Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

517 lines
15 KiB

/*
* Copyright (c) 2023 Antmicro <www.antmicro.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT ambiq_i2c
#include <errno.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/kernel.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/policy.h>
#include <zephyr/pm/device_runtime.h>
#include <am_mcu_apollo.h>
#include <zephyr/mem_mgmt/mem_attr.h>
#ifdef CONFIG_DCACHE
#include <zephyr/dt-bindings/memory-attr/memory-attr-arm.h>
#endif /* CONFIG_DCACHE */
#ifdef CONFIG_NOCACHE_MEMORY
#include <zephyr/linker/linker-defs.h>
#elif defined(CONFIG_CACHE_MANAGEMENT)
#include <zephyr/arch/cache.h>
#endif /* CONFIG_NOCACHE_MEMORY */
#if defined(CONFIG_DCACHE) && !defined(CONFIG_NOCACHE_MEMORY)
#define I2C_AMBIQ_MANUAL_CACHE_COHERENCY_REQUIRED 1
#else
#define I2C_AMBIQ_MANUAL_CACHE_COHERENCY_REQUIRED 0
#endif /* defined(CONFIG_DCACHE) && !defined(CONFIG_NOCACHE_MEMORY) */
#ifdef CONFIG_I2C_AMBIQ_BUS_RECOVERY
#include <zephyr/drivers/gpio.h>
#include "i2c_bitbang.h"
#endif /* CONFIG_I2C_AMBIQ_BUS_RECOVERY */
#include <zephyr/logging/log.h>
#include <zephyr/drivers/pinctrl.h>
LOG_MODULE_REGISTER(ambiq_i2c, CONFIG_I2C_LOG_LEVEL);
#define I2C_TRANSFER_TIMEOUT_MSEC 500 /* Transfer timeout period */
#include "i2c-priv.h"
struct i2c_ambiq_config {
#ifdef CONFIG_I2C_AMBIQ_BUS_RECOVERY
struct gpio_dt_spec scl;
struct gpio_dt_spec sda;
#endif /* CONFIG_I2C_AMBIQ_BUS_RECOVERY */
uint32_t base;
int size;
int inst_idx;
uint32_t bitrate;
const struct pinctrl_dev_config *pcfg;
void (*irq_config_func)(void);
};
typedef void (*i2c_ambiq_callback_t)(const struct device *dev, int result, void *data);
struct i2c_ambiq_data {
am_hal_iom_config_t iom_cfg;
void *iom_handler;
struct k_sem bus_sem;
struct k_sem transfer_sem;
i2c_ambiq_callback_t callback;
void *callback_data;
uint32_t transfer_status;
bool pm_policy_state_on;
};
static void i2c_ambiq_pm_policy_state_lock_get(const struct device *dev)
{
if (IS_ENABLED(CONFIG_PM)) {
struct i2c_ambiq_data *data = dev->data;
if (!data->pm_policy_state_on) {
data->pm_policy_state_on = true;
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
pm_device_runtime_get(dev);
}
}
}
static void i2c_ambiq_pm_policy_state_lock_put(const struct device *dev)
{
if (IS_ENABLED(CONFIG_PM)) {
struct i2c_ambiq_data *data = dev->data;
if (data->pm_policy_state_on) {
data->pm_policy_state_on = false;
pm_device_runtime_put(dev);
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
}
}
}
#ifdef CONFIG_I2C_AMBIQ_DMA
/*
* If Nocache Memory is supported, buffer will be placed in nocache region by
* the linker to avoid potential DMA cache-coherency problems.
* If Nocache Memory is not supported, cache coherency might need to be kept
* manually. See I2C_AMBIQ_MANUAL_CACHE_COHERENCY_REQUIRED.
*/
static __aligned(32) struct {
__aligned(32) uint32_t buf[CONFIG_I2C_DMA_TCB_BUFFER_SIZE];
} i2c_dma_tcb_buf[DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT)] __nocache;
static void i2c_ambiq_callback(void *callback_ctxt, uint32_t status)
{
const struct device *dev = callback_ctxt;
struct i2c_ambiq_data *data = dev->data;
if (data->callback) {
data->callback(dev, status, data->callback_data);
}
data->transfer_status = status;
}
#ifdef CONFIG_DCACHE
static bool buf_in_nocache(uintptr_t buf, size_t len_bytes)
{
bool buf_within_nocache = false;
#ifdef CONFIG_NOCACHE_MEMORY
/* Check if buffer is in nocache region defined by the linker */
buf_within_nocache = (buf >= ((uintptr_t)_nocache_ram_start)) &&
((buf + len_bytes - 1) <= ((uintptr_t)_nocache_ram_end));
if (buf_within_nocache) {
return true;
}
#endif /* CONFIG_NOCACHE_MEMORY */
/* Check if buffer is in nocache memory region defined in DT */
buf_within_nocache =
mem_attr_check_buf((void *)buf, len_bytes, DT_MEM_ARM(ATTR_MPU_RAM_NOCACHE)) == 0;
return buf_within_nocache;
}
static bool i2c_buf_set_in_nocache(const struct i2c_msg *msgs, uint8_t num_msgs)
{
for (int i = 0; i < num_msgs; i++) {
if (!buf_in_nocache((uintptr_t)msgs[i]->buf, msgs[i]->len)) {
return false;
}
}
return true;
}
#endif /* CONFIG_DCACHE */
#endif
static void i2c_ambiq_isr(const struct device *dev)
{
uint32_t ui32Status;
struct i2c_ambiq_data *data = dev->data;
am_hal_iom_interrupt_status_get(data->iom_handler, false, &ui32Status);
am_hal_iom_interrupt_clear(data->iom_handler, ui32Status);
am_hal_iom_interrupt_service(data->iom_handler, ui32Status);
k_sem_give(&data->transfer_sem);
}
static int i2c_ambiq_read(const struct device *dev, struct i2c_msg *msg, uint16_t addr)
{
struct i2c_ambiq_data *data = dev->data;
int ret = 0;
am_hal_iom_transfer_t trans = {0};
trans.ui8Priority = 1;
trans.eDirection = AM_HAL_IOM_RX;
trans.uPeerInfo.ui32I2CDevAddr = addr;
trans.ui32NumBytes = msg->len;
trans.pui32RxBuffer = (uint32_t *)msg->buf;
#ifdef CONFIG_I2C_AMBIQ_DMA
data->transfer_status = -EFAULT;
ret = am_hal_iom_nonblocking_transfer(data->iom_handler, &trans, i2c_ambiq_callback,
(void *)dev);
if (k_sem_take(&data->transfer_sem, K_MSEC(I2C_TRANSFER_TIMEOUT_MSEC))) {
LOG_ERR("Timeout waiting for transfer complete");
/* cancel timed out transaction */
am_hal_iom_disable(data->iom_handler);
/* clean up for next xfer */
k_sem_reset(&data->transfer_sem);
am_hal_iom_enable(data->iom_handler);
return -ETIMEDOUT;
}
#if I2C_AMBIQ_MANUAL_CACHE_COHERENCY_REQUIRED
/* Invalidate Dcache after DMA read */
sys_cache_data_invd_range((void *)trans.pui32RxBuffer, trans.ui32NumBytes);
#endif /* I2C_AMBIQ_MANUAL_CACHE_COHERENCY_REQUIRED */
ret = data->transfer_status;
#else
ret = am_hal_iom_blocking_transfer(data->iom_handler, &trans);
#endif
return (ret != AM_HAL_STATUS_SUCCESS) ? -EIO : 0;
}
static int i2c_ambiq_write(const struct device *dev, struct i2c_msg *msg, uint16_t addr)
{
struct i2c_ambiq_data *data = dev->data;
int ret = 0;
am_hal_iom_transfer_t trans = {0};
trans.ui8Priority = 1;
trans.eDirection = AM_HAL_IOM_TX;
trans.uPeerInfo.ui32I2CDevAddr = addr;
trans.ui32NumBytes = msg->len;
trans.pui32TxBuffer = (uint32_t *)msg->buf;
#ifdef CONFIG_I2C_AMBIQ_DMA
data->transfer_status = -EFAULT;
#if I2C_AMBIQ_MANUAL_CACHE_COHERENCY_REQUIRED
/* Clean Dcache before DMA write */
sys_cache_data_flush_range((void *)trans.pui32TxBuffer, trans.ui32NumBytes);
#endif /* I2C_AMBIQ_MANUAL_CACHE_COHERENCY_REQUIRED */
ret = am_hal_iom_nonblocking_transfer(data->iom_handler, &trans, i2c_ambiq_callback,
(void *)dev);
if (k_sem_take(&data->transfer_sem, K_MSEC(I2C_TRANSFER_TIMEOUT_MSEC))) {
LOG_ERR("Timeout waiting for transfer complete");
/* cancel timed out transaction */
am_hal_iom_disable(data->iom_handler);
/* clean up for next xfer */
k_sem_reset(&data->transfer_sem);
am_hal_iom_enable(data->iom_handler);
return -ETIMEDOUT;
}
ret = data->transfer_status;
#else
ret = am_hal_iom_blocking_transfer(data->iom_handler, &trans);
#endif
return (ret != AM_HAL_STATUS_SUCCESS) ? -EIO : 0;
}
static int i2c_ambiq_configure(const struct device *dev, uint32_t dev_config)
{
struct i2c_ambiq_data *data = dev->data;
if (!(I2C_MODE_CONTROLLER & dev_config)) {
return -EINVAL;
}
switch (I2C_SPEED_GET(dev_config)) {
case I2C_SPEED_STANDARD:
data->iom_cfg.ui32ClockFreq = AM_HAL_IOM_100KHZ;
break;
case I2C_SPEED_FAST:
data->iom_cfg.ui32ClockFreq = AM_HAL_IOM_400KHZ;
break;
case I2C_SPEED_FAST_PLUS:
data->iom_cfg.ui32ClockFreq = AM_HAL_IOM_1MHZ;
break;
default:
return -EINVAL;
}
#ifdef CONFIG_I2C_AMBIQ_DMA
const struct i2c_ambiq_config *cfg = dev->config;
data->iom_cfg.pNBTxnBuf = i2c_dma_tcb_buf[cfg->inst_idx].buf;
data->iom_cfg.ui32NBTxnBufLength = CONFIG_I2C_DMA_TCB_BUFFER_SIZE;
#endif
am_hal_iom_configure(data->iom_handler, &data->iom_cfg);
return 0;
}
static int i2c_ambiq_transfer(const struct device *dev, struct i2c_msg *msgs, uint8_t num_msgs,
uint16_t addr)
{
struct i2c_ambiq_data *data = dev->data;
int ret = 0;
if (!num_msgs) {
return 0;
}
#if defined(CONFIG_I2C_AMBIQ_DMA) && defined(CONFIG_DCACHE)
if (!i2c_buf_set_in_nocache(msgs, num_msgs)) {
return -EFAULT;
}
#endif /* CONFIG_DCACHE */
i2c_ambiq_pm_policy_state_lock_get(dev);
/* Send out messages */
k_sem_take(&data->bus_sem, K_FOREVER);
for (int i = 0; i < num_msgs; i++) {
if (msgs[i].flags & I2C_MSG_READ) {
ret = i2c_ambiq_read(dev, &(msgs[i]), addr);
} else {
ret = i2c_ambiq_write(dev, &(msgs[i]), addr);
}
if (ret != 0) {
LOG_ERR("i2c transfer failed: %d", ret);
break;
}
}
k_sem_give(&data->bus_sem);
i2c_ambiq_pm_policy_state_lock_put(dev);
return ret;
}
#if CONFIG_I2C_AMBIQ_BUS_RECOVERY
static void i2c_ambiq_bitbang_set_scl(void *io_context, int state)
{
const struct i2c_ambiq_config *config = io_context;
gpio_pin_set_dt(&config->scl, state);
}
static void i2c_ambiq_bitbang_set_sda(void *io_context, int state)
{
const struct i2c_ambiq_config *config = io_context;
gpio_pin_set_dt(&config->sda, state);
}
static int i2c_ambiq_bitbang_get_sda(void *io_context)
{
const struct i2c_ambiq_config *config = io_context;
return gpio_pin_get_dt(&config->sda) == 0 ? 0 : 1;
}
static int i2c_ambiq_recover_bus(const struct device *dev)
{
const struct i2c_ambiq_config *config = dev->config;
struct i2c_ambiq_data *data = dev->data;
struct i2c_bitbang bitbang_ctx;
struct i2c_bitbang_io bitbang_io = {
.set_scl = i2c_ambiq_bitbang_set_scl,
.set_sda = i2c_ambiq_bitbang_set_sda,
.get_sda = i2c_ambiq_bitbang_get_sda,
};
uint32_t bitrate_cfg;
int error = 0;
LOG_ERR("attempting to recover bus");
if (!gpio_is_ready_dt(&config->scl)) {
LOG_ERR("SCL GPIO device not ready");
return -EIO;
}
if (!gpio_is_ready_dt(&config->sda)) {
LOG_ERR("SDA GPIO device not ready");
return -EIO;
}
k_sem_take(&data->bus_sem, K_FOREVER);
error = gpio_pin_configure_dt(&config->scl, GPIO_OUTPUT_HIGH);
if (error != 0) {
LOG_ERR("failed to configure SCL GPIO (err %d)", error);
goto restore;
}
error = gpio_pin_configure_dt(&config->sda, GPIO_OUTPUT_HIGH);
if (error != 0) {
LOG_ERR("failed to configure SDA GPIO (err %d)", error);
goto restore;
}
i2c_bitbang_init(&bitbang_ctx, &bitbang_io, (void *)config);
bitrate_cfg = i2c_map_dt_bitrate(config->bitrate) | I2C_MODE_CONTROLLER;
error = i2c_bitbang_configure(&bitbang_ctx, bitrate_cfg);
if (error != 0) {
LOG_ERR("failed to configure I2C bitbang (err %d)", error);
goto restore;
}
error = i2c_bitbang_recover_bus(&bitbang_ctx);
if (error != 0) {
LOG_ERR("failed to recover bus (err %d)", error);
}
restore:
(void)pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
k_sem_give(&data->bus_sem);
return error;
}
#endif /* CONFIG_I2C_AMBIQ_BUS_RECOVERY */
static int i2c_ambiq_init(const struct device *dev)
{
struct i2c_ambiq_data *data = dev->data;
const struct i2c_ambiq_config *config = dev->config;
uint32_t bitrate_cfg = i2c_map_dt_bitrate(config->bitrate);
int ret = 0;
data->iom_cfg.eInterfaceMode = AM_HAL_IOM_I2C_MODE;
if (AM_HAL_STATUS_SUCCESS != am_hal_iom_initialize(config->inst_idx, &data->iom_handler)) {
LOG_ERR("Fail to initialize I2C\n");
return -ENXIO;
}
ret = am_hal_iom_power_ctrl(data->iom_handler, AM_HAL_SYSCTRL_WAKE, false);
ret |= i2c_ambiq_configure(dev, I2C_MODE_CONTROLLER | bitrate_cfg);
if (ret < 0) {
LOG_ERR("Fail to config I2C\n");
goto end;
}
ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
LOG_ERR("Fail to config I2C pins\n");
goto end;
}
#ifdef CONFIG_I2C_AMBIQ_DMA
am_hal_iom_interrupt_clear(data->iom_handler, AM_HAL_IOM_INT_DCMP | AM_HAL_IOM_INT_CMDCMP);
am_hal_iom_interrupt_enable(data->iom_handler, AM_HAL_IOM_INT_DCMP | AM_HAL_IOM_INT_CMDCMP);
config->irq_config_func();
#endif
if (AM_HAL_STATUS_SUCCESS != am_hal_iom_enable(data->iom_handler)) {
LOG_ERR("Fail to enable I2C\n");
ret = -EIO;
}
end:
if (ret < 0) {
am_hal_iom_uninitialize(data->iom_handler);
}
return ret;
}
static DEVICE_API(i2c, i2c_ambiq_driver_api) = {
.configure = i2c_ambiq_configure,
.transfer = i2c_ambiq_transfer,
#if CONFIG_I2C_AMBIQ_BUS_RECOVERY
.recover_bus = i2c_ambiq_recover_bus,
#endif /* CONFIG_I2C_AMBIQ_BUS_RECOVERY */
#ifdef CONFIG_I2C_RTIO
.iodev_submit = i2c_iodev_submit_fallback,
#endif
};
#ifdef CONFIG_PM_DEVICE
static int i2c_ambiq_pm_action(const struct device *dev, enum pm_device_action action)
{
struct i2c_ambiq_data *data = dev->data;
uint32_t ret;
am_hal_sysctrl_power_state_e status;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
status = AM_HAL_SYSCTRL_WAKE;
break;
case PM_DEVICE_ACTION_SUSPEND:
status = AM_HAL_SYSCTRL_DEEPSLEEP;
break;
default:
return -ENOTSUP;
}
ret = am_hal_iom_power_ctrl(data->iom_handler, status, true);
if (ret != AM_HAL_STATUS_SUCCESS) {
return -EPERM;
} else {
return 0;
}
}
#endif /* CONFIG_PM_DEVICE */
#define AMBIQ_I2C_DEFINE(n) \
PINCTRL_DT_INST_DEFINE(n); \
static void i2c_irq_config_func_##n(void) \
{ \
IRQ_CONNECT(DT_IRQN(DT_INST_PARENT(n)), DT_IRQ(DT_INST_PARENT(n), priority), \
i2c_ambiq_isr, DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_IRQN(DT_INST_PARENT(n))); \
}; \
static struct i2c_ambiq_data i2c_ambiq_data##n = { \
.bus_sem = Z_SEM_INITIALIZER(i2c_ambiq_data##n.bus_sem, 1, 1), \
.transfer_sem = Z_SEM_INITIALIZER(i2c_ambiq_data##n.transfer_sem, 0, 1)}; \
static const struct i2c_ambiq_config i2c_ambiq_config##n = { \
.base = DT_REG_ADDR(DT_INST_PARENT(n)), \
.size = DT_REG_SIZE(DT_INST_PARENT(n)), \
.inst_idx = \
(DT_REG_ADDR(DT_INST_PARENT(n)) - IOM0_BASE) / (IOM1_BASE - IOM0_BASE), \
.bitrate = DT_INST_PROP(n, clock_frequency), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.irq_config_func = i2c_irq_config_func_##n, \
IF_ENABLED(CONFIG_I2C_AMBIQ_BUS_RECOVERY, \
(.scl = GPIO_DT_SPEC_INST_GET_OR(n, scl_gpios, {0}), \
.sda = GPIO_DT_SPEC_INST_GET_OR(n, sda_gpios, {0}),)) }; \
PM_DEVICE_DT_INST_DEFINE(n, i2c_ambiq_pm_action); \
I2C_DEVICE_DT_INST_DEFINE(n, i2c_ambiq_init, PM_DEVICE_DT_INST_GET(n), &i2c_ambiq_data##n, \
&i2c_ambiq_config##n, POST_KERNEL, CONFIG_I2C_INIT_PRIORITY, \
&i2c_ambiq_driver_api);
DT_INST_FOREACH_STATUS_OKAY(AMBIQ_I2C_DEFINE)