_cfg));
data->dma_rx.blk_cfg.source_address = (uintptr_t)&(usart->RXDATA);
data->dma_rx.blk_cfg.dest_address = 0;
data->dma_rx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
data->dma_rx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
data->dma_rx.dma_cfg.complete_callback_en = 1;
data->dma_rx.dma_cfg.channel_priority = 3;
data->dma_rx.dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY;
data->dma_rx.dma_cfg.head_block = &data->dma_rx.blk_cfg;
data->dma_rx.dma_cfg.user_data = (void *)dev;
data->rx_next_buffer = NULL;
data->rx_next_buffer_len = 0;
memset(&data->dma_tx.blk_cfg, 0, sizeof(data->dma_tx.blk_cfg));
data->dma_tx.blk_cfg.dest_address = (uintptr_t)&(usart->TXDATA);
data->dma_tx.blk_cfg.source_address = 0;
data->dma_tx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
data->dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
data->dma_tx.dma_cfg.complete_callback_en = 1;
data->dma_tx.dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL;
data->dma_tx.dma_cfg.head_block = &data->dma_tx.blk_cfg;
data->dma_tx.dma_cfg.user_data = (void *)dev;
config->base->CMD = USART_CMD_CLEARRX | USART_CMD_CLEARTX;
config->base->TIMECMP1 =
USART_TIMECMP1_TSTOP_RXACT | USART_TIMECMP1_TSTART_RXEOF |
USART_TIMECMP1_RESTARTEN |
(SILABS_USART_TIMER_COMPARE_VALUE << _USART_TIMECMP1_TCMPVAL_SHIFT);
config->base->TIMECMP2 =
USART_TIMECMP2_TSTOP_TXST | USART_TIMECMP2_TSTART_TXEOF | USART_TIMECMP2_RESTARTEN |
(SILABS_USART_TIMER_COMPARE_VALUE << _USART_TIMECMP2_TCMPVAL_SHIFT);
return 0;
}
#endif /* CONFIG_UART_SILABS_USART_ASYNC */
static void uart_silabs_isr(const struct device *dev)
{
__maybe_unused struct uart_silabs_data *data = dev->data;
const struct uart_silabs_config *config = dev->config;
USART_TypeDef *usart = config->base;
uint32_t flags = USART_IntGet(usart);
#ifdef CONFIG_UART_SILABS_USART_ASYNC
struct dma_status stat;
#endif
if (flags & USART_IF_TXC) {
if (uart_silabs_pm_lock_put(dev, UART_SILABS_PM_LOCK_TX_POLL)) {
USART_IntDisable(usart, USART_IEN_TXC);
USART_IntClear(usart, USART_IF_TXC);
}
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
if (data->callback) {
data->callback(dev, data->cb_data);
}
#endif
#ifdef CONFIG_UART_SILABS_USART_ASYNC
if (flags & USART_IF_TCMP1) {
data->dma_rx.timeout_cnt++;
if (data->dma_rx.timeout_cnt >= data->dma_rx.timeout) {
uart_silabs_dma_rx_flush(data);
usart->TIMECMP1 &= ~_USART_TIMECMP1_TSTART_MASK;
usart->TIMECMP1 |= USART_TIMECMP1_TSTART_RXEOF;
data->dma_rx.timeout_cnt = 0;
}
USART_IntClear(usart, USART_IF_TCMP1);
}
if (flags & USART_IF_RXOF) {
async_evt_rx_err(data, UART_ERROR_OVERRUN);
uart_silabs_async_rx_disable(dev);
USART_IntClear(usart, USART_IF_RXOF);
}
if (flags & USART_IF_TXC) {
if (!dma_get_status(data->dma_tx.dma_dev, data->dma_tx.dma_channel, &stat)) {
data->dma_tx.counter = data->dma_tx.buffer_length - stat.pending_length;
}
if (data->dma_tx.counter == data->dma_tx.buffer_length) {
USART_IntDisable(config->base, USART_IF_TXC);
USART_IntDisable(config->base, USART_IF_TCMP2);
USART_IntClear(usart, USART_IF_TXC | USART_IF_TCMP2);
(void)uart_silabs_pm_lock_put(dev, UART_SILABS_PM_LOCK_TX);
usart->TIMECMP2 &= ~_USART_TIMECMP2_TSTART_MASK;
usart->TIMECMP2 |= USART_TIMECMP2_TSTART_DISABLE;
}
async_evt_tx_done(data);
}
if (flags & USART_IF_TCMP2) {
data->dma_tx.timeout_cnt++;
if (data->dma_tx.timeout_cnt >= data->dma_tx.timeout) {
usart->TIMECMP2 &= ~_USART_TIMECMP2_TSTART_MASK;
usart->TIMECMP2 |= USART_TIMECMP2_TSTART_DISABLE;
data->dma_tx.timeout_cnt = 0;
uart_silabs_async_tx_abort(dev);
}
USART_IntClear(usart, USART_IF_TCMP2);
}
#endif /* CONFIG_UART_SILABS_USART_ASYNC */
}
static inline USART_Parity_TypeDef uart_silabs_cfg2ll_parity(
enum uart_config_parity parity)
{
switch (parity) {
case UART_CFG_PARITY_ODD:
return usartOddParity;
case UART_CFG_PARITY_EVEN:
return usartEvenParity;
case UART_CFG_PARITY_NONE:
default:
return usartNoParity;
}
}
static inline USART_Stopbits_TypeDef uart_silabs_cfg2ll_stopbits(
enum uart_config_stop_bits sb)
{
switch (sb) {
case UART_CFG_STOP_BITS_0_5:
return usartStopbits0p5;
case UART_CFG_STOP_BITS_1:
return usartStopbits1;
case UART_CFG_STOP_BITS_2:
return usartStopbits2;
case UART_CFG_STOP_BITS_1_5:
return usartStopbits1p5;
default:
return usartStopbits1;
}
}
static inline USART_Databits_TypeDef uart_silabs_cfg2ll_databits(
enum uart_config_data_bits db, enum uart_config_parity p)
{
switch (db) {
case UART_CFG_DATA_BITS_7:
if (p == UART_CFG_PARITY_NONE) {
return usartDatabits7;
} else {
return usartDatabits8;
}
case UART_CFG_DATA_BITS_9:
return usartDatabits9;
case UART_CFG_DATA_BITS_8:
default:
if (p == UART_CFG_PARITY_NONE) {
return usartDatabits8;
} else {
return usartDatabits9;
}
return usartDatabits8;
}
}
static inline USART_HwFlowControl_TypeDef uart_silabs_cfg2ll_hwctrl(
enum uart_config_flow_control fc)
{
if (fc == UART_CFG_FLOW_CTRL_RTS_CTS) {
return usartHwFlowControlCtsAndRts;
}
return usartHwFlowControlNone;
}
static inline enum uart_config_parity uart_silabs_ll2cfg_parity(USART_Parity_TypeDef parity)
{
switch (parity) {
case usartOddParity:
return UART_CFG_PARITY_ODD;
case usartEvenParity:
return UART_CFG_PARITY_EVEN;
case usartNoParity:
default:
return UART_CFG_PARITY_NONE;
}
}
static inline enum uart_config_stop_bits uart_silabs_ll2cfg_stopbits(USART_Stopbits_TypeDef sb)
{
switch (sb) {
case usartStopbits0p5:
return UART_CFG_STOP_BITS_0_5;
case usartStopbits1:
return UART_CFG_STOP_BITS_1;
case usartStopbits1p5:
return UART_CFG_STOP_BITS_1_5;
case usartStopbits2:
return UART_CFG_STOP_BITS_2;
default:
return UART_CFG_STOP_BITS_1;
}
}
static inline enum uart_config_data_bits uart_silabs_ll2cfg_databits(USART_Databits_TypeDef db,
USART_Parity_TypeDef p)
{
switch (db) {
case usartDatabits7:
if (p == usartNoParity) {
return UART_CFG_DATA_BITS_7;
} else {
return UART_CFG_DATA_BITS_6;
}
case usartDatabits9:
if (p == usartNoParity) {
return UART_CFG_DATA_BITS_9;
} else {
return UART_CFG_DATA_BITS_8;
}
case usartDatabits8:
default:
if (p == usartNoParity) {
return UART_CFG_DATA_BITS_8;
} else {
return UART_CFG_DATA_BITS_7;
}
}
}
static inline enum uart_config_flow_control uart_silabs_ll2cfg_hwctrl(
USART_HwFlowControl_TypeDef fc)
{
if (fc == usartHwFlowControlCtsAndRts) {
return UART_CFG_FLOW_CTRL_RTS_CTS;
}
return UART_CFG_FLOW_CTRL_NONE;
}
static void uart_silabs_configure_peripheral(const struct device *dev, bool enable)
{
const struct uart_silabs_config *config = dev->config;
const struct uart_silabs_data *data = dev->data;
USART_InitAsync_TypeDef usartInit = USART_INITASYNC_DEFAULT;
usartInit.baudrate = data->uart_cfg->baudrate;
usartInit.parity = uart_silabs_cfg2ll_parity(data->uart_cfg->parity);
usartInit.stopbits = uart_silabs_cfg2ll_stopbits(data->uart_cfg->stop_bits);
usartInit.databits = uart_silabs_cfg2ll_databits(data->uart_cfg->data_bits,
data->uart_cfg->parity);
usartInit.hwFlowControl = uart_silabs_cfg2ll_hwctrl(data->uart_cfg->flow_ctrl);
usartInit.enable = enable ? usartEnable : usartDisable;
USART_InitAsync(config->base, &usartInit);
}
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int uart_silabs_configure(const struct device *dev,
const struct uart_config *cfg)
{
const struct uart_silabs_config *config = dev->config;
USART_TypeDef *base = config->base;
struct uart_silabs_data *data = dev->data;
#ifdef CONFIG_UART_SILABS_USART_ASYNC
if (data->dma_rx.enabled || data->dma_tx.enabled) {
return -EBUSY;
}
#endif
if ((cfg->parity == UART_CFG_PARITY_MARK) ||
(cfg->parity == UART_CFG_PARITY_SPACE)) {
return -ENOSYS;
}
if (cfg->flow_ctrl == UART_CFG_FLOW_CTRL_DTR_DSR ||
cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RS485) {
return -ENOSYS;
}
*data->uart_cfg = *cfg;
USART_Enable(base, usartDisable);
uart_silabs_configure_peripheral(dev, true);
return 0;
};
static int uart_silabs_config_get(const struct device *dev,
struct uart_config *cfg)
{
struct uart_silabs_data *data = dev->data;
struct uart_config *uart_cfg = data->uart_cfg;
cfg->baudrate = uart_cfg->baudrate;
cfg->parity = uart_cfg->parity;
cfg->stop_bits = uart_cfg->stop_bits;
cfg->data_bits = uart_cfg->data_bits;
cfg->flow_ctrl = uart_cfg->flow_ctrl;
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
static int uart_silabs_init(const struct device *dev)
{
int err;
const struct uart_silabs_config *config = dev->config;
/* The peripheral and gpio clock are already enabled from soc and gpio driver */
/* Enable USART clock */
err = clock_control_on(config->clock_dev, (clock_control_subsys_t)&config->clock_cfg);
if (err < 0) {
return err;
}
uart_silabs_configure_peripheral(dev, false);
config->irq_config_func(dev);
#ifdef CONFIG_UART_SILABS_USART_ASYNC
err = uart_silabs_async_init(dev);
if (err < 0) {
return err;
}
#endif
return pm_device_driver_init(dev, uart_silabs_pm_action);
}
static int uart_silabs_pm_action(const struct device *dev, enum pm_device_action action)
{
int err;
const struct uart_silabs_config *config = dev->config;
__maybe_unused struct uart_silabs_data *data = dev->data;
if (action == PM_DEVICE_ACTION_RESUME) {
err = clock_control_on(config->clock_dev,
(clock_control_subsys_t)&config->clock_cfg);
if (err < 0 && err != -EALREADY) {
return err;
}
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (err < 0) {
return err;
}
USART_Enable(config->base, usartEnable);
} else if (IS_ENABLED(CONFIG_PM_DEVICE) && (action == PM_DEVICE_ACTION_SUSPEND)) {
#ifdef CONFIG_UART_SILABS_USART_ASYNC
/* Entering suspend requires there to be no active asynchronous calls. */
__ASSERT_NO_MSG(!data->dma_rx.enabled);
__ASSERT_NO_MSG(!data->dma_tx.enabled);
#endif
USART_Enable(config->base, usartDisable);
err = clock_control_off(config->clock_dev,
(clock_control_subsys_t)&config->clock_cfg);
if (err < 0) {
return err;
}
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_SLEEP);
if (err < 0 && err != -ENOENT) {
return err;
}
} else {
return -ENOTSUP;
}
return 0;
}
static DEVICE_API(uart, uart_silabs_driver_api) = {
.poll_in = uart_silabs_poll_in,
.poll_out = uart_silabs_poll_out,
.err_check = uart_silabs_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = uart_silabs_configure,
.config_get = uart_silabs_config_get,
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_silabs_fifo_fill,
.fifo_read = uart_silabs_fifo_read,
.irq_tx_enable = uart_silabs_irq_tx_enable,
.irq_tx_disable = uart_silabs_irq_tx_disable,
.irq_tx_complete = uart_silabs_irq_tx_complete,
.irq_tx_ready = uart_silabs_irq_tx_ready,
.irq_rx_enable = uart_silabs_irq_rx_enable,
.irq_rx_disable = uart_silabs_irq_rx_disable,
.irq_rx_ready = uart_silabs_irq_rx_ready,
.irq_err_enable = uart_silabs_irq_err_enable,
.irq_err_disable = uart_silabs_irq_err_disable,
.irq_is_pending = uart_silabs_irq_is_pending,
.irq_update = uart_silabs_irq_update,
.irq_callback_set = uart_silabs_irq_callback_set,
#endif
#ifdef CONFIG_UART_SILABS_USART_ASYNC
.callback_set = uart_silabs_async_callback_set,
.tx = uart_silabs_async_tx,
.tx_abort = uart_silabs_async_tx_abort,
.rx_enable = uart_silabs_async_rx_enable,
.rx_disable = uart_silabs_async_rx_disable,
.rx_buf_rsp = uart_silabs_async_rx_buf_rsp,
#endif
};
#ifdef CONFIG_UART_SILABS_USART_ASYNC
#define UART_DMA_CHANNEL_INIT(index, dir) \
.dma_##dir = { \
.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(index, dir)), \
.dma_cfg = { \
.dma_slot = SILABS_LDMA_REQSEL_TO_SLOT( \
DT_INST_DMAS_CELL_BY_NAME(index, dir, slot)), \
.source_data_size = 1, \
.dest_data_size = 1, \
.source_burst_length = 1, \
.dest_burst_length = 1, \
.dma_callback = uart_silabs_dma_##dir##_cb, \
} \
},
#define UART_DMA_CHANNEL(index, dir) \
COND_CODE_1(DT_INST_NODE_HAS_PROP(index, dmas), \
(UART_DMA_CHANNEL_INIT(index, dir)), ())
#else
#define UART_DMA_CHANNEL(index, dir)
#endif
#define SILABS_USART_IRQ_HANDLER_FUNC(idx) .irq_config_func = usart_silabs_config_func_##idx,
#define SILABS_USART_IRQ_HANDLER(idx) \
static void usart_silabs_config_func_##idx(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(idx, rx, irq), \
DT_INST_IRQ_BY_NAME(idx, rx, priority), uart_silabs_isr, \
DEVICE_DT_INST_GET(idx), 0); \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(idx, tx, irq), \
DT_INST_IRQ_BY_NAME(idx, tx, priority), uart_silabs_isr, \
DEVICE_DT_INST_GET(idx), 0); \
\
irq_enable(DT_INST_IRQ_BY_NAME(idx, rx, irq)); \
irq_enable(DT_INST_IRQ_BY_NAME(idx, tx, irq)); \
}
#define SILABS_USART_INIT(idx) \
SILABS_USART_IRQ_HANDLER(idx); \
PINCTRL_DT_INST_DEFINE(idx); \
PM_DEVICE_DT_INST_DEFINE(idx, uart_silabs_pm_action); \
\
static struct uart_config uart_cfg_##idx = { \
.baudrate = DT_INST_PROP(idx, current_speed), \
.parity = DT_INST_ENUM_IDX(idx, parity), \
.stop_bits = DT_INST_ENUM_IDX(idx, stop_bits), \
.data_bits = DT_INST_ENUM_IDX(idx, data_bits), \
.flow_ctrl = DT_INST_PROP(idx, hw_flow_control) ? UART_CFG_FLOW_CTRL_RTS_CTS \
: UART_CFG_FLOW_CTRL_NONE, \
}; \
\
static const struct uart_silabs_config uart_silabs_cfg_##idx = { \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx), \
.base = (USART_TypeDef *)DT_INST_REG_ADDR(idx), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(idx)), \
.clock_cfg = SILABS_DT_INST_CLOCK_CFG(idx), \
SILABS_USART_IRQ_HANDLER_FUNC(idx) \
}; \
\
static struct uart_silabs_data uart_silabs_data_##idx = { \
.uart_cfg = &uart_cfg_##idx, \
UART_DMA_CHANNEL(idx, rx) \
UART_DMA_CHANNEL(idx, tx) \
}; \
\
DEVICE_DT_INST_DEFINE(idx, uart_silabs_init, PM_DEVICE_DT_INST_GET(idx), \
&uart_silabs_data_##idx, &uart_silabs_cfg_##idx, PRE_KERNEL_1, \
CONFIG_SERIAL_INIT_PRIORITY, &uart_silabs_driver_api);
DT_INST_FOREACH_STATUS_OKAY(SILABS_USART_INIT)