Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

218 lines
5.4 KiB

/*
* Copyright (c) 2025 STMicroelectronics
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <soc.h>
#include <stm32_ll_bus.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_system.h>
#include <stm32_ll_utils.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/sys/util.h>
static int stm32_clock_control_on(const struct device *dev, clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system;
volatile int temp;
ARG_UNUSED(dev);
if (!IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX)) {
/* Attempt to toggle a wrong periph clock bit */
return -ENOTSUP;
}
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus, pclken->enr);
/* Ensure that the write operation is completed */
temp = sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus);
UNUSED(temp);
return 0;
}
static int stm32_clock_control_off(const struct device *dev, clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system;
volatile int temp;
ARG_UNUSED(dev);
if (!IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX)) {
/* Attempt to toggle a wrong periph clock bit */
return -ENOTSUP;
}
sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus, pclken->enr);
/* Ensure that the write operation is completed */
temp = sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus);
UNUSED(temp);
return 0;
}
static int stm32_clock_control_get_subsys_rate(const struct device *dev,
clock_control_subsys_t sub_system, uint32_t *rate)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system;
ARG_UNUSED(dev);
switch (pclken->bus) {
case STM32_CLOCK_BUS_APB1:
switch (pclken->enr) {
case LL_APB1_GRP1_PERIPH_UART4:
*rate = LL_RCC_GetUARTClockFreq(LL_RCC_UART4_CLKSOURCE);
break;
case LL_APB1_GRP1_PERIPH_I2C1:
case LL_APB1_GRP1_PERIPH_I2C2:
*rate = LL_RCC_GetI2CClockFreq(LL_RCC_I2C12_CLKSOURCE);
break;
default:
return -ENOTSUP;
}
break;
case STM32_CLOCK_BUS_APB6:
switch (pclken->enr) {
case LL_APB6_GRP1_PERIPH_I2C3:
*rate = LL_RCC_GetI2CClockFreq(LL_RCC_I2C3_CLKSOURCE);
break;
case LL_APB6_GRP1_PERIPH_I2C4:
*rate = LL_RCC_GetI2CClockFreq(LL_RCC_I2C4_CLKSOURCE);
break;
case LL_APB6_GRP1_PERIPH_I2C5:
*rate = LL_RCC_GetI2CClockFreq(LL_RCC_I2C5_CLKSOURCE);
break;
default:
return -ENOTSUP;
}
break;
default:
return -ENOTSUP;
}
return 0;
}
static DEVICE_API(clock_control, stm32_clock_control_api) = {
.on = stm32_clock_control_on,
.off = stm32_clock_control_off,
.get_rate = stm32_clock_control_get_subsys_rate,
};
static void set_up_fixed_clock_sources(void)
{
if (IS_ENABLED(STM32_HSE_ENABLED)) {
/* Enable HSE */
LL_RCC_HSE_Enable();
while (LL_RCC_HSE_IsReady() != 1) {
/* Wait for HSE ready */
}
}
if (IS_ENABLED(STM32_HSI_ENABLED)) {
/* Enable HSI if not enabled */
if (LL_RCC_HSI_IsReady() != 1) {
/* Enable HSI */
LL_RCC_HSI_Enable();
while (LL_RCC_HSI_IsReady() != 1) {
/* Wait for HSI ready */
}
}
}
}
static int stm32_clock_control_init(const struct device *dev)
{
ARG_UNUSED(dev);
set_up_fixed_clock_sources();
#if STM32_SYSCLK_SRC_HSE
LL_RCC_SetMPUClkSource(LL_RCC_MPU_CLKSOURCE_HSE);
while (LL_RCC_GetMPUClkSource() != LL_RCC_MPU_CLKSOURCE_HSE) {
}
#elif STM32_SYSCLK_SRC_HSI
LL_RCC_SetMPUClkSource(LL_RCC_MPU_CLKSOURCE_HSI);
while (LL_RCC_GetMPUClkSource() != LL_RCC_MPU_CLKSOURCE_HSI) {
}
#elif STM32_SYSCLK_SRC_PLL
BUILD_ASSERT(IS_ENABLED(STM32_HSE_ENABLED),
"STM32MP13 PLL requires HSE to be enabled!");
/* The default system clock source is HSI, but the bootloader may have switched it. */
/* Switch back to HSE for clock setup as PLL1 configuration must not be modified */
/* while active.*/
LL_RCC_SetMPUClkSource(LL_RCC_MPU_CLKSOURCE_HSE);
while ((READ_BIT(RCC->MPCKSELR, RCC_MPCKSELR_MPUSRCRDY) != RCC_MPCKSELR_MPUSRCRDY)) {
}
CLEAR_BIT(RCC->PLL1CR, RCC_PLL1CR_DIVPEN);
while (READ_BIT(RCC->PLL1CR, RCC_PLL1CR_DIVPEN) == RCC_PLL1CR_DIVPEN) {
};
CLEAR_BIT(RCC->PLL1CR, RCC_PLL1CR_DIVQEN);
while (READ_BIT(RCC->PLL1CR, RCC_PLL1CR_DIVQEN) == RCC_PLL1CR_DIVQEN) {
};
CLEAR_BIT(RCC->PLL1CR, RCC_PLL1CR_DIVREN);
while (READ_BIT(RCC->PLL1CR, RCC_PLL1CR_DIVREN) == RCC_PLL1CR_DIVREN) {
};
uint32_t pll1_n = DT_PROP(DT_NODELABEL(pll1), mul_n);
uint32_t pll1_m = DT_PROP(DT_NODELABEL(pll1), div_m);
uint32_t pll1_p = DT_PROP(DT_NODELABEL(pll1), div_p);
uint32_t pll1_v = DT_PROP(DT_NODELABEL(pll1), frac_v);
LL_RCC_PLL1_SetN(pll1_n);
while (LL_RCC_PLL1_GetN() != pll1_n) {
}
LL_RCC_PLL1_SetM(pll1_m);
while (LL_RCC_PLL1_GetM() != pll1_m) {
}
LL_RCC_PLL1_SetP(pll1_p);
while (LL_RCC_PLL1_GetP() != pll1_p) {
}
LL_RCC_PLL1_SetFRACV(pll1_v);
while (LL_RCC_PLL1_GetFRACV() != pll1_v) {
}
LL_RCC_PLL1_Enable();
while (LL_RCC_PLL1_IsReady() != 1) {
}
SET_BIT(RCC->PLL1CR, RCC_PLL1CR_DIVPEN);
while (READ_BIT(RCC->PLL1CR, RCC_PLL1CR_DIVPEN) != RCC_PLL1CR_DIVPEN) {
};
LL_RCC_SetMPUClkSource(LL_RCC_MPU_CLKSOURCE_PLL1);
while (LL_RCC_GetMPUClkSource() != LL_RCC_MPU_CLKSOURCE_PLL1) {
}
#endif
return 0;
}
/**
* @brief RCC device, note that priority is intentionally set to 1 so
* that the device init runs just after SOC init
*/
DEVICE_DT_DEFINE(DT_NODELABEL(rcc),
stm32_clock_control_init,
NULL,
NULL, NULL,
PRE_KERNEL_1,
CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
&stm32_clock_control_api);