You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
509 lines
14 KiB
509 lines
14 KiB
/* |
|
* Copyright (c) 2023 Intel Corporation |
|
* Copyright (c) 2024 Arduino SA |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
#include <zephyr/sys/util.h> |
|
#include <zephyr/llext/elf.h> |
|
#include <zephyr/llext/loader.h> |
|
#include <zephyr/llext/llext.h> |
|
#include <zephyr/llext/llext_internal.h> |
|
#include <zephyr/kernel.h> |
|
#include <zephyr/cache.h> |
|
|
|
#include <zephyr/logging/log.h> |
|
LOG_MODULE_DECLARE(llext, CONFIG_LLEXT_LOG_LEVEL); |
|
|
|
#include <string.h> |
|
|
|
#include "llext_priv.h" |
|
|
|
#ifdef CONFIG_LLEXT_EXPORT_BUILTINS_BY_SLID |
|
#define SYM_NAME_OR_SLID(name, slid) ((const char *) slid) |
|
#else |
|
#define SYM_NAME_OR_SLID(name, slid) name |
|
#endif |
|
|
|
__weak int arch_elf_relocate(elf_rela_t *rel, uintptr_t loc, |
|
uintptr_t sym_base_addr, const char *sym_name, uintptr_t load_bias) |
|
{ |
|
return -ENOTSUP; |
|
} |
|
|
|
__weak void arch_elf_relocate_local(struct llext_loader *ldr, struct llext *ext, |
|
const elf_rela_t *rel, const elf_sym_t *sym, uint8_t *rel_addr, |
|
const struct llext_load_param *ldr_parm) |
|
{ |
|
} |
|
|
|
__weak void arch_elf_relocate_global(struct llext_loader *ldr, struct llext *ext, |
|
const elf_rela_t *rel, const elf_sym_t *sym, uint8_t *rel_addr, |
|
const void *link_addr) |
|
{ |
|
} |
|
|
|
/* |
|
* Find the memory region containing the supplied offset and return the |
|
* corresponding file offset |
|
*/ |
|
ssize_t llext_file_offset(struct llext_loader *ldr, uintptr_t offset) |
|
{ |
|
unsigned int i; |
|
|
|
for (i = 0; i < LLEXT_MEM_COUNT; i++) { |
|
if (ldr->sects[i].sh_addr <= offset && |
|
ldr->sects[i].sh_addr + ldr->sects[i].sh_size > offset) { |
|
return offset - ldr->sects[i].sh_addr + ldr->sects[i].sh_offset; |
|
} |
|
} |
|
|
|
return -ENOEXEC; |
|
} |
|
|
|
/* |
|
* We increment use-count every time a new dependent is added, and have to |
|
* decrement it again, when one is removed. Ideally we should be able to add |
|
* arbitrary numbers of dependencies, but using lists for this doesn't work, |
|
* because multiple extensions can have common dependencies. Dynamically |
|
* allocating dependency entries would be too wasteful. In this initial |
|
* implementation we use an array of dependencies, if at some point we run out |
|
* of array entries, we'll implement re-allocation. |
|
* We add dependencies incrementally as we discover them, but we only ever |
|
* expect them to be removed all at once, when their user is removed. So the |
|
* dependency array is always "dense" - it cannot have NULL entries between |
|
* valid ones. |
|
*/ |
|
static int llext_dependency_add(struct llext *ext, struct llext *dependency) |
|
{ |
|
unsigned int i; |
|
|
|
for (i = 0; i < ARRAY_SIZE(ext->dependency); i++) { |
|
if (ext->dependency[i] == dependency) { |
|
return 0; |
|
} |
|
|
|
if (!ext->dependency[i]) { |
|
ext->dependency[i] = dependency; |
|
dependency->use_count++; |
|
|
|
return 0; |
|
} |
|
} |
|
|
|
return -ENOENT; |
|
} |
|
|
|
void llext_dependency_remove_all(struct llext *ext) |
|
{ |
|
unsigned int i; |
|
|
|
for (i = 0; i < ARRAY_SIZE(ext->dependency) && ext->dependency[i]; i++) { |
|
/* |
|
* The use-count of dependencies is tightly bound to dependent's |
|
* life cycle, so it shouldn't underrun. |
|
*/ |
|
ext->dependency[i]->use_count--; |
|
__ASSERT(ext->dependency[i]->use_count, "LLEXT dependency use-count underrun!"); |
|
/* No need to NULL-ify the pointer - ext is freed after this */ |
|
} |
|
} |
|
|
|
struct llext_extension_sym { |
|
struct llext *ext; |
|
const char *sym; |
|
const void *addr; |
|
}; |
|
|
|
static int llext_find_extension_sym_iterate(struct llext *ext, void *arg) |
|
{ |
|
struct llext_extension_sym *se = arg; |
|
const void *addr = llext_find_sym(&ext->exp_tab, se->sym); |
|
|
|
if (addr) { |
|
se->addr = addr; |
|
se->ext = ext; |
|
return 1; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static const void *llext_find_extension_sym(const char *sym_name, struct llext **ext) |
|
{ |
|
struct llext_extension_sym se = {.sym = sym_name}; |
|
|
|
llext_iterate(llext_find_extension_sym_iterate, &se); |
|
if (ext) { |
|
*ext = se.ext; |
|
} |
|
|
|
return se.addr; |
|
} |
|
|
|
static void llext_link_plt(struct llext_loader *ldr, struct llext *ext, elf_shdr_t *shdr, |
|
const struct llext_load_param *ldr_parm, elf_shdr_t *tgt) |
|
{ |
|
unsigned int sh_cnt = shdr->sh_size / shdr->sh_entsize; |
|
/* |
|
* CPU address where the .text section is stored, we use .text just as a |
|
* reference point |
|
*/ |
|
uint8_t *text = ext->mem[LLEXT_MEM_TEXT]; |
|
|
|
LOG_DBG("Found %p in PLT %u size %zu cnt %u text %p", |
|
(void *)llext_string(ldr, ext, LLEXT_MEM_SHSTRTAB, shdr->sh_name), |
|
shdr->sh_type, (size_t)shdr->sh_entsize, sh_cnt, (void *)text); |
|
|
|
const elf_shdr_t *sym_shdr = ldr->sects + LLEXT_MEM_SYMTAB; |
|
unsigned int sym_cnt = sym_shdr->sh_size / sym_shdr->sh_entsize; |
|
|
|
for (unsigned int i = 0; i < sh_cnt; i++) { |
|
elf_rela_t rela; |
|
|
|
int ret = llext_seek(ldr, shdr->sh_offset + i * shdr->sh_entsize); |
|
|
|
if (!ret) { |
|
ret = llext_read(ldr, &rela, sizeof(rela)); |
|
} |
|
|
|
if (ret != 0) { |
|
LOG_ERR("PLT: failed to read RELA #%u, trying to continue", i); |
|
continue; |
|
} |
|
|
|
/* Index in the symbol table */ |
|
unsigned int j = ELF_R_SYM(rela.r_info); |
|
|
|
if (j >= sym_cnt) { |
|
LOG_WRN("PLT: idx %u >= %u", j, sym_cnt); |
|
continue; |
|
} |
|
|
|
elf_sym_t sym; |
|
|
|
ret = llext_seek(ldr, sym_shdr->sh_offset + j * sizeof(elf_sym_t)); |
|
if (!ret) { |
|
ret = llext_read(ldr, &sym, sizeof(sym)); |
|
} |
|
|
|
if (ret != 0) { |
|
LOG_ERR("PLT: failed to read symbol table #%u RELA #%u, trying to continue", |
|
j, i); |
|
continue; |
|
} |
|
|
|
uint32_t stt = ELF_ST_TYPE(sym.st_info); |
|
|
|
if (stt != STT_FUNC && |
|
stt != STT_SECTION && |
|
stt != STT_OBJECT && |
|
(stt != STT_NOTYPE || sym.st_shndx != SHN_UNDEF)) { |
|
continue; |
|
} |
|
|
|
const char *name = llext_string(ldr, ext, LLEXT_MEM_STRTAB, sym.st_name); |
|
|
|
/* |
|
* Both r_offset and sh_addr are addresses for which the extension |
|
* has been built. |
|
* |
|
* NOTE: The calculations below assumes offsets from the |
|
* beginning of the .text section in the ELF file can be |
|
* applied to the memory location of mem[LLEXT_MEM_TEXT]. |
|
* |
|
* This is valid only when CONFIG_LLEXT_STORAGE_WRITABLE=y |
|
* and peek() is usable on the source ELF file. |
|
*/ |
|
uint8_t *rel_addr = (uint8_t *)ext->mem[LLEXT_MEM_TEXT] - |
|
ldr->sects[LLEXT_MEM_TEXT].sh_offset; |
|
|
|
if (tgt) { |
|
/* Relocatable / partially linked ELF. */ |
|
rel_addr += rela.r_offset + tgt->sh_offset; |
|
} else { |
|
/* Shared / dynamically linked ELF */ |
|
ssize_t offset = llext_file_offset(ldr, rela.r_offset); |
|
|
|
if (offset < 0) { |
|
LOG_ERR("Offset %#zx not found in ELF, trying to continue", |
|
(size_t)rela.r_offset); |
|
continue; |
|
} |
|
|
|
rel_addr += offset; |
|
} |
|
|
|
uint32_t stb = ELF_ST_BIND(sym.st_info); |
|
const void *link_addr; |
|
|
|
switch (stb) { |
|
case STB_GLOBAL: |
|
/* First try the global symbol table */ |
|
link_addr = llext_find_sym(NULL, |
|
SYM_NAME_OR_SLID(name, sym.st_value)); |
|
|
|
if (!link_addr) { |
|
/* Next try internal tables */ |
|
link_addr = llext_find_sym(&ext->sym_tab, name); |
|
} |
|
|
|
if (!link_addr) { |
|
/* Finally try any loaded tables */ |
|
struct llext *dep; |
|
|
|
link_addr = llext_find_extension_sym(name, &dep); |
|
if (link_addr) { |
|
llext_dependency_add(ext, dep); |
|
} |
|
} |
|
|
|
if (!link_addr) { |
|
LOG_WRN("PLT: cannot find idx %u name %s", j, name); |
|
continue; |
|
} |
|
|
|
/* Resolve the symbol */ |
|
arch_elf_relocate_global(ldr, ext, &rela, &sym, rel_addr, link_addr); |
|
break; |
|
case STB_LOCAL: |
|
arch_elf_relocate_local(ldr, ext, &rela, &sym, rel_addr, ldr_parm); |
|
} |
|
|
|
LOG_DBG("symbol %s relocation @%p r-offset %#zx .text offset %#zx stb %u", |
|
name, (void *)rel_addr, |
|
(size_t)rela.r_offset, (size_t)ldr->sects[LLEXT_MEM_TEXT].sh_offset, stb); |
|
} |
|
} |
|
|
|
int llext_link(struct llext_loader *ldr, struct llext *ext, const struct llext_load_param *ldr_parm) |
|
{ |
|
uintptr_t sect_base = 0; |
|
elf_rela_t rel; |
|
elf_sym_t sym; |
|
elf_word rel_cnt = 0; |
|
const char *name; |
|
int i, ret; |
|
|
|
for (i = 0; i < ext->sect_cnt; ++i) { |
|
elf_shdr_t *shdr = ext->sect_hdrs + i; |
|
|
|
/* find proper relocation sections */ |
|
switch (shdr->sh_type) { |
|
case SHT_REL: |
|
if (shdr->sh_entsize != sizeof(elf_rel_t)) { |
|
LOG_ERR("Invalid entry size %zd for SHT_REL section %d", |
|
(size_t)shdr->sh_entsize, i); |
|
return -ENOEXEC; |
|
} |
|
break; |
|
case SHT_RELA: |
|
if (IS_ENABLED(CONFIG_ARM)) { |
|
LOG_ERR("Found unsupported SHT_RELA section %d", i); |
|
return -ENOTSUP; |
|
} |
|
if (shdr->sh_entsize != sizeof(elf_rela_t)) { |
|
LOG_ERR("Invalid entry size %zd for SHT_RELA section %d", |
|
(size_t)shdr->sh_entsize, i); |
|
return -ENOEXEC; |
|
} |
|
break; |
|
default: |
|
/* ignore this section */ |
|
continue; |
|
} |
|
|
|
if (shdr->sh_info >= ext->sect_cnt || |
|
shdr->sh_size % shdr->sh_entsize != 0) { |
|
LOG_ERR("Sanity checks failed for section %d " |
|
"(info %zd, size %zd, entsize %zd)", i, |
|
(size_t)shdr->sh_info, |
|
(size_t)shdr->sh_size, |
|
(size_t)shdr->sh_entsize); |
|
return -ENOEXEC; |
|
} |
|
|
|
rel_cnt = shdr->sh_size / shdr->sh_entsize; |
|
|
|
name = llext_string(ldr, ext, LLEXT_MEM_SHSTRTAB, shdr->sh_name); |
|
|
|
/* |
|
* FIXME: The Xtensa port is currently using a different way of |
|
* handling relocations that ultimately results in separate |
|
* arch-specific code paths. This code should be merged with |
|
* the logic below once the differences are resolved. |
|
*/ |
|
if (IS_ENABLED(CONFIG_XTENSA)) { |
|
elf_shdr_t *tgt; |
|
|
|
if (strcmp(name, ".rela.plt") == 0 || |
|
strcmp(name, ".rela.dyn") == 0) { |
|
tgt = NULL; |
|
} else { |
|
/* |
|
* Entries in .rel.X and .rela.X sections describe references in |
|
* section .X to local or global symbols. They point to entries |
|
* in the symbol table, describing respective symbols |
|
*/ |
|
tgt = ext->sect_hdrs + shdr->sh_info; |
|
} |
|
|
|
llext_link_plt(ldr, ext, shdr, ldr_parm, tgt); |
|
continue; |
|
} |
|
|
|
if (!(ext->sect_hdrs[shdr->sh_info].sh_flags & SHF_ALLOC)) { |
|
/* ignore relocations acting on volatile (debug) sections */ |
|
continue; |
|
} |
|
|
|
LOG_DBG("relocation section %s (%d) acting on section %d has %zd relocations", |
|
name, i, shdr->sh_info, (size_t)rel_cnt); |
|
|
|
enum llext_mem mem_idx = ldr->sect_map[shdr->sh_info].mem_idx; |
|
|
|
if (mem_idx == LLEXT_MEM_COUNT) { |
|
LOG_ERR("Section %d not loaded in any memory region", shdr->sh_info); |
|
return -ENOEXEC; |
|
} |
|
|
|
sect_base = (uintptr_t)llext_loaded_sect_ptr(ldr, ext, shdr->sh_info); |
|
|
|
for (int j = 0; j < rel_cnt; j++) { |
|
/* get each relocation entry */ |
|
ret = llext_seek(ldr, shdr->sh_offset + j * shdr->sh_entsize); |
|
if (ret != 0) { |
|
return ret; |
|
} |
|
|
|
ret = llext_read(ldr, &rel, shdr->sh_entsize); |
|
if (ret != 0) { |
|
return ret; |
|
} |
|
|
|
/* get corresponding symbol */ |
|
ret = llext_seek(ldr, ldr->sects[LLEXT_MEM_SYMTAB].sh_offset |
|
+ ELF_R_SYM(rel.r_info) * sizeof(elf_sym_t)); |
|
if (ret != 0) { |
|
return ret; |
|
} |
|
|
|
ret = llext_read(ldr, &sym, sizeof(elf_sym_t)); |
|
if (ret != 0) { |
|
return ret; |
|
} |
|
|
|
name = llext_string(ldr, ext, LLEXT_MEM_STRTAB, sym.st_name); |
|
|
|
LOG_DBG("relocation %d:%d info 0x%zx (type %zd, sym %zd) offset %zd " |
|
"sym_name %s sym_type %d sym_bind %d sym_ndx %d", |
|
i, j, (size_t)rel.r_info, (size_t)ELF_R_TYPE(rel.r_info), |
|
(size_t)ELF_R_SYM(rel.r_info), (size_t)rel.r_offset, |
|
name, ELF_ST_TYPE(sym.st_info), |
|
ELF_ST_BIND(sym.st_info), sym.st_shndx); |
|
|
|
uintptr_t link_addr, op_loc; |
|
|
|
op_loc = sect_base + rel.r_offset; |
|
|
|
if (ELF_R_SYM(rel.r_info) == 0) { |
|
/* no symbol ex: R_ARM_V4BX relocation, R_ARM_RELATIVE */ |
|
link_addr = 0; |
|
} else if (sym.st_shndx == SHN_UNDEF) { |
|
/* If symbol is undefined, then we need to look it up */ |
|
link_addr = (uintptr_t)llext_find_sym(NULL, |
|
SYM_NAME_OR_SLID(name, sym.st_value)); |
|
|
|
if (link_addr == 0) { |
|
/* Try loaded tables */ |
|
struct llext *dep; |
|
|
|
link_addr = (uintptr_t)llext_find_extension_sym(name, &dep); |
|
if (link_addr) { |
|
llext_dependency_add(ext, dep); |
|
} |
|
} |
|
|
|
if (link_addr == 0) { |
|
LOG_ERR("Undefined symbol with no entry in " |
|
"symbol table %s, offset %zd, link section %d", |
|
name, (size_t)rel.r_offset, shdr->sh_link); |
|
return -ENODATA; |
|
} |
|
|
|
LOG_INF("found symbol %s at 0x%lx", name, link_addr); |
|
} else if (sym.st_shndx == SHN_ABS) { |
|
/* Absolute symbol */ |
|
link_addr = sym.st_value; |
|
} else if ((sym.st_shndx < ldr->hdr.e_shnum) && |
|
!IN_RANGE(sym.st_shndx, SHN_LORESERVE, SHN_HIRESERVE)) { |
|
/* This check rejects all relocations whose target symbol |
|
* has a section index higher than the maximum possible |
|
* in this ELF file, or belongs in the reserved range: |
|
* they will be caught by the `else` below and cause an |
|
* error to be returned. This aborts the LLEXT's loading |
|
* and prevents execution of improperly relocated code, |
|
* which is dangerous. |
|
* |
|
* Note that the unsupported SHN_COMMON section is rejected |
|
* as part of this check. Also note that SHN_ABS would be |
|
* rejected as well, but we want to handle it properly: |
|
* for this reason, this check must come AFTER handling |
|
* the case where the symbol's section index is SHN_ABS! |
|
* |
|
* |
|
* For regular symbols, the link address is obtained by |
|
* adding st_value to the start address of the section |
|
* in which the target symbol resides. |
|
*/ |
|
link_addr = (uintptr_t)llext_loaded_sect_ptr(ldr, ext, |
|
sym.st_shndx) |
|
+ sym.st_value; |
|
} else { |
|
LOG_ERR("rela section %d, entry %d: cannot apply relocation: " |
|
"target symbol has unexpected section index %d (0x%X)", |
|
i, j, sym.st_shndx, sym.st_shndx); |
|
return -ENOEXEC; |
|
} |
|
|
|
LOG_INF("writing relocation symbol %s type %zd sym %zd at addr 0x%lx " |
|
"addr 0x%lx", |
|
name, (size_t)ELF_R_TYPE(rel.r_info), (size_t)ELF_R_SYM(rel.r_info), |
|
op_loc, link_addr); |
|
|
|
/* relocation */ |
|
ret = arch_elf_relocate(&rel, op_loc, link_addr, name, |
|
(uintptr_t)ext->mem[LLEXT_MEM_TEXT]); |
|
if (ret != 0) { |
|
return ret; |
|
} |
|
} |
|
} |
|
|
|
#ifdef CONFIG_CACHE_MANAGEMENT |
|
/* Make sure changes to memory regions are flushed to RAM */ |
|
for (i = 0; i < LLEXT_MEM_COUNT; ++i) { |
|
if (ext->mem[i]) { |
|
sys_cache_data_flush_range(ext->mem[i], ext->mem_size[i]); |
|
sys_cache_instr_invd_range(ext->mem[i], ext->mem_size[i]); |
|
} |
|
} |
|
|
|
/* Detached section caches should be synchronized in place */ |
|
if (ldr_parm->section_detached) { |
|
for (i = 0; i < ext->sect_cnt; ++i) { |
|
elf_shdr_t *shdr = ext->sect_hdrs + i; |
|
|
|
if (ldr_parm->section_detached(shdr)) { |
|
void *base = llext_peek(ldr, shdr->sh_offset); |
|
|
|
sys_cache_data_flush_range(base, shdr->sh_size); |
|
sys_cache_instr_invd_range(base, shdr->sh_size); |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
return 0; |
|
}
|
|
|