You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1515 lines
39 KiB
1515 lines
39 KiB
/* |
|
* Copyright (c) 2018 Intel Corporation |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
#include <zephyr/kernel.h> |
|
#include <ksched.h> |
|
#include <zephyr/spinlock.h> |
|
#include <wait_q.h> |
|
#include <kthread.h> |
|
#include <priority_q.h> |
|
#include <kswap.h> |
|
#include <ipi.h> |
|
#include <kernel_arch_func.h> |
|
#include <zephyr/internal/syscall_handler.h> |
|
#include <zephyr/drivers/timer/system_timer.h> |
|
#include <stdbool.h> |
|
#include <kernel_internal.h> |
|
#include <zephyr/logging/log.h> |
|
#include <zephyr/sys/atomic.h> |
|
#include <zephyr/sys/math_extras.h> |
|
#include <zephyr/timing/timing.h> |
|
#include <zephyr/sys/util.h> |
|
|
|
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL); |
|
|
|
#if defined(CONFIG_SWAP_NONATOMIC) && defined(CONFIG_TIMESLICING) |
|
extern struct k_thread *pending_current; |
|
#endif |
|
|
|
struct k_spinlock _sched_spinlock; |
|
|
|
/* Storage to "complete" the context switch from an invalid/incomplete thread |
|
* context (ex: exiting an ISR that aborted _current) |
|
*/ |
|
__incoherent struct k_thread _thread_dummy; |
|
|
|
static ALWAYS_INLINE void update_cache(int preempt_ok); |
|
static ALWAYS_INLINE void halt_thread(struct k_thread *thread, uint8_t new_state); |
|
static void add_to_waitq_locked(struct k_thread *thread, _wait_q_t *wait_q); |
|
|
|
|
|
BUILD_ASSERT(CONFIG_NUM_COOP_PRIORITIES >= CONFIG_NUM_METAIRQ_PRIORITIES, |
|
"You need to provide at least as many CONFIG_NUM_COOP_PRIORITIES as " |
|
"CONFIG_NUM_METAIRQ_PRIORITIES as Meta IRQs are just a special class of cooperative " |
|
"threads."); |
|
|
|
static ALWAYS_INLINE void *thread_runq(struct k_thread *thread) |
|
{ |
|
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY |
|
int cpu, m = thread->base.cpu_mask; |
|
|
|
/* Edge case: it's legal per the API to "make runnable" a |
|
* thread with all CPUs masked off (i.e. one that isn't |
|
* actually runnable!). Sort of a wart in the API and maybe |
|
* we should address this in docs/assertions instead to avoid |
|
* the extra test. |
|
*/ |
|
cpu = m == 0 ? 0 : u32_count_trailing_zeros(m); |
|
|
|
return &_kernel.cpus[cpu].ready_q.runq; |
|
#else |
|
ARG_UNUSED(thread); |
|
return &_kernel.ready_q.runq; |
|
#endif /* CONFIG_SCHED_CPU_MASK_PIN_ONLY */ |
|
} |
|
|
|
static ALWAYS_INLINE void *curr_cpu_runq(void) |
|
{ |
|
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY |
|
return &arch_curr_cpu()->ready_q.runq; |
|
#else |
|
return &_kernel.ready_q.runq; |
|
#endif /* CONFIG_SCHED_CPU_MASK_PIN_ONLY */ |
|
} |
|
|
|
static ALWAYS_INLINE void runq_add(struct k_thread *thread) |
|
{ |
|
__ASSERT_NO_MSG(!z_is_idle_thread_object(thread)); |
|
|
|
_priq_run_add(thread_runq(thread), thread); |
|
} |
|
|
|
static ALWAYS_INLINE void runq_remove(struct k_thread *thread) |
|
{ |
|
__ASSERT_NO_MSG(!z_is_idle_thread_object(thread)); |
|
|
|
_priq_run_remove(thread_runq(thread), thread); |
|
} |
|
|
|
static ALWAYS_INLINE void runq_yield(void) |
|
{ |
|
_priq_run_yield(curr_cpu_runq()); |
|
} |
|
|
|
static ALWAYS_INLINE struct k_thread *runq_best(void) |
|
{ |
|
return _priq_run_best(curr_cpu_runq()); |
|
} |
|
|
|
/* _current is never in the run queue until context switch on |
|
* SMP configurations, see z_requeue_current() |
|
*/ |
|
static inline bool should_queue_thread(struct k_thread *thread) |
|
{ |
|
return !IS_ENABLED(CONFIG_SMP) || (thread != _current); |
|
} |
|
|
|
static ALWAYS_INLINE void queue_thread(struct k_thread *thread) |
|
{ |
|
z_mark_thread_as_queued(thread); |
|
if (should_queue_thread(thread)) { |
|
runq_add(thread); |
|
} |
|
#ifdef CONFIG_SMP |
|
if (thread == _current) { |
|
/* add current to end of queue means "yield" */ |
|
_current_cpu->swap_ok = true; |
|
} |
|
#endif /* CONFIG_SMP */ |
|
} |
|
|
|
static ALWAYS_INLINE void dequeue_thread(struct k_thread *thread) |
|
{ |
|
z_mark_thread_as_not_queued(thread); |
|
if (should_queue_thread(thread)) { |
|
runq_remove(thread); |
|
} |
|
} |
|
|
|
/* Called out of z_swap() when CONFIG_SMP. The current thread can |
|
* never live in the run queue until we are inexorably on the context |
|
* switch path on SMP, otherwise there is a deadlock condition where a |
|
* set of CPUs pick a cycle of threads to run and wait for them all to |
|
* context switch forever. |
|
*/ |
|
void z_requeue_current(struct k_thread *thread) |
|
{ |
|
if (z_is_thread_queued(thread)) { |
|
runq_add(thread); |
|
} |
|
signal_pending_ipi(); |
|
} |
|
|
|
/* Return true if the thread is aborting, else false */ |
|
static inline bool is_aborting(struct k_thread *thread) |
|
{ |
|
return (thread->base.thread_state & _THREAD_ABORTING) != 0U; |
|
} |
|
|
|
/* Return true if the thread is aborting or suspending, else false */ |
|
static inline bool is_halting(struct k_thread *thread) |
|
{ |
|
return (thread->base.thread_state & |
|
(_THREAD_ABORTING | _THREAD_SUSPENDING)) != 0U; |
|
} |
|
|
|
/* Clear the halting bits (_THREAD_ABORTING and _THREAD_SUSPENDING) */ |
|
static inline void clear_halting(struct k_thread *thread) |
|
{ |
|
if (IS_ENABLED(CONFIG_SMP) && (CONFIG_MP_MAX_NUM_CPUS > 1)) { |
|
barrier_dmem_fence_full(); /* Other cpus spin on this locklessly! */ |
|
thread->base.thread_state &= ~(_THREAD_ABORTING | _THREAD_SUSPENDING); |
|
} |
|
} |
|
|
|
static ALWAYS_INLINE struct k_thread *next_up(void) |
|
{ |
|
#ifdef CONFIG_SMP |
|
if (is_halting(_current)) { |
|
halt_thread(_current, is_aborting(_current) ? |
|
_THREAD_DEAD : _THREAD_SUSPENDED); |
|
} |
|
#endif /* CONFIG_SMP */ |
|
|
|
struct k_thread *thread = runq_best(); |
|
|
|
#if (CONFIG_NUM_METAIRQ_PRIORITIES > 0) && \ |
|
(CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES) |
|
/* MetaIRQs must always attempt to return back to a |
|
* cooperative thread they preempted and not whatever happens |
|
* to be highest priority now. The cooperative thread was |
|
* promised it wouldn't be preempted (by non-metairq threads)! |
|
*/ |
|
struct k_thread *mirqp = _current_cpu->metairq_preempted; |
|
|
|
if (mirqp != NULL && (thread == NULL || !thread_is_metairq(thread))) { |
|
if (!z_is_thread_prevented_from_running(mirqp)) { |
|
thread = mirqp; |
|
} else { |
|
_current_cpu->metairq_preempted = NULL; |
|
} |
|
} |
|
#endif |
|
/* CONFIG_NUM_METAIRQ_PRIORITIES > 0 && |
|
* CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES |
|
*/ |
|
|
|
#ifndef CONFIG_SMP |
|
/* In uniprocessor mode, we can leave the current thread in |
|
* the queue (actually we have to, otherwise the assembly |
|
* context switch code for all architectures would be |
|
* responsible for putting it back in z_swap and ISR return!), |
|
* which makes this choice simple. |
|
*/ |
|
return (thread != NULL) ? thread : _current_cpu->idle_thread; |
|
#else |
|
/* Under SMP, the "cache" mechanism for selecting the next |
|
* thread doesn't work, so we have more work to do to test |
|
* _current against the best choice from the queue. Here, the |
|
* thread selected above represents "the best thread that is |
|
* not current". |
|
* |
|
* Subtle note on "queued": in SMP mode, _current does not |
|
* live in the queue, so this isn't exactly the same thing as |
|
* "ready", it means "is _current already added back to the |
|
* queue such that we don't want to re-add it". |
|
*/ |
|
bool queued = z_is_thread_queued(_current); |
|
bool active = !z_is_thread_prevented_from_running(_current); |
|
|
|
if (thread == NULL) { |
|
thread = _current_cpu->idle_thread; |
|
} |
|
|
|
if (active) { |
|
int32_t cmp = z_sched_prio_cmp(_current, thread); |
|
|
|
/* Ties only switch if state says we yielded */ |
|
if ((cmp > 0) || ((cmp == 0) && !_current_cpu->swap_ok)) { |
|
thread = _current; |
|
} |
|
|
|
if (!should_preempt(thread, _current_cpu->swap_ok)) { |
|
thread = _current; |
|
} |
|
} |
|
|
|
/* Put _current back into the queue */ |
|
if ((thread != _current) && active && |
|
!z_is_idle_thread_object(_current) && !queued) { |
|
queue_thread(_current); |
|
} |
|
|
|
/* Take the new _current out of the queue */ |
|
if (z_is_thread_queued(thread)) { |
|
dequeue_thread(thread); |
|
} |
|
|
|
_current_cpu->swap_ok = false; |
|
return thread; |
|
#endif /* CONFIG_SMP */ |
|
} |
|
|
|
void move_thread_to_end_of_prio_q(struct k_thread *thread) |
|
{ |
|
if (z_is_thread_queued(thread)) { |
|
dequeue_thread(thread); |
|
} |
|
queue_thread(thread); |
|
update_cache(thread == _current); |
|
} |
|
|
|
/* Track cooperative threads preempted by metairqs so we can return to |
|
* them specifically. Called at the moment a new thread has been |
|
* selected to run. |
|
*/ |
|
static void update_metairq_preempt(struct k_thread *thread) |
|
{ |
|
#if (CONFIG_NUM_METAIRQ_PRIORITIES > 0) && \ |
|
(CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES) |
|
if (thread_is_metairq(thread) && !thread_is_metairq(_current) && |
|
!thread_is_preemptible(_current)) { |
|
/* Record new preemption */ |
|
_current_cpu->metairq_preempted = _current; |
|
} else if (!thread_is_metairq(thread)) { |
|
/* Returning from existing preemption */ |
|
_current_cpu->metairq_preempted = NULL; |
|
} |
|
#else |
|
ARG_UNUSED(thread); |
|
#endif |
|
/* CONFIG_NUM_METAIRQ_PRIORITIES > 0 && |
|
* CONFIG_NUM_COOP_PRIORITIES > CONFIG_NUM_METAIRQ_PRIORITIES |
|
*/ |
|
} |
|
|
|
static ALWAYS_INLINE void update_cache(int preempt_ok) |
|
{ |
|
#ifndef CONFIG_SMP |
|
struct k_thread *thread = next_up(); |
|
|
|
if (should_preempt(thread, preempt_ok)) { |
|
#ifdef CONFIG_TIMESLICING |
|
if (thread != _current) { |
|
z_reset_time_slice(thread); |
|
} |
|
#endif /* CONFIG_TIMESLICING */ |
|
update_metairq_preempt(thread); |
|
_kernel.ready_q.cache = thread; |
|
} else { |
|
_kernel.ready_q.cache = _current; |
|
} |
|
|
|
#else |
|
/* The way this works is that the CPU record keeps its |
|
* "cooperative swapping is OK" flag until the next reschedule |
|
* call or context switch. It doesn't need to be tracked per |
|
* thread because if the thread gets preempted for whatever |
|
* reason the scheduler will make the same decision anyway. |
|
*/ |
|
_current_cpu->swap_ok = preempt_ok; |
|
#endif /* CONFIG_SMP */ |
|
} |
|
|
|
static struct _cpu *thread_active_elsewhere(struct k_thread *thread) |
|
{ |
|
/* Returns pointer to _cpu if the thread is currently running on |
|
* another CPU. There are more scalable designs to answer this |
|
* question in constant time, but this is fine for now. |
|
*/ |
|
#ifdef CONFIG_SMP |
|
int currcpu = _current_cpu->id; |
|
|
|
unsigned int num_cpus = arch_num_cpus(); |
|
|
|
for (int i = 0; i < num_cpus; i++) { |
|
if ((i != currcpu) && |
|
(_kernel.cpus[i].current == thread)) { |
|
return &_kernel.cpus[i]; |
|
} |
|
} |
|
#endif /* CONFIG_SMP */ |
|
ARG_UNUSED(thread); |
|
return NULL; |
|
} |
|
|
|
static void ready_thread(struct k_thread *thread) |
|
{ |
|
#ifdef CONFIG_KERNEL_COHERENCE |
|
__ASSERT_NO_MSG(arch_mem_coherent(thread)); |
|
#endif /* CONFIG_KERNEL_COHERENCE */ |
|
|
|
/* If thread is queued already, do not try and added it to the |
|
* run queue again |
|
*/ |
|
if (!z_is_thread_queued(thread) && z_is_thread_ready(thread)) { |
|
SYS_PORT_TRACING_OBJ_FUNC(k_thread, sched_ready, thread); |
|
|
|
queue_thread(thread); |
|
update_cache(0); |
|
|
|
flag_ipi(ipi_mask_create(thread)); |
|
} |
|
} |
|
|
|
void z_ready_thread(struct k_thread *thread) |
|
{ |
|
K_SPINLOCK(&_sched_spinlock) { |
|
if (thread_active_elsewhere(thread) == NULL) { |
|
ready_thread(thread); |
|
} |
|
} |
|
} |
|
|
|
void z_move_thread_to_end_of_prio_q(struct k_thread *thread) |
|
{ |
|
K_SPINLOCK(&_sched_spinlock) { |
|
move_thread_to_end_of_prio_q(thread); |
|
} |
|
} |
|
|
|
/* Spins in ISR context, waiting for a thread known to be running on |
|
* another CPU to catch the IPI we sent and halt. Note that we check |
|
* for ourselves being asynchronously halted first to prevent simple |
|
* deadlocks (but not complex ones involving cycles of 3+ threads!). |
|
* Acts to release the provided lock before returning. |
|
*/ |
|
static void thread_halt_spin(struct k_thread *thread, k_spinlock_key_t key) |
|
{ |
|
if (is_halting(_current)) { |
|
halt_thread(_current, |
|
is_aborting(_current) ? _THREAD_DEAD : _THREAD_SUSPENDED); |
|
} |
|
k_spin_unlock(&_sched_spinlock, key); |
|
while (is_halting(thread)) { |
|
unsigned int k = arch_irq_lock(); |
|
|
|
arch_spin_relax(); /* Requires interrupts be masked */ |
|
arch_irq_unlock(k); |
|
} |
|
} |
|
|
|
/* Shared handler for k_thread_{suspend,abort}(). Called with the |
|
* scheduler lock held and the key passed (which it may |
|
* release/reacquire!) which will be released before a possible return |
|
* (aborting _current will not return, obviously), which may be after |
|
* a context switch. |
|
*/ |
|
static ALWAYS_INLINE void z_thread_halt(struct k_thread *thread, k_spinlock_key_t key, |
|
bool terminate) |
|
{ |
|
_wait_q_t *wq = &thread->join_queue; |
|
#ifdef CONFIG_SMP |
|
wq = terminate ? wq : &thread->halt_queue; |
|
#endif |
|
|
|
/* If the target is a thread running on another CPU, flag and |
|
* poke (note that we might spin to wait, so a true |
|
* synchronous IPI is needed here, not deferred!), it will |
|
* halt itself in the IPI. Otherwise it's unscheduled, so we |
|
* can clean it up directly. |
|
*/ |
|
|
|
struct _cpu *cpu = thread_active_elsewhere(thread); |
|
|
|
if (cpu != NULL) { |
|
thread->base.thread_state |= (terminate ? _THREAD_ABORTING |
|
: _THREAD_SUSPENDING); |
|
#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_IPI_SUPPORTED) |
|
#ifdef CONFIG_ARCH_HAS_DIRECTED_IPIS |
|
arch_sched_directed_ipi(IPI_CPU_MASK(cpu->id)); |
|
#else |
|
arch_sched_broadcast_ipi(); |
|
#endif |
|
#endif |
|
if (arch_is_in_isr()) { |
|
thread_halt_spin(thread, key); |
|
} else { |
|
add_to_waitq_locked(_current, wq); |
|
z_swap(&_sched_spinlock, key); |
|
} |
|
} else { |
|
halt_thread(thread, terminate ? _THREAD_DEAD : _THREAD_SUSPENDED); |
|
if ((thread == _current) && !arch_is_in_isr()) { |
|
z_swap(&_sched_spinlock, key); |
|
__ASSERT(!terminate, "aborted _current back from dead"); |
|
} else { |
|
k_spin_unlock(&_sched_spinlock, key); |
|
} |
|
} |
|
/* NOTE: the scheduler lock has been released. Don't put |
|
* logic here, it's likely to be racy/deadlocky even if you |
|
* re-take the lock! |
|
*/ |
|
} |
|
|
|
|
|
void z_impl_k_thread_suspend(k_tid_t thread) |
|
{ |
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, suspend, thread); |
|
|
|
/* Special case "suspend the current thread" as it doesn't |
|
* need the async complexity below. |
|
*/ |
|
if (thread == _current && !arch_is_in_isr() && !IS_ENABLED(CONFIG_SMP)) { |
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); |
|
|
|
z_mark_thread_as_suspended(thread); |
|
dequeue_thread(thread); |
|
update_cache(1); |
|
z_swap(&_sched_spinlock, key); |
|
return; |
|
} |
|
|
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); |
|
|
|
if (unlikely(z_is_thread_suspended(thread))) { |
|
|
|
/* The target thread is already suspended. Nothing to do. */ |
|
|
|
k_spin_unlock(&_sched_spinlock, key); |
|
return; |
|
} |
|
|
|
z_thread_halt(thread, key, false); |
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, suspend, thread); |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline void z_vrfy_k_thread_suspend(k_tid_t thread) |
|
{ |
|
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
|
z_impl_k_thread_suspend(thread); |
|
} |
|
#include <zephyr/syscalls/k_thread_suspend_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
void z_impl_k_thread_resume(k_tid_t thread) |
|
{ |
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, resume, thread); |
|
|
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); |
|
|
|
/* Do not try to resume a thread that was not suspended */ |
|
if (unlikely(!z_is_thread_suspended(thread))) { |
|
k_spin_unlock(&_sched_spinlock, key); |
|
return; |
|
} |
|
|
|
z_mark_thread_as_not_suspended(thread); |
|
ready_thread(thread); |
|
|
|
z_reschedule(&_sched_spinlock, key); |
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, resume, thread); |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline void z_vrfy_k_thread_resume(k_tid_t thread) |
|
{ |
|
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
|
z_impl_k_thread_resume(thread); |
|
} |
|
#include <zephyr/syscalls/k_thread_resume_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
static void unready_thread(struct k_thread *thread) |
|
{ |
|
if (z_is_thread_queued(thread)) { |
|
dequeue_thread(thread); |
|
} |
|
update_cache(thread == _current); |
|
} |
|
|
|
/* _sched_spinlock must be held */ |
|
static void add_to_waitq_locked(struct k_thread *thread, _wait_q_t *wait_q) |
|
{ |
|
unready_thread(thread); |
|
z_mark_thread_as_pending(thread); |
|
|
|
SYS_PORT_TRACING_FUNC(k_thread, sched_pend, thread); |
|
|
|
if (wait_q != NULL) { |
|
thread->base.pended_on = wait_q; |
|
_priq_wait_add(&wait_q->waitq, thread); |
|
} |
|
} |
|
|
|
static void add_thread_timeout(struct k_thread *thread, k_timeout_t timeout) |
|
{ |
|
if (!K_TIMEOUT_EQ(timeout, K_FOREVER)) { |
|
z_add_thread_timeout(thread, timeout); |
|
} |
|
} |
|
|
|
static void pend_locked(struct k_thread *thread, _wait_q_t *wait_q, |
|
k_timeout_t timeout) |
|
{ |
|
#ifdef CONFIG_KERNEL_COHERENCE |
|
__ASSERT_NO_MSG(wait_q == NULL || arch_mem_coherent(wait_q)); |
|
#endif /* CONFIG_KERNEL_COHERENCE */ |
|
add_to_waitq_locked(thread, wait_q); |
|
add_thread_timeout(thread, timeout); |
|
} |
|
|
|
void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q, |
|
k_timeout_t timeout) |
|
{ |
|
__ASSERT_NO_MSG(thread == _current || is_thread_dummy(thread)); |
|
K_SPINLOCK(&_sched_spinlock) { |
|
pend_locked(thread, wait_q, timeout); |
|
} |
|
} |
|
|
|
void z_unpend_thread_no_timeout(struct k_thread *thread) |
|
{ |
|
K_SPINLOCK(&_sched_spinlock) { |
|
if (thread->base.pended_on != NULL) { |
|
unpend_thread_no_timeout(thread); |
|
} |
|
} |
|
} |
|
|
|
void z_sched_wake_thread(struct k_thread *thread, bool is_timeout) |
|
{ |
|
K_SPINLOCK(&_sched_spinlock) { |
|
bool killed = (thread->base.thread_state & |
|
(_THREAD_DEAD | _THREAD_ABORTING)); |
|
|
|
#ifdef CONFIG_EVENTS |
|
bool do_nothing = thread->no_wake_on_timeout && is_timeout; |
|
|
|
thread->no_wake_on_timeout = false; |
|
|
|
if (do_nothing) { |
|
continue; |
|
} |
|
#endif /* CONFIG_EVENTS */ |
|
|
|
if (!killed) { |
|
/* The thread is not being killed */ |
|
if (thread->base.pended_on != NULL) { |
|
unpend_thread_no_timeout(thread); |
|
} |
|
z_mark_thread_as_not_sleeping(thread); |
|
ready_thread(thread); |
|
} |
|
} |
|
|
|
} |
|
|
|
#ifdef CONFIG_SYS_CLOCK_EXISTS |
|
/* Timeout handler for *_thread_timeout() APIs */ |
|
void z_thread_timeout(struct _timeout *timeout) |
|
{ |
|
struct k_thread *thread = CONTAINER_OF(timeout, |
|
struct k_thread, base.timeout); |
|
|
|
z_sched_wake_thread(thread, true); |
|
} |
|
#endif /* CONFIG_SYS_CLOCK_EXISTS */ |
|
|
|
int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key, |
|
_wait_q_t *wait_q, k_timeout_t timeout) |
|
{ |
|
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC) |
|
pending_current = _current; |
|
#endif /* CONFIG_TIMESLICING && CONFIG_SWAP_NONATOMIC */ |
|
__ASSERT_NO_MSG(sizeof(_sched_spinlock) == 0 || lock != &_sched_spinlock); |
|
|
|
/* We do a "lock swap" prior to calling z_swap(), such that |
|
* the caller's lock gets released as desired. But we ensure |
|
* that we hold the scheduler lock and leave local interrupts |
|
* masked until we reach the context switch. z_swap() itself |
|
* has similar code; the duplication is because it's a legacy |
|
* API that doesn't expect to be called with scheduler lock |
|
* held. |
|
*/ |
|
(void) k_spin_lock(&_sched_spinlock); |
|
pend_locked(_current, wait_q, timeout); |
|
k_spin_release(lock); |
|
return z_swap(&_sched_spinlock, key); |
|
} |
|
|
|
struct k_thread *z_unpend1_no_timeout(_wait_q_t *wait_q) |
|
{ |
|
struct k_thread *thread = NULL; |
|
|
|
K_SPINLOCK(&_sched_spinlock) { |
|
thread = _priq_wait_best(&wait_q->waitq); |
|
|
|
if (thread != NULL) { |
|
unpend_thread_no_timeout(thread); |
|
} |
|
} |
|
|
|
return thread; |
|
} |
|
|
|
void z_unpend_thread(struct k_thread *thread) |
|
{ |
|
z_unpend_thread_no_timeout(thread); |
|
z_abort_thread_timeout(thread); |
|
} |
|
|
|
/* Priority set utility that does no rescheduling, it just changes the |
|
* run queue state, returning true if a reschedule is needed later. |
|
*/ |
|
bool z_thread_prio_set(struct k_thread *thread, int prio) |
|
{ |
|
bool need_sched = 0; |
|
int old_prio = thread->base.prio; |
|
|
|
K_SPINLOCK(&_sched_spinlock) { |
|
need_sched = z_is_thread_ready(thread); |
|
|
|
if (need_sched) { |
|
if (!IS_ENABLED(CONFIG_SMP) || z_is_thread_queued(thread)) { |
|
dequeue_thread(thread); |
|
thread->base.prio = prio; |
|
queue_thread(thread); |
|
|
|
if (old_prio > prio) { |
|
flag_ipi(ipi_mask_create(thread)); |
|
} |
|
} else { |
|
/* |
|
* This is a running thread on SMP. Update its |
|
* priority, but do not requeue it. An IPI is |
|
* needed if the priority is both being lowered |
|
* and it is running on another CPU. |
|
*/ |
|
|
|
thread->base.prio = prio; |
|
|
|
struct _cpu *cpu; |
|
|
|
cpu = thread_active_elsewhere(thread); |
|
if ((cpu != NULL) && (old_prio < prio)) { |
|
flag_ipi(IPI_CPU_MASK(cpu->id)); |
|
} |
|
} |
|
|
|
update_cache(1); |
|
} else { |
|
thread->base.prio = prio; |
|
} |
|
} |
|
|
|
SYS_PORT_TRACING_OBJ_FUNC(k_thread, sched_priority_set, thread, prio); |
|
|
|
return need_sched; |
|
} |
|
|
|
static inline bool resched(uint32_t key) |
|
{ |
|
#ifdef CONFIG_SMP |
|
_current_cpu->swap_ok = 0; |
|
#endif /* CONFIG_SMP */ |
|
|
|
return arch_irq_unlocked(key) && !arch_is_in_isr(); |
|
} |
|
|
|
/* |
|
* Check if the next ready thread is the same as the current thread |
|
* and save the trip if true. |
|
*/ |
|
static inline bool need_swap(void) |
|
{ |
|
/* the SMP case will be handled in C based z_swap() */ |
|
#ifdef CONFIG_SMP |
|
return true; |
|
#else |
|
struct k_thread *new_thread; |
|
|
|
/* Check if the next ready thread is the same as the current thread */ |
|
new_thread = _kernel.ready_q.cache; |
|
return new_thread != _current; |
|
#endif /* CONFIG_SMP */ |
|
} |
|
|
|
void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key) |
|
{ |
|
if (resched(key.key) && need_swap()) { |
|
z_swap(lock, key); |
|
} else { |
|
k_spin_unlock(lock, key); |
|
signal_pending_ipi(); |
|
} |
|
} |
|
|
|
void z_reschedule_irqlock(uint32_t key) |
|
{ |
|
if (resched(key) && need_swap()) { |
|
z_swap_irqlock(key); |
|
} else { |
|
irq_unlock(key); |
|
signal_pending_ipi(); |
|
} |
|
} |
|
|
|
void k_sched_lock(void) |
|
{ |
|
K_SPINLOCK(&_sched_spinlock) { |
|
SYS_PORT_TRACING_FUNC(k_thread, sched_lock); |
|
|
|
z_sched_lock(); |
|
} |
|
} |
|
|
|
void k_sched_unlock(void) |
|
{ |
|
K_SPINLOCK(&_sched_spinlock) { |
|
__ASSERT(_current->base.sched_locked != 0U, ""); |
|
__ASSERT(!arch_is_in_isr(), ""); |
|
|
|
++_current->base.sched_locked; |
|
update_cache(0); |
|
} |
|
|
|
LOG_DBG("scheduler unlocked (%p:%d)", |
|
_current, _current->base.sched_locked); |
|
|
|
SYS_PORT_TRACING_FUNC(k_thread, sched_unlock); |
|
|
|
z_reschedule_unlocked(); |
|
} |
|
|
|
struct k_thread *z_swap_next_thread(void) |
|
{ |
|
#ifdef CONFIG_SMP |
|
struct k_thread *ret = next_up(); |
|
|
|
if (ret == _current) { |
|
/* When not swapping, have to signal IPIs here. In |
|
* the context switch case it must happen later, after |
|
* _current gets requeued. |
|
*/ |
|
signal_pending_ipi(); |
|
} |
|
return ret; |
|
#else |
|
return _kernel.ready_q.cache; |
|
#endif /* CONFIG_SMP */ |
|
} |
|
|
|
#ifdef CONFIG_USE_SWITCH |
|
/* Just a wrapper around z_current_thread_set(xxx) with tracing */ |
|
static inline void set_current(struct k_thread *new_thread) |
|
{ |
|
z_thread_mark_switched_out(); |
|
z_current_thread_set(new_thread); |
|
} |
|
|
|
/** |
|
* @brief Determine next thread to execute upon completion of an interrupt |
|
* |
|
* Thread preemption is performed by context switching after the completion |
|
* of a non-recursed interrupt. This function determines which thread to |
|
* switch to if any. This function accepts as @p interrupted either: |
|
* |
|
* - The handle for the interrupted thread in which case the thread's context |
|
* must already be fully saved and ready to be picked up by a different CPU. |
|
* |
|
* - NULL if more work is required to fully save the thread's state after |
|
* it is known that a new thread is to be scheduled. It is up to the caller |
|
* to store the handle resulting from the thread that is being switched out |
|
* in that thread's "switch_handle" field after its |
|
* context has fully been saved, following the same requirements as with |
|
* the @ref arch_switch() function. |
|
* |
|
* If a new thread needs to be scheduled then its handle is returned. |
|
* Otherwise the same value provided as @p interrupted is returned back. |
|
* Those handles are the same opaque types used by the @ref arch_switch() |
|
* function. |
|
* |
|
* @warning |
|
* The _current value may have changed after this call and not refer |
|
* to the interrupted thread anymore. It might be necessary to make a local |
|
* copy before calling this function. |
|
* |
|
* @param interrupted Handle for the thread that was interrupted or NULL. |
|
* @retval Handle for the next thread to execute, or @p interrupted when |
|
* no new thread is to be scheduled. |
|
*/ |
|
void *z_get_next_switch_handle(void *interrupted) |
|
{ |
|
z_check_stack_sentinel(); |
|
|
|
#ifdef CONFIG_SMP |
|
void *ret = NULL; |
|
|
|
K_SPINLOCK(&_sched_spinlock) { |
|
struct k_thread *old_thread = _current, *new_thread; |
|
|
|
if (IS_ENABLED(CONFIG_SMP)) { |
|
old_thread->switch_handle = NULL; |
|
} |
|
new_thread = next_up(); |
|
|
|
z_sched_usage_switch(new_thread); |
|
|
|
if (old_thread != new_thread) { |
|
uint8_t cpu_id; |
|
|
|
update_metairq_preempt(new_thread); |
|
z_sched_switch_spin(new_thread); |
|
arch_cohere_stacks(old_thread, interrupted, new_thread); |
|
|
|
_current_cpu->swap_ok = 0; |
|
cpu_id = arch_curr_cpu()->id; |
|
new_thread->base.cpu = cpu_id; |
|
set_current(new_thread); |
|
|
|
#ifdef CONFIG_TIMESLICING |
|
z_reset_time_slice(new_thread); |
|
#endif /* CONFIG_TIMESLICING */ |
|
|
|
#ifdef CONFIG_SPIN_VALIDATE |
|
/* Changed _current! Update the spinlock |
|
* bookkeeping so the validation doesn't get |
|
* confused when the "wrong" thread tries to |
|
* release the lock. |
|
*/ |
|
z_spin_lock_set_owner(&_sched_spinlock); |
|
#endif /* CONFIG_SPIN_VALIDATE */ |
|
|
|
/* A queued (runnable) old/current thread |
|
* needs to be added back to the run queue |
|
* here, and atomically with its switch handle |
|
* being set below. This is safe now, as we |
|
* will not return into it. |
|
*/ |
|
if (z_is_thread_queued(old_thread)) { |
|
#ifdef CONFIG_SCHED_IPI_CASCADE |
|
if ((new_thread->base.cpu_mask != -1) && |
|
(old_thread->base.cpu_mask != BIT(cpu_id))) { |
|
flag_ipi(ipi_mask_create(old_thread)); |
|
} |
|
#endif |
|
runq_add(old_thread); |
|
} |
|
} |
|
old_thread->switch_handle = interrupted; |
|
ret = new_thread->switch_handle; |
|
if (IS_ENABLED(CONFIG_SMP)) { |
|
/* Active threads MUST have a null here */ |
|
new_thread->switch_handle = NULL; |
|
} |
|
} |
|
signal_pending_ipi(); |
|
return ret; |
|
#else |
|
z_sched_usage_switch(_kernel.ready_q.cache); |
|
_current->switch_handle = interrupted; |
|
set_current(_kernel.ready_q.cache); |
|
return _current->switch_handle; |
|
#endif /* CONFIG_SMP */ |
|
} |
|
#endif /* CONFIG_USE_SWITCH */ |
|
|
|
int z_unpend_all(_wait_q_t *wait_q) |
|
{ |
|
int need_sched = 0; |
|
struct k_thread *thread; |
|
|
|
for (thread = z_waitq_head(wait_q); thread != NULL; thread = z_waitq_head(wait_q)) { |
|
z_unpend_thread(thread); |
|
z_ready_thread(thread); |
|
need_sched = 1; |
|
} |
|
|
|
return need_sched; |
|
} |
|
|
|
void init_ready_q(struct _ready_q *ready_q) |
|
{ |
|
_priq_run_init(&ready_q->runq); |
|
} |
|
|
|
void z_sched_init(void) |
|
{ |
|
#ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY |
|
for (int i = 0; i < CONFIG_MP_MAX_NUM_CPUS; i++) { |
|
init_ready_q(&_kernel.cpus[i].ready_q); |
|
} |
|
#else |
|
init_ready_q(&_kernel.ready_q); |
|
#endif /* CONFIG_SCHED_CPU_MASK_PIN_ONLY */ |
|
} |
|
|
|
void z_impl_k_thread_priority_set(k_tid_t thread, int prio) |
|
{ |
|
/* |
|
* Use NULL, since we cannot know what the entry point is (we do not |
|
* keep track of it) and idle cannot change its priority. |
|
*/ |
|
Z_ASSERT_VALID_PRIO(prio, NULL); |
|
|
|
bool need_sched = z_thread_prio_set((struct k_thread *)thread, prio); |
|
|
|
if ((need_sched) && (IS_ENABLED(CONFIG_SMP) || |
|
(_current->base.sched_locked == 0U))) { |
|
z_reschedule_unlocked(); |
|
} |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline void z_vrfy_k_thread_priority_set(k_tid_t thread, int prio) |
|
{ |
|
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
|
K_OOPS(K_SYSCALL_VERIFY_MSG(_is_valid_prio(prio, NULL), |
|
"invalid thread priority %d", prio)); |
|
#ifndef CONFIG_USERSPACE_THREAD_MAY_RAISE_PRIORITY |
|
K_OOPS(K_SYSCALL_VERIFY_MSG((int8_t)prio >= thread->base.prio, |
|
"thread priority may only be downgraded (%d < %d)", |
|
prio, thread->base.prio)); |
|
#endif /* CONFIG_USERSPACE_THREAD_MAY_RAISE_PRIORITY */ |
|
z_impl_k_thread_priority_set(thread, prio); |
|
} |
|
#include <zephyr/syscalls/k_thread_priority_set_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
#ifdef CONFIG_SCHED_DEADLINE |
|
void z_impl_k_thread_deadline_set(k_tid_t tid, int deadline) |
|
{ |
|
|
|
deadline = CLAMP(deadline, 0, INT_MAX); |
|
|
|
struct k_thread *thread = tid; |
|
int32_t newdl = k_cycle_get_32() + deadline; |
|
|
|
/* The prio_deadline field changes the sorting order, so can't |
|
* change it while the thread is in the run queue (dlists |
|
* actually are benign as long as we requeue it before we |
|
* release the lock, but an rbtree will blow up if we break |
|
* sorting!) |
|
*/ |
|
K_SPINLOCK(&_sched_spinlock) { |
|
if (z_is_thread_queued(thread)) { |
|
dequeue_thread(thread); |
|
thread->base.prio_deadline = newdl; |
|
queue_thread(thread); |
|
} else { |
|
thread->base.prio_deadline = newdl; |
|
} |
|
} |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline void z_vrfy_k_thread_deadline_set(k_tid_t tid, int deadline) |
|
{ |
|
struct k_thread *thread = tid; |
|
|
|
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
|
K_OOPS(K_SYSCALL_VERIFY_MSG(deadline > 0, |
|
"invalid thread deadline %d", |
|
(int)deadline)); |
|
|
|
z_impl_k_thread_deadline_set((k_tid_t)thread, deadline); |
|
} |
|
#include <zephyr/syscalls/k_thread_deadline_set_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
#endif /* CONFIG_SCHED_DEADLINE */ |
|
|
|
void z_impl_k_reschedule(void) |
|
{ |
|
k_spinlock_key_t key; |
|
|
|
key = k_spin_lock(&_sched_spinlock); |
|
|
|
update_cache(0); |
|
|
|
z_reschedule(&_sched_spinlock, key); |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline void z_vrfy_k_reschedule(void) |
|
{ |
|
z_impl_k_reschedule(); |
|
} |
|
#include <zephyr/syscalls/k_reschedule_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
bool k_can_yield(void) |
|
{ |
|
return !(k_is_pre_kernel() || k_is_in_isr() || |
|
z_is_idle_thread_object(_current)); |
|
} |
|
|
|
void z_impl_k_yield(void) |
|
{ |
|
__ASSERT(!arch_is_in_isr(), ""); |
|
|
|
SYS_PORT_TRACING_FUNC(k_thread, yield); |
|
|
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); |
|
|
|
#ifdef CONFIG_SMP |
|
z_mark_thread_as_queued(_current); |
|
#endif |
|
runq_yield(); |
|
|
|
update_cache(1); |
|
z_swap(&_sched_spinlock, key); |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline void z_vrfy_k_yield(void) |
|
{ |
|
z_impl_k_yield(); |
|
} |
|
#include <zephyr/syscalls/k_yield_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
static int32_t z_tick_sleep(k_ticks_t ticks) |
|
{ |
|
uint32_t expected_wakeup_ticks; |
|
|
|
__ASSERT(!arch_is_in_isr(), ""); |
|
|
|
LOG_DBG("thread %p for %lu ticks", _current, (unsigned long)ticks); |
|
|
|
/* wait of 0 ms is treated as a 'yield' */ |
|
if (ticks == 0) { |
|
k_yield(); |
|
return 0; |
|
} |
|
|
|
if (Z_TICK_ABS(ticks) <= 0) { |
|
expected_wakeup_ticks = ticks + sys_clock_tick_get_32(); |
|
} else { |
|
expected_wakeup_ticks = Z_TICK_ABS(ticks); |
|
} |
|
|
|
k_timeout_t timeout = Z_TIMEOUT_TICKS(ticks); |
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); |
|
|
|
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC) |
|
pending_current = _current; |
|
#endif /* CONFIG_TIMESLICING && CONFIG_SWAP_NONATOMIC */ |
|
unready_thread(_current); |
|
z_add_thread_timeout(_current, timeout); |
|
z_mark_thread_as_sleeping(_current); |
|
|
|
(void)z_swap(&_sched_spinlock, key); |
|
|
|
/* We require a 32 bit unsigned subtraction to care a wraparound */ |
|
uint32_t left_ticks = expected_wakeup_ticks - sys_clock_tick_get_32(); |
|
|
|
/* To handle a negative value correctly, once type-cast it to signed 32 bit */ |
|
ticks = (k_ticks_t)(int32_t)left_ticks; |
|
if (ticks > 0) { |
|
return ticks; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
int32_t z_impl_k_sleep(k_timeout_t timeout) |
|
{ |
|
k_ticks_t ticks; |
|
|
|
__ASSERT(!arch_is_in_isr(), ""); |
|
|
|
SYS_PORT_TRACING_FUNC_ENTER(k_thread, sleep, timeout); |
|
|
|
ticks = timeout.ticks; |
|
|
|
ticks = z_tick_sleep(ticks); |
|
|
|
int32_t ret = K_TIMEOUT_EQ(timeout, K_FOREVER) ? K_TICKS_FOREVER : |
|
k_ticks_to_ms_ceil64(ticks); |
|
|
|
SYS_PORT_TRACING_FUNC_EXIT(k_thread, sleep, timeout, ret); |
|
|
|
return ret; |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline int32_t z_vrfy_k_sleep(k_timeout_t timeout) |
|
{ |
|
return z_impl_k_sleep(timeout); |
|
} |
|
#include <zephyr/syscalls/k_sleep_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
int32_t z_impl_k_usleep(int32_t us) |
|
{ |
|
int32_t ticks; |
|
|
|
SYS_PORT_TRACING_FUNC_ENTER(k_thread, usleep, us); |
|
|
|
ticks = k_us_to_ticks_ceil64(us); |
|
ticks = z_tick_sleep(ticks); |
|
|
|
int32_t ret = k_ticks_to_us_ceil64(ticks); |
|
|
|
SYS_PORT_TRACING_FUNC_EXIT(k_thread, usleep, us, ret); |
|
|
|
return ret; |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline int32_t z_vrfy_k_usleep(int32_t us) |
|
{ |
|
return z_impl_k_usleep(us); |
|
} |
|
#include <zephyr/syscalls/k_usleep_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
void z_impl_k_wakeup(k_tid_t thread) |
|
{ |
|
SYS_PORT_TRACING_OBJ_FUNC(k_thread, wakeup, thread); |
|
|
|
z_abort_thread_timeout(thread); |
|
|
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); |
|
|
|
if (!z_is_thread_sleeping(thread)) { |
|
k_spin_unlock(&_sched_spinlock, key); |
|
return; |
|
} |
|
|
|
z_mark_thread_as_not_sleeping(thread); |
|
|
|
ready_thread(thread); |
|
|
|
if (arch_is_in_isr()) { |
|
k_spin_unlock(&_sched_spinlock, key); |
|
} else { |
|
z_reschedule(&_sched_spinlock, key); |
|
} |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline void z_vrfy_k_wakeup(k_tid_t thread) |
|
{ |
|
K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
|
z_impl_k_wakeup(thread); |
|
} |
|
#include <zephyr/syscalls/k_wakeup_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
k_tid_t z_impl_k_sched_current_thread_query(void) |
|
{ |
|
return _current; |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline k_tid_t z_vrfy_k_sched_current_thread_query(void) |
|
{ |
|
return z_impl_k_sched_current_thread_query(); |
|
} |
|
#include <zephyr/syscalls/k_sched_current_thread_query_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
static inline void unpend_all(_wait_q_t *wait_q) |
|
{ |
|
struct k_thread *thread; |
|
|
|
for (thread = z_waitq_head(wait_q); thread != NULL; thread = z_waitq_head(wait_q)) { |
|
unpend_thread_no_timeout(thread); |
|
z_abort_thread_timeout(thread); |
|
arch_thread_return_value_set(thread, 0); |
|
ready_thread(thread); |
|
} |
|
} |
|
|
|
#ifdef CONFIG_THREAD_ABORT_HOOK |
|
extern void thread_abort_hook(struct k_thread *thread); |
|
#endif /* CONFIG_THREAD_ABORT_HOOK */ |
|
|
|
/** |
|
* @brief Dequeues the specified thread |
|
* |
|
* Dequeues the specified thread and move it into the specified new state. |
|
* |
|
* @param thread Identify the thread to halt |
|
* @param new_state New thread state (_THREAD_DEAD or _THREAD_SUSPENDED) |
|
*/ |
|
static ALWAYS_INLINE void halt_thread(struct k_thread *thread, uint8_t new_state) |
|
{ |
|
bool dummify = false; |
|
|
|
/* We hold the lock, and the thread is known not to be running |
|
* anywhere. |
|
*/ |
|
if ((thread->base.thread_state & new_state) == 0U) { |
|
thread->base.thread_state |= new_state; |
|
if (z_is_thread_queued(thread)) { |
|
dequeue_thread(thread); |
|
} |
|
|
|
if (new_state == _THREAD_DEAD) { |
|
if (thread->base.pended_on != NULL) { |
|
unpend_thread_no_timeout(thread); |
|
} |
|
z_abort_thread_timeout(thread); |
|
unpend_all(&thread->join_queue); |
|
|
|
/* Edge case: aborting _current from within an |
|
* ISR that preempted it requires clearing the |
|
* _current pointer so the upcoming context |
|
* switch doesn't clobber the now-freed |
|
* memory |
|
*/ |
|
if (thread == _current && arch_is_in_isr()) { |
|
dummify = true; |
|
} |
|
} |
|
#ifdef CONFIG_SMP |
|
unpend_all(&thread->halt_queue); |
|
#endif /* CONFIG_SMP */ |
|
update_cache(1); |
|
|
|
if (new_state == _THREAD_SUSPENDED) { |
|
clear_halting(thread); |
|
return; |
|
} |
|
|
|
#if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING) |
|
arch_float_disable(thread); |
|
#endif /* CONFIG_FPU && CONFIG_FPU_SHARING */ |
|
|
|
SYS_PORT_TRACING_FUNC(k_thread, sched_abort, thread); |
|
|
|
z_thread_monitor_exit(thread); |
|
#ifdef CONFIG_THREAD_ABORT_HOOK |
|
thread_abort_hook(thread); |
|
#endif /* CONFIG_THREAD_ABORT_HOOK */ |
|
|
|
#ifdef CONFIG_OBJ_CORE_THREAD |
|
#ifdef CONFIG_OBJ_CORE_STATS_THREAD |
|
k_obj_core_stats_deregister(K_OBJ_CORE(thread)); |
|
#endif /* CONFIG_OBJ_CORE_STATS_THREAD */ |
|
k_obj_core_unlink(K_OBJ_CORE(thread)); |
|
#endif /* CONFIG_OBJ_CORE_THREAD */ |
|
|
|
#ifdef CONFIG_USERSPACE |
|
z_mem_domain_exit_thread(thread); |
|
k_thread_perms_all_clear(thread); |
|
k_object_uninit(thread->stack_obj); |
|
k_object_uninit(thread); |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
#ifdef CONFIG_THREAD_ABORT_NEED_CLEANUP |
|
k_thread_abort_cleanup(thread); |
|
#endif /* CONFIG_THREAD_ABORT_NEED_CLEANUP */ |
|
|
|
/* Do this "set _current to dummy" step last so that |
|
* subsystems above can rely on _current being |
|
* unchanged. Disabled for posix as that arch |
|
* continues to use the _current pointer in its swap |
|
* code. Note that we must leave a non-null switch |
|
* handle for any threads spinning in join() (this can |
|
* never be used, as our thread is flagged dead, but |
|
* it must not be NULL otherwise join can deadlock). |
|
*/ |
|
if (dummify && !IS_ENABLED(CONFIG_ARCH_POSIX)) { |
|
#ifdef CONFIG_USE_SWITCH |
|
_current->switch_handle = _current; |
|
#endif |
|
z_dummy_thread_init(&_thread_dummy); |
|
|
|
} |
|
|
|
/* Finally update the halting thread state, on which |
|
* other CPUs might be spinning (see |
|
* thread_halt_spin()). |
|
*/ |
|
clear_halting(thread); |
|
} |
|
} |
|
|
|
void z_thread_abort(struct k_thread *thread) |
|
{ |
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); |
|
|
|
if (z_is_thread_essential(thread)) { |
|
k_spin_unlock(&_sched_spinlock, key); |
|
__ASSERT(false, "aborting essential thread %p", thread); |
|
k_panic(); |
|
return; |
|
} |
|
|
|
if ((thread->base.thread_state & _THREAD_DEAD) != 0U) { |
|
k_spin_unlock(&_sched_spinlock, key); |
|
return; |
|
} |
|
|
|
z_thread_halt(thread, key, true); |
|
} |
|
|
|
#if !defined(CONFIG_ARCH_HAS_THREAD_ABORT) |
|
void z_impl_k_thread_abort(k_tid_t thread) |
|
{ |
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, abort, thread); |
|
|
|
z_thread_abort(thread); |
|
|
|
__ASSERT_NO_MSG((thread->base.thread_state & _THREAD_DEAD) != 0); |
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, abort, thread); |
|
} |
|
#endif /* !CONFIG_ARCH_HAS_THREAD_ABORT */ |
|
|
|
int z_impl_k_thread_join(struct k_thread *thread, k_timeout_t timeout) |
|
{ |
|
k_spinlock_key_t key = k_spin_lock(&_sched_spinlock); |
|
int ret; |
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, join, thread, timeout); |
|
|
|
if ((thread->base.thread_state & _THREAD_DEAD) != 0U) { |
|
z_sched_switch_spin(thread); |
|
ret = 0; |
|
} else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) { |
|
ret = -EBUSY; |
|
} else if ((thread == _current) || |
|
(thread->base.pended_on == &_current->join_queue)) { |
|
ret = -EDEADLK; |
|
} else { |
|
__ASSERT(!arch_is_in_isr(), "cannot join in ISR"); |
|
add_to_waitq_locked(_current, &thread->join_queue); |
|
add_thread_timeout(_current, timeout); |
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_thread, join, thread, timeout); |
|
ret = z_swap(&_sched_spinlock, key); |
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, join, thread, timeout, ret); |
|
|
|
return ret; |
|
} |
|
|
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, join, thread, timeout, ret); |
|
|
|
k_spin_unlock(&_sched_spinlock, key); |
|
return ret; |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
/* Special case: don't oops if the thread is uninitialized. This is because |
|
* the initialization bit does double-duty for thread objects; if false, means |
|
* the thread object is truly uninitialized, or the thread ran and exited for |
|
* some reason. |
|
* |
|
* Return true in this case indicating we should just do nothing and return |
|
* success to the caller. |
|
*/ |
|
static bool thread_obj_validate(struct k_thread *thread) |
|
{ |
|
struct k_object *ko = k_object_find(thread); |
|
int ret = k_object_validate(ko, K_OBJ_THREAD, _OBJ_INIT_TRUE); |
|
|
|
switch (ret) { |
|
case 0: |
|
return false; |
|
case -EINVAL: |
|
return true; |
|
default: |
|
#ifdef CONFIG_LOG |
|
k_object_dump_error(ret, thread, ko, K_OBJ_THREAD); |
|
#endif /* CONFIG_LOG */ |
|
K_OOPS(K_SYSCALL_VERIFY_MSG(ret, "access denied")); |
|
} |
|
CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ |
|
} |
|
|
|
static inline int z_vrfy_k_thread_join(struct k_thread *thread, |
|
k_timeout_t timeout) |
|
{ |
|
if (thread_obj_validate(thread)) { |
|
return 0; |
|
} |
|
|
|
return z_impl_k_thread_join(thread, timeout); |
|
} |
|
#include <zephyr/syscalls/k_thread_join_mrsh.c> |
|
|
|
static inline void z_vrfy_k_thread_abort(k_tid_t thread) |
|
{ |
|
if (thread_obj_validate(thread)) { |
|
return; |
|
} |
|
|
|
K_OOPS(K_SYSCALL_VERIFY_MSG(!z_is_thread_essential(thread), |
|
"aborting essential thread %p", thread)); |
|
|
|
z_impl_k_thread_abort((struct k_thread *)thread); |
|
} |
|
#include <zephyr/syscalls/k_thread_abort_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
/* |
|
* future scheduler.h API implementations |
|
*/ |
|
bool z_sched_wake(_wait_q_t *wait_q, int swap_retval, void *swap_data) |
|
{ |
|
struct k_thread *thread; |
|
bool ret = false; |
|
|
|
K_SPINLOCK(&_sched_spinlock) { |
|
thread = _priq_wait_best(&wait_q->waitq); |
|
|
|
if (thread != NULL) { |
|
z_thread_return_value_set_with_data(thread, |
|
swap_retval, |
|
swap_data); |
|
unpend_thread_no_timeout(thread); |
|
z_abort_thread_timeout(thread); |
|
ready_thread(thread); |
|
ret = true; |
|
} |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
int z_sched_wait(struct k_spinlock *lock, k_spinlock_key_t key, |
|
_wait_q_t *wait_q, k_timeout_t timeout, void **data) |
|
{ |
|
int ret = z_pend_curr(lock, key, wait_q, timeout); |
|
|
|
if (data != NULL) { |
|
*data = _current->base.swap_data; |
|
} |
|
return ret; |
|
} |
|
|
|
int z_sched_waitq_walk(_wait_q_t *wait_q, |
|
int (*func)(struct k_thread *, void *), void *data) |
|
{ |
|
struct k_thread *thread; |
|
int status = 0; |
|
|
|
K_SPINLOCK(&_sched_spinlock) { |
|
_WAIT_Q_FOR_EACH(wait_q, thread) { |
|
|
|
/* |
|
* Invoke the callback function on each waiting thread |
|
* for as long as there are both waiting threads AND |
|
* it returns 0. |
|
*/ |
|
|
|
status = func(thread, data); |
|
if (status != 0) { |
|
break; |
|
} |
|
} |
|
} |
|
|
|
return status; |
|
} |
|
|
|
/* This routine exists for benchmarking purposes. It is not used in |
|
* general production code. |
|
*/ |
|
void z_unready_thread(struct k_thread *thread) |
|
{ |
|
K_SPINLOCK(&_sched_spinlock) { |
|
unready_thread(thread); |
|
} |
|
}
|
|
|