You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
668 lines
17 KiB
668 lines
17 KiB
/* |
|
* Copyright (c) 2010-2014 Wind River Systems, Inc. |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
/** |
|
* @file |
|
* @brief Kernel initialization module |
|
* |
|
* This module contains routines that are used to initialize the kernel. |
|
*/ |
|
|
|
#include <offsets_short.h> |
|
#include <zephyr/kernel.h> |
|
#include <zephyr/sys/printk.h> |
|
#include <zephyr/debug/stack.h> |
|
#include <zephyr/random/random.h> |
|
#include <zephyr/linker/sections.h> |
|
#include <zephyr/toolchain.h> |
|
#include <zephyr/kernel_structs.h> |
|
#include <zephyr/device.h> |
|
#include <zephyr/init.h> |
|
#include <zephyr/linker/linker-defs.h> |
|
#include <ksched.h> |
|
#include <string.h> |
|
#include <zephyr/sys/dlist.h> |
|
#include <kernel_internal.h> |
|
#include <zephyr/drivers/entropy.h> |
|
#include <zephyr/logging/log_ctrl.h> |
|
#include <zephyr/tracing/tracing.h> |
|
#include <stdbool.h> |
|
#include <zephyr/debug/gcov.h> |
|
#include <kswap.h> |
|
#include <zephyr/timing/timing.h> |
|
#include <zephyr/logging/log.h> |
|
#include <zephyr/pm/device_runtime.h> |
|
LOG_MODULE_REGISTER(os, CONFIG_KERNEL_LOG_LEVEL); |
|
|
|
BUILD_ASSERT(CONFIG_MP_NUM_CPUS == CONFIG_MP_MAX_NUM_CPUS, |
|
"CONFIG_MP_NUM_CPUS and CONFIG_MP_MAX_NUM_CPUS need to be set the same"); |
|
|
|
/* the only struct z_kernel instance */ |
|
__pinned_bss |
|
struct z_kernel _kernel; |
|
|
|
__pinned_bss |
|
atomic_t _cpus_active; |
|
|
|
/* init/main and idle threads */ |
|
K_THREAD_PINNED_STACK_DEFINE(z_main_stack, CONFIG_MAIN_STACK_SIZE); |
|
struct k_thread z_main_thread; |
|
|
|
#ifdef CONFIG_MULTITHREADING |
|
__pinned_bss |
|
struct k_thread z_idle_threads[CONFIG_MP_MAX_NUM_CPUS]; |
|
|
|
static K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_idle_stacks, |
|
CONFIG_MP_MAX_NUM_CPUS, |
|
CONFIG_IDLE_STACK_SIZE); |
|
#endif /* CONFIG_MULTITHREADING */ |
|
|
|
extern const struct init_entry __init_start[]; |
|
extern const struct init_entry __init_EARLY_start[]; |
|
extern const struct init_entry __init_PRE_KERNEL_1_start[]; |
|
extern const struct init_entry __init_PRE_KERNEL_2_start[]; |
|
extern const struct init_entry __init_POST_KERNEL_start[]; |
|
extern const struct init_entry __init_APPLICATION_start[]; |
|
extern const struct init_entry __init_end[]; |
|
|
|
enum init_level { |
|
INIT_LEVEL_EARLY = 0, |
|
INIT_LEVEL_PRE_KERNEL_1, |
|
INIT_LEVEL_PRE_KERNEL_2, |
|
INIT_LEVEL_POST_KERNEL, |
|
INIT_LEVEL_APPLICATION, |
|
#ifdef CONFIG_SMP |
|
INIT_LEVEL_SMP, |
|
#endif |
|
}; |
|
|
|
#ifdef CONFIG_SMP |
|
extern const struct init_entry __init_SMP_start[]; |
|
#endif |
|
|
|
/* |
|
* storage space for the interrupt stack |
|
* |
|
* Note: This area is used as the system stack during kernel initialization, |
|
* since the kernel hasn't yet set up its own stack areas. The dual purposing |
|
* of this area is safe since interrupts are disabled until the kernel context |
|
* switches to the init thread. |
|
*/ |
|
K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_interrupt_stacks, |
|
CONFIG_MP_MAX_NUM_CPUS, |
|
CONFIG_ISR_STACK_SIZE); |
|
|
|
extern void idle(void *unused1, void *unused2, void *unused3); |
|
|
|
#ifdef CONFIG_OBJ_CORE_SYSTEM |
|
static struct k_obj_type obj_type_cpu; |
|
static struct k_obj_type obj_type_kernel; |
|
|
|
#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM |
|
static struct k_obj_core_stats_desc cpu_stats_desc = { |
|
.raw_size = sizeof(struct k_cycle_stats), |
|
.query_size = sizeof(struct k_thread_runtime_stats), |
|
.raw = z_cpu_stats_raw, |
|
.query = z_cpu_stats_query, |
|
.reset = NULL, |
|
.disable = NULL, |
|
.enable = NULL, |
|
}; |
|
|
|
static struct k_obj_core_stats_desc kernel_stats_desc = { |
|
.raw_size = sizeof(struct k_cycle_stats) * CONFIG_MP_MAX_NUM_CPUS, |
|
.query_size = sizeof(struct k_thread_runtime_stats), |
|
.raw = z_kernel_stats_raw, |
|
.query = z_kernel_stats_query, |
|
.reset = NULL, |
|
.disable = NULL, |
|
.enable = NULL, |
|
}; |
|
#endif |
|
#endif |
|
|
|
/* LCOV_EXCL_START |
|
* |
|
* This code is called so early in the boot process that code coverage |
|
* doesn't work properly. In addition, not all arches call this code, |
|
* some like x86 do this with optimized assembly |
|
*/ |
|
|
|
/** |
|
* @brief equivalent of memset() for early boot usage |
|
* |
|
* Architectures that can't safely use the regular (optimized) memset very |
|
* early during boot because e.g. hardware isn't yet sufficiently initialized |
|
* may override this with their own safe implementation. |
|
*/ |
|
__boot_func |
|
void __weak z_early_memset(void *dst, int c, size_t n) |
|
{ |
|
(void) memset(dst, c, n); |
|
} |
|
|
|
/** |
|
* @brief equivalent of memcpy() for early boot usage |
|
* |
|
* Architectures that can't safely use the regular (optimized) memcpy very |
|
* early during boot because e.g. hardware isn't yet sufficiently initialized |
|
* may override this with their own safe implementation. |
|
*/ |
|
__boot_func |
|
void __weak z_early_memcpy(void *dst, const void *src, size_t n) |
|
{ |
|
(void) memcpy(dst, src, n); |
|
} |
|
|
|
/** |
|
* @brief Clear BSS |
|
* |
|
* This routine clears the BSS region, so all bytes are 0. |
|
*/ |
|
__boot_func |
|
void z_bss_zero(void) |
|
{ |
|
if (IS_ENABLED(CONFIG_ARCH_POSIX)) { |
|
/* native_posix gets its memory cleared on entry by |
|
* the host OS, and in any case the host clang/lld |
|
* doesn't emit the __bss_end symbol this code expects |
|
* to see |
|
*/ |
|
return; |
|
} |
|
|
|
z_early_memset(__bss_start, 0, __bss_end - __bss_start); |
|
#if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_ccm), okay) |
|
z_early_memset(&__ccm_bss_start, 0, |
|
(uintptr_t) &__ccm_bss_end |
|
- (uintptr_t) &__ccm_bss_start); |
|
#endif |
|
#if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_dtcm), okay) |
|
z_early_memset(&__dtcm_bss_start, 0, |
|
(uintptr_t) &__dtcm_bss_end |
|
- (uintptr_t) &__dtcm_bss_start); |
|
#endif |
|
#if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_ocm), okay) |
|
z_early_memset(&__ocm_bss_start, 0, |
|
(uintptr_t) &__ocm_bss_end |
|
- (uintptr_t) &__ocm_bss_start); |
|
#endif |
|
#ifdef CONFIG_CODE_DATA_RELOCATION |
|
extern void bss_zeroing_relocation(void); |
|
|
|
bss_zeroing_relocation(); |
|
#endif /* CONFIG_CODE_DATA_RELOCATION */ |
|
#ifdef CONFIG_COVERAGE_GCOV |
|
z_early_memset(&__gcov_bss_start, 0, |
|
((uintptr_t) &__gcov_bss_end - (uintptr_t) &__gcov_bss_start)); |
|
#endif |
|
} |
|
|
|
#ifdef CONFIG_LINKER_USE_BOOT_SECTION |
|
/** |
|
* @brief Clear BSS within the bot region |
|
* |
|
* This routine clears the BSS within the boot region. |
|
* This is separate from z_bss_zero() as boot region may |
|
* contain symbols required for the boot process before |
|
* paging is initialized. |
|
*/ |
|
__boot_func |
|
void z_bss_zero_boot(void) |
|
{ |
|
z_early_memset(&lnkr_boot_bss_start, 0, |
|
(uintptr_t)&lnkr_boot_bss_end |
|
- (uintptr_t)&lnkr_boot_bss_start); |
|
} |
|
#endif /* CONFIG_LINKER_USE_BOOT_SECTION */ |
|
|
|
#ifdef CONFIG_LINKER_USE_PINNED_SECTION |
|
/** |
|
* @brief Clear BSS within the pinned region |
|
* |
|
* This routine clears the BSS within the pinned region. |
|
* This is separate from z_bss_zero() as pinned region may |
|
* contain symbols required for the boot process before |
|
* paging is initialized. |
|
*/ |
|
#ifdef CONFIG_LINKER_USE_BOOT_SECTION |
|
__boot_func |
|
#else |
|
__pinned_func |
|
#endif |
|
void z_bss_zero_pinned(void) |
|
{ |
|
z_early_memset(&lnkr_pinned_bss_start, 0, |
|
(uintptr_t)&lnkr_pinned_bss_end |
|
- (uintptr_t)&lnkr_pinned_bss_start); |
|
} |
|
#endif /* CONFIG_LINKER_USE_PINNED_SECTION */ |
|
|
|
#ifdef CONFIG_STACK_CANARIES |
|
#ifdef CONFIG_STACK_CANARIES_TLS |
|
extern __thread volatile uintptr_t __stack_chk_guard; |
|
#else |
|
extern volatile uintptr_t __stack_chk_guard; |
|
#endif |
|
#endif /* CONFIG_STACK_CANARIES */ |
|
|
|
/* LCOV_EXCL_STOP */ |
|
|
|
__pinned_bss |
|
bool z_sys_post_kernel; |
|
|
|
/** |
|
* @brief Execute all the init entry initialization functions at a given level |
|
* |
|
* @details Invokes the initialization routine for each init entry object |
|
* created by the INIT_ENTRY_DEFINE() macro using the specified level. |
|
* The linker script places the init entry objects in memory in the order |
|
* they need to be invoked, with symbols indicating where one level leaves |
|
* off and the next one begins. |
|
* |
|
* @param level init level to run. |
|
*/ |
|
static void z_sys_init_run_level(enum init_level level) |
|
{ |
|
static const struct init_entry *levels[] = { |
|
__init_EARLY_start, |
|
__init_PRE_KERNEL_1_start, |
|
__init_PRE_KERNEL_2_start, |
|
__init_POST_KERNEL_start, |
|
__init_APPLICATION_start, |
|
#ifdef CONFIG_SMP |
|
__init_SMP_start, |
|
#endif |
|
/* End marker */ |
|
__init_end, |
|
}; |
|
const struct init_entry *entry; |
|
|
|
for (entry = levels[level]; entry < levels[level+1]; entry++) { |
|
const struct device *dev = entry->dev; |
|
|
|
if (dev != NULL) { |
|
int rc = 0; |
|
|
|
if (entry->init_fn.dev != NULL) { |
|
rc = entry->init_fn.dev(dev); |
|
/* Mark device initialized. If initialization |
|
* failed, record the error condition. |
|
*/ |
|
if (rc != 0) { |
|
if (rc < 0) { |
|
rc = -rc; |
|
} |
|
if (rc > UINT8_MAX) { |
|
rc = UINT8_MAX; |
|
} |
|
dev->state->init_res = rc; |
|
} |
|
} |
|
|
|
dev->state->initialized = true; |
|
|
|
if (rc == 0) { |
|
/* Run automatic device runtime enablement */ |
|
(void)pm_device_runtime_auto_enable(dev); |
|
} |
|
} else { |
|
(void)entry->init_fn.sys(); |
|
} |
|
} |
|
} |
|
|
|
extern void boot_banner(void); |
|
|
|
/** |
|
* @brief Mainline for kernel's background thread |
|
* |
|
* This routine completes kernel initialization by invoking the remaining |
|
* init functions, then invokes application's main() routine. |
|
*/ |
|
__boot_func |
|
static void bg_thread_main(void *unused1, void *unused2, void *unused3) |
|
{ |
|
ARG_UNUSED(unused1); |
|
ARG_UNUSED(unused2); |
|
ARG_UNUSED(unused3); |
|
|
|
#ifdef CONFIG_MMU |
|
/* Invoked here such that backing store or eviction algorithms may |
|
* initialize kernel objects, and that all POST_KERNEL and later tasks |
|
* may perform memory management tasks (except for z_phys_map() which |
|
* is allowed at any time) |
|
*/ |
|
z_mem_manage_init(); |
|
#endif /* CONFIG_MMU */ |
|
z_sys_post_kernel = true; |
|
|
|
z_sys_init_run_level(INIT_LEVEL_POST_KERNEL); |
|
#if CONFIG_STACK_POINTER_RANDOM |
|
z_stack_adjust_initialized = 1; |
|
#endif |
|
boot_banner(); |
|
|
|
#if defined(CONFIG_CPP) |
|
void z_cpp_init_static(void); |
|
z_cpp_init_static(); |
|
#endif |
|
|
|
/* Final init level before app starts */ |
|
z_sys_init_run_level(INIT_LEVEL_APPLICATION); |
|
|
|
z_init_static_threads(); |
|
|
|
#ifdef CONFIG_KERNEL_COHERENCE |
|
__ASSERT_NO_MSG(arch_mem_coherent(&_kernel)); |
|
#endif |
|
|
|
#ifdef CONFIG_SMP |
|
if (!IS_ENABLED(CONFIG_SMP_BOOT_DELAY)) { |
|
z_smp_init(); |
|
} |
|
z_sys_init_run_level(INIT_LEVEL_SMP); |
|
#endif |
|
|
|
#ifdef CONFIG_MMU |
|
z_mem_manage_boot_finish(); |
|
#endif /* CONFIG_MMU */ |
|
|
|
extern int main(void); |
|
|
|
(void)main(); |
|
|
|
/* Mark nonessential since main() has no more work to do */ |
|
z_main_thread.base.user_options &= ~K_ESSENTIAL; |
|
|
|
#ifdef CONFIG_COVERAGE_DUMP |
|
/* Dump coverage data once the main() has exited. */ |
|
gcov_coverage_dump(); |
|
#endif |
|
} /* LCOV_EXCL_LINE ... because we just dumped final coverage data */ |
|
|
|
#if defined(CONFIG_MULTITHREADING) |
|
__boot_func |
|
static void init_idle_thread(int i) |
|
{ |
|
struct k_thread *thread = &z_idle_threads[i]; |
|
k_thread_stack_t *stack = z_idle_stacks[i]; |
|
|
|
#ifdef CONFIG_THREAD_NAME |
|
|
|
#if CONFIG_MP_MAX_NUM_CPUS > 1 |
|
char tname[8]; |
|
snprintk(tname, 8, "idle %02d", i); |
|
#else |
|
char *tname = "idle"; |
|
#endif |
|
|
|
#else |
|
char *tname = NULL; |
|
#endif /* CONFIG_THREAD_NAME */ |
|
|
|
z_setup_new_thread(thread, stack, |
|
CONFIG_IDLE_STACK_SIZE, idle, &_kernel.cpus[i], |
|
NULL, NULL, K_IDLE_PRIO, K_ESSENTIAL, |
|
tname); |
|
z_mark_thread_as_started(thread); |
|
|
|
#ifdef CONFIG_SMP |
|
thread->base.is_idle = 1U; |
|
#endif |
|
} |
|
|
|
void z_init_cpu(int id) |
|
{ |
|
init_idle_thread(id); |
|
_kernel.cpus[id].idle_thread = &z_idle_threads[id]; |
|
_kernel.cpus[id].id = id; |
|
_kernel.cpus[id].irq_stack = |
|
(Z_KERNEL_STACK_BUFFER(z_interrupt_stacks[id]) + |
|
K_KERNEL_STACK_SIZEOF(z_interrupt_stacks[id])); |
|
#ifdef CONFIG_SCHED_THREAD_USAGE_ALL |
|
_kernel.cpus[id].usage = &_kernel.usage[id]; |
|
_kernel.cpus[id].usage->track_usage = |
|
CONFIG_SCHED_THREAD_USAGE_AUTO_ENABLE; |
|
#endif |
|
|
|
/* |
|
* Increment number of CPUs active. The pm subsystem |
|
* will keep track of this from here. |
|
*/ |
|
atomic_inc(&_cpus_active); |
|
|
|
#ifdef CONFIG_OBJ_CORE_SYSTEM |
|
k_obj_core_init_and_link(K_OBJ_CORE(&_kernel.cpus[id]), &obj_type_cpu); |
|
#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM |
|
k_obj_core_stats_register(K_OBJ_CORE(&_kernel.cpus[id]), |
|
_kernel.cpus[id].usage, |
|
sizeof(struct k_cycle_stats)); |
|
#endif |
|
#endif |
|
} |
|
|
|
/** |
|
* |
|
* @brief Initializes kernel data structures |
|
* |
|
* This routine initializes various kernel data structures, including |
|
* the init and idle threads and any architecture-specific initialization. |
|
* |
|
* Note that all fields of "_kernel" are set to zero on entry, which may |
|
* be all the initialization many of them require. |
|
* |
|
* @return initial stack pointer for the main thread |
|
*/ |
|
__boot_func |
|
static char *prepare_multithreading(void) |
|
{ |
|
char *stack_ptr; |
|
|
|
/* _kernel.ready_q is all zeroes */ |
|
z_sched_init(); |
|
|
|
#ifndef CONFIG_SMP |
|
/* |
|
* prime the cache with the main thread since: |
|
* |
|
* - the cache can never be NULL |
|
* - the main thread will be the one to run first |
|
* - no other thread is initialized yet and thus their priority fields |
|
* contain garbage, which would prevent the cache loading algorithm |
|
* to work as intended |
|
*/ |
|
_kernel.ready_q.cache = &z_main_thread; |
|
#endif |
|
stack_ptr = z_setup_new_thread(&z_main_thread, z_main_stack, |
|
CONFIG_MAIN_STACK_SIZE, bg_thread_main, |
|
NULL, NULL, NULL, |
|
CONFIG_MAIN_THREAD_PRIORITY, |
|
K_ESSENTIAL, "main"); |
|
z_mark_thread_as_started(&z_main_thread); |
|
z_ready_thread(&z_main_thread); |
|
|
|
z_init_cpu(0); |
|
|
|
return stack_ptr; |
|
} |
|
|
|
__boot_func |
|
static FUNC_NORETURN void switch_to_main_thread(char *stack_ptr) |
|
{ |
|
#ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN |
|
arch_switch_to_main_thread(&z_main_thread, stack_ptr, bg_thread_main); |
|
#else |
|
ARG_UNUSED(stack_ptr); |
|
/* |
|
* Context switch to main task (entry function is _main()): the |
|
* current fake thread is not on a wait queue or ready queue, so it |
|
* will never be rescheduled in. |
|
*/ |
|
z_swap_unlocked(); |
|
#endif |
|
CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ |
|
} |
|
#endif /* CONFIG_MULTITHREADING */ |
|
|
|
__boot_func |
|
void __weak z_early_rand_get(uint8_t *buf, size_t length) |
|
{ |
|
static uint64_t state = (uint64_t)CONFIG_TIMER_RANDOM_INITIAL_STATE; |
|
int rc; |
|
|
|
#ifdef CONFIG_ENTROPY_HAS_DRIVER |
|
const struct device *const entropy = DEVICE_DT_GET_OR_NULL(DT_CHOSEN(zephyr_entropy)); |
|
|
|
if ((entropy != NULL) && device_is_ready(entropy)) { |
|
/* Try to see if driver provides an ISR-specific API */ |
|
rc = entropy_get_entropy_isr(entropy, buf, length, ENTROPY_BUSYWAIT); |
|
if (rc > 0) { |
|
length -= rc; |
|
buf += rc; |
|
} |
|
} |
|
#endif |
|
|
|
while (length > 0) { |
|
uint32_t val; |
|
|
|
state = state + k_cycle_get_32(); |
|
state = state * 2862933555777941757ULL + 3037000493ULL; |
|
val = (uint32_t)(state >> 32); |
|
rc = MIN(length, sizeof(val)); |
|
z_early_memcpy((void *)buf, &val, rc); |
|
|
|
length -= rc; |
|
buf += rc; |
|
} |
|
} |
|
|
|
/** |
|
* |
|
* @brief Initialize kernel |
|
* |
|
* This routine is invoked when the system is ready to run C code. The |
|
* processor must be running in 32-bit mode, and the BSS must have been |
|
* cleared/zeroed. |
|
* |
|
* @return Does not return |
|
*/ |
|
__boot_func |
|
FUNC_NO_STACK_PROTECTOR |
|
FUNC_NORETURN void z_cstart(void) |
|
{ |
|
/* gcov hook needed to get the coverage report.*/ |
|
gcov_static_init(); |
|
|
|
/* initialize early init calls */ |
|
z_sys_init_run_level(INIT_LEVEL_EARLY); |
|
|
|
/* perform any architecture-specific initialization */ |
|
arch_kernel_init(); |
|
|
|
LOG_CORE_INIT(); |
|
|
|
#if defined(CONFIG_MULTITHREADING) |
|
/* Note: The z_ready_thread() call in prepare_multithreading() requires |
|
* a dummy thread even if CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN=y |
|
*/ |
|
struct k_thread dummy_thread; |
|
|
|
z_dummy_thread_init(&dummy_thread); |
|
#endif |
|
/* do any necessary initialization of static devices */ |
|
z_device_state_init(); |
|
|
|
/* perform basic hardware initialization */ |
|
z_sys_init_run_level(INIT_LEVEL_PRE_KERNEL_1); |
|
z_sys_init_run_level(INIT_LEVEL_PRE_KERNEL_2); |
|
|
|
#ifdef CONFIG_STACK_CANARIES |
|
uintptr_t stack_guard; |
|
|
|
z_early_rand_get((uint8_t *)&stack_guard, sizeof(stack_guard)); |
|
__stack_chk_guard = stack_guard; |
|
__stack_chk_guard <<= 8; |
|
#endif /* CONFIG_STACK_CANARIES */ |
|
|
|
#ifdef CONFIG_TIMING_FUNCTIONS_NEED_AT_BOOT |
|
timing_init(); |
|
timing_start(); |
|
#endif |
|
|
|
#ifdef CONFIG_MULTITHREADING |
|
switch_to_main_thread(prepare_multithreading()); |
|
#else |
|
#ifdef ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING |
|
/* Custom ARCH-specific routine to switch to main() |
|
* in the case of no multi-threading. |
|
*/ |
|
ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING(bg_thread_main, |
|
NULL, NULL, NULL); |
|
#else |
|
bg_thread_main(NULL, NULL, NULL); |
|
|
|
/* LCOV_EXCL_START |
|
* We've already dumped coverage data at this point. |
|
*/ |
|
irq_lock(); |
|
while (true) { |
|
} |
|
/* LCOV_EXCL_STOP */ |
|
#endif |
|
#endif /* CONFIG_MULTITHREADING */ |
|
|
|
/* |
|
* Compiler can't tell that the above routines won't return and issues |
|
* a warning unless we explicitly tell it that control never gets this |
|
* far. |
|
*/ |
|
|
|
CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ |
|
} |
|
|
|
#ifdef CONFIG_OBJ_CORE_SYSTEM |
|
static int init_cpu_obj_core_list(void) |
|
{ |
|
/* Initialize CPU object type */ |
|
|
|
z_obj_type_init(&obj_type_cpu, K_OBJ_TYPE_CPU_ID, |
|
offsetof(struct _cpu, obj_core)); |
|
|
|
#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM |
|
k_obj_type_stats_init(&obj_type_cpu, &cpu_stats_desc); |
|
#endif |
|
|
|
return 0; |
|
} |
|
|
|
static int init_kernel_obj_core_list(void) |
|
{ |
|
/* Initialize kernel object type */ |
|
|
|
z_obj_type_init(&obj_type_kernel, K_OBJ_TYPE_KERNEL_ID, |
|
offsetof(struct z_kernel, obj_core)); |
|
|
|
#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM |
|
k_obj_type_stats_init(&obj_type_kernel, &kernel_stats_desc); |
|
#endif |
|
|
|
k_obj_core_init_and_link(K_OBJ_CORE(&_kernel), &obj_type_kernel); |
|
#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM |
|
k_obj_core_stats_register(K_OBJ_CORE(&_kernel), _kernel.usage, |
|
sizeof(_kernel.usage)); |
|
#endif |
|
|
|
return 0; |
|
} |
|
|
|
SYS_INIT(init_cpu_obj_core_list, PRE_KERNEL_1, |
|
CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); |
|
|
|
SYS_INIT(init_kernel_obj_core_list, PRE_KERNEL_1, |
|
CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); |
|
#endif
|
|
|