Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

275 lines
6.7 KiB

/*
* Copyright (c) 2024 Nordic Semiconductor ASA
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nordic_nrf_fll16m
#include "clock_control_nrf2_common.h"
#include <zephyr/devicetree.h>
#include <zephyr/drivers/clock_control/nrf_clock_control.h>
#include <soc_lrcconf.h>
#include <hal/nrf_bicr.h>
#include <zephyr/logging/log.h>
LOG_MODULE_DECLARE(clock_control_nrf2, CONFIG_CLOCK_CONTROL_LOG_LEVEL);
BUILD_ASSERT(DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT) == 1,
"multiple instances not supported");
#define FLAG_HFXO_STARTED BIT(FLAGS_COMMON_BITS)
#define FLL16M_MODE_OPEN_LOOP 0
#define FLL16M_MODE_CLOSED_LOOP 1
#define FLL16M_MODE_BYPASS 2
#define FLL16M_MODE_DEFAULT FLL16M_MODE_OPEN_LOOP
#define FLL16M_HFXO_NODE DT_INST_PHANDLE_BY_NAME(0, clocks, hfxo)
#define FLL16M_HFXO_ACCURACY DT_PROP(FLL16M_HFXO_NODE, accuracy_ppm)
#define FLL16M_OPEN_LOOP_ACCURACY DT_INST_PROP(0, open_loop_accuracy_ppm)
#define FLL16M_CLOSED_LOOP_BASE_ACCURACY DT_INST_PROP(0, closed_loop_base_accuracy_ppm)
#define FLL16M_MAX_ACCURACY FLL16M_HFXO_ACCURACY
#define BICR (NRF_BICR_Type *)DT_REG_ADDR(DT_NODELABEL(bicr))
/* Clock options sorted from lowest to highest accuracy */
static struct clock_options {
uint16_t accuracy;
uint8_t mode;
} clock_options[] = {
{
.accuracy = FLL16M_OPEN_LOOP_ACCURACY,
.mode = FLL16M_MODE_OPEN_LOOP,
},
{
.mode = FLL16M_MODE_CLOSED_LOOP,
},
{
/* Bypass mode uses HFXO */
.accuracy = FLL16M_HFXO_ACCURACY,
.mode = FLL16M_MODE_BYPASS,
},
};
struct fll16m_dev_data {
STRUCT_CLOCK_CONFIG(fll16m, ARRAY_SIZE(clock_options)) clk_cfg;
struct onoff_client hfxo_cli;
sys_snode_t fll16m_node;
};
struct fll16m_dev_config {
uint32_t fixed_frequency;
};
static void activate_fll16m_mode(struct fll16m_dev_data *dev_data, uint8_t mode)
{
/* TODO: change to nrf_lrcconf_* function when such is available. */
if (mode != FLL16M_MODE_DEFAULT) {
soc_lrcconf_poweron_request(&dev_data->fll16m_node, NRF_LRCCONF_POWER_MAIN);
}
NRF_LRCCONF010->CLKCTRL[0].SRC = mode;
if (mode == FLL16M_MODE_DEFAULT) {
soc_lrcconf_poweron_release(&dev_data->fll16m_node, NRF_LRCCONF_POWER_MAIN);
}
nrf_lrcconf_task_trigger(NRF_LRCCONF010, NRF_LRCCONF_TASK_CLKSTART_0);
clock_config_update_end(&dev_data->clk_cfg, 0);
}
static void hfxo_cb(struct onoff_manager *mgr,
struct onoff_client *cli,
uint32_t state,
int res)
{
ARG_UNUSED(mgr);
ARG_UNUSED(state);
struct fll16m_dev_data *dev_data =
CONTAINER_OF(cli, struct fll16m_dev_data, hfxo_cli);
if (res < 0) {
clock_config_update_end(&dev_data->clk_cfg, res);
} else {
(void)atomic_or(&dev_data->clk_cfg.flags, FLAG_HFXO_STARTED);
activate_fll16m_mode(dev_data, FLL16M_MODE_BYPASS);
}
}
static void fll16m_work_handler(struct k_work *work)
{
const struct device *hfxo = DEVICE_DT_GET(FLL16M_HFXO_NODE);
struct fll16m_dev_data *dev_data =
CONTAINER_OF(work, struct fll16m_dev_data, clk_cfg.work);
uint8_t to_activate_idx;
to_activate_idx = clock_config_update_begin(work);
if (clock_options[to_activate_idx].mode == FLL16M_MODE_BYPASS) {
int rc;
/* Bypass mode requires HFXO to be running first. */
sys_notify_init_callback(&dev_data->hfxo_cli.notify, hfxo_cb);
rc = nrf_clock_control_request(hfxo, NULL, &dev_data->hfxo_cli);
if (rc < 0) {
clock_config_update_end(&dev_data->clk_cfg, rc);
}
} else {
atomic_val_t prev_flags;
prev_flags = atomic_and(&dev_data->clk_cfg.flags,
~FLAG_HFXO_STARTED);
if (prev_flags & FLAG_HFXO_STARTED) {
(void)nrf_clock_control_release(hfxo, NULL);
}
activate_fll16m_mode(dev_data,
clock_options[to_activate_idx].mode);
}
}
static struct onoff_manager *fll16m_find_mgr(const struct device *dev,
const struct nrf_clock_spec *spec)
{
struct fll16m_dev_data *dev_data = dev->data;
const struct fll16m_dev_config *dev_config = dev->config;
uint16_t accuracy;
if (!spec) {
return &dev_data->clk_cfg.onoff[0].mgr;
}
if (spec->frequency > dev_config->fixed_frequency) {
LOG_ERR("invalid frequency");
return NULL;
}
if (spec->precision) {
LOG_ERR("invalid precision");
return NULL;
}
accuracy = spec->accuracy == NRF_CLOCK_CONTROL_ACCURACY_MAX
? FLL16M_MAX_ACCURACY
: spec->accuracy;
for (int i = 0; i < ARRAY_SIZE(clock_options); ++i) {
if (accuracy &&
accuracy < clock_options[i].accuracy) {
continue;
}
return &dev_data->clk_cfg.onoff[i].mgr;
}
LOG_ERR("invalid accuracy");
return NULL;
}
static int api_request_fll16m(const struct device *dev,
const struct nrf_clock_spec *spec,
struct onoff_client *cli)
{
struct onoff_manager *mgr = fll16m_find_mgr(dev, spec);
if (mgr) {
return onoff_request(mgr, cli);
}
return -EINVAL;
}
static int api_release_fll16m(const struct device *dev,
const struct nrf_clock_spec *spec)
{
struct onoff_manager *mgr = fll16m_find_mgr(dev, spec);
if (mgr) {
return onoff_release(mgr);
}
return -EINVAL;
}
static int api_cancel_or_release_fll16m(const struct device *dev,
const struct nrf_clock_spec *spec,
struct onoff_client *cli)
{
struct onoff_manager *mgr = fll16m_find_mgr(dev, spec);
if (mgr) {
return onoff_cancel_or_release(mgr, cli);
}
return -EINVAL;
}
static int api_get_rate_fll16m(const struct device *dev,
clock_control_subsys_t sys,
uint32_t *rate)
{
ARG_UNUSED(sys);
const struct fll16m_dev_config *dev_config = dev->config;
*rate = dev_config->fixed_frequency;
return 0;
}
static int fll16m_init(const struct device *dev)
{
struct fll16m_dev_data *dev_data = dev->data;
nrf_bicr_lfosc_mode_t lfosc_mode;
clock_options[1].accuracy = FLL16M_CLOSED_LOOP_BASE_ACCURACY;
/* Closed-loop mode uses LFXO as source if present, HFXO otherwise */
lfosc_mode = nrf_bicr_lfosc_mode_get(BICR);
if (lfosc_mode != NRF_BICR_LFOSC_MODE_UNCONFIGURED &&
lfosc_mode != NRF_BICR_LFOSC_MODE_DISABLED) {
int ret;
uint16_t accuracy;
ret = lfosc_get_accuracy(&accuracy);
if (ret < 0) {
return ret;
}
clock_options[1].accuracy += accuracy;
} else {
clock_options[1].accuracy += FLL16M_HFXO_ACCURACY;
}
return clock_config_init(&dev_data->clk_cfg,
ARRAY_SIZE(dev_data->clk_cfg.onoff),
fll16m_work_handler);
}
static DEVICE_API(nrf_clock_control, fll16m_drv_api) = {
.std_api = {
.on = api_nosys_on_off,
.off = api_nosys_on_off,
.get_rate = api_get_rate_fll16m,
},
.request = api_request_fll16m,
.release = api_release_fll16m,
.cancel_or_release = api_cancel_or_release_fll16m,
};
static struct fll16m_dev_data fll16m_data;
static const struct fll16m_dev_config fll16m_config = {
.fixed_frequency = DT_INST_PROP(0, clock_frequency),
};
DEVICE_DT_INST_DEFINE(0, fll16m_init, NULL,
&fll16m_data, &fll16m_config,
PRE_KERNEL_1, CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
&fll16m_drv_api);