Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

569 lines
16 KiB

/*
* Copyright (c) 2024 Charles Dias <charlesdias.cd@outlook.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT st_stm32_dcmi
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/irq.h>
#include <zephyr/logging/log.h>
#include <zephyr/drivers/video.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/dma.h>
#include <zephyr/drivers/dma/dma_stm32.h>
#include <stm32_ll_dma.h>
#include "video_device.h"
LOG_MODULE_REGISTER(video_stm32_dcmi, CONFIG_VIDEO_LOG_LEVEL);
#if CONFIG_VIDEO_BUFFER_POOL_NUM_MAX < 2
#error "The minimum required number of buffers for video_stm32 is 2"
#endif
typedef void (*irq_config_func_t)(const struct device *dev);
struct stream {
DMA_TypeDef *reg;
const struct device *dma_dev;
uint32_t channel;
struct dma_config cfg;
};
struct video_stm32_dcmi_data {
const struct device *dev;
DCMI_HandleTypeDef hdcmi;
struct video_format fmt;
int capture_rate;
struct k_fifo fifo_in;
struct k_fifo fifo_out;
struct video_buffer *vbuf;
};
struct video_stm32_dcmi_config {
struct stm32_pclken pclken;
irq_config_func_t irq_config;
const struct pinctrl_dev_config *pctrl;
const struct device *sensor_dev;
const struct stream dma;
};
void HAL_DCMI_ErrorCallback(DCMI_HandleTypeDef *hdcmi)
{
LOG_WRN("%s", __func__);
}
void HAL_DCMI_FrameEventCallback(DCMI_HandleTypeDef *hdcmi)
{
struct video_stm32_dcmi_data *dev_data =
CONTAINER_OF(hdcmi, struct video_stm32_dcmi_data, hdcmi);
struct video_buffer *vbuf;
HAL_DCMI_Suspend(hdcmi);
vbuf = k_fifo_get(&dev_data->fifo_in, K_NO_WAIT);
if (vbuf == NULL) {
LOG_DBG("Failed to get buffer from fifo");
goto resume;
}
vbuf->timestamp = k_uptime_get_32();
memcpy(vbuf->buffer, dev_data->vbuf->buffer, vbuf->bytesused);
k_fifo_put(&dev_data->fifo_out, vbuf);
resume:
HAL_DCMI_Resume(hdcmi);
}
static void stm32_dcmi_isr(const struct device *dev)
{
struct video_stm32_dcmi_data *data = dev->data;
HAL_DCMI_IRQHandler(&data->hdcmi);
}
static void dcmi_dma_callback(const struct device *dev, void *arg, uint32_t channel, int status)
{
DMA_HandleTypeDef *hdma = arg;
ARG_UNUSED(dev);
if (status < 0) {
LOG_ERR("DMA callback error with channel %d.", channel);
}
HAL_DMA_IRQHandler(hdma);
}
void HAL_DMA_ErrorCallback(DMA_HandleTypeDef *hdma)
{
LOG_WRN("%s", __func__);
}
static int stm32_dma_init(const struct device *dev)
{
struct video_stm32_dcmi_data *data = dev->data;
const struct video_stm32_dcmi_config *config = dev->config;
int ret;
/* Check if the DMA device is ready */
if (!device_is_ready(config->dma.dma_dev)) {
LOG_ERR("%s DMA device not ready", config->dma.dma_dev->name);
return -ENODEV;
}
/*
* DMA configuration
* Due to use of DMA HAL API in current driver,
* both HAL and Zephyr DMA drivers should be configured.
* The required configuration for Zephyr DMA driver should only provide
* the minimum information to inform the DMA slot will be in used and
* how to route callbacks.
*/
struct dma_config dma_cfg = config->dma.cfg;
static DMA_HandleTypeDef hdma;
/* Proceed to the minimum Zephyr DMA driver init */
dma_cfg.user_data = &hdma;
/* HACK: This field is used to inform driver that it is overridden */
dma_cfg.linked_channel = STM32_DMA_HAL_OVERRIDE;
/* Because of the STREAM OFFSET, the DMA channel given here is from 1 - 8 */
ret = dma_config(config->dma.dma_dev,
config->dma.channel + STM32_DMA_STREAM_OFFSET, &dma_cfg);
if (ret != 0) {
LOG_ERR("Failed to configure DMA channel %d",
config->dma.channel + STM32_DMA_STREAM_OFFSET);
return ret;
}
/*** Configure the DMA ***/
/* Set the parameters to be configured */
hdma.Init.Request = DMA_REQUEST_DCMI;
hdma.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma.Init.PeriphInc = DMA_PINC_DISABLE;
hdma.Init.MemInc = DMA_MINC_ENABLE;
hdma.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
hdma.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
hdma.Init.Mode = DMA_CIRCULAR;
hdma.Init.Priority = DMA_PRIORITY_HIGH;
#if defined(CONFIG_SOC_SERIES_STM32F7X) || defined(CONFIG_SOC_SERIES_STM32H7X)
hdma.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
#endif
#if defined(CONFIG_SOC_SERIES_STM32F7X) || defined(CONFIG_SOC_SERIES_STM32H7X)
hdma.Instance = __LL_DMA_GET_STREAM_INSTANCE(config->dma.reg,
config->dma.channel);
#elif defined(CONFIG_SOC_SERIES_STM32L4X)
hdma.Instance = __LL_DMA_GET_CHANNEL_INSTANCE(config->dma.reg, config->dma.channel);
#endif
/* Initialize DMA HAL */
__HAL_LINKDMA(&data->hdcmi, DMA_Handle, hdma);
if (HAL_DMA_Init(&hdma) != HAL_OK) {
LOG_ERR("DCMI DMA Init failed");
return -EIO;
}
return 0;
}
static int stm32_dcmi_enable_clock(const struct device *dev)
{
const struct video_stm32_dcmi_config *config = dev->config;
const struct device *dcmi_clock = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
if (!device_is_ready(dcmi_clock)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
/* Turn on DCMI peripheral clock */
return clock_control_on(dcmi_clock, (clock_control_subsys_t *)&config->pclken);
}
static int video_stm32_dcmi_set_fmt(const struct device *dev, struct video_format *fmt)
{
const struct video_stm32_dcmi_config *config = dev->config;
struct video_stm32_dcmi_data *data = dev->data;
int ret;
ret = video_set_format(config->sensor_dev, fmt);
if (ret < 0) {
return ret;
}
fmt->pitch = fmt->width * video_bits_per_pixel(fmt->pixelformat) / BITS_PER_BYTE;
data->fmt = *fmt;
return 0;
}
static int video_stm32_dcmi_get_fmt(const struct device *dev, struct video_format *fmt)
{
struct video_stm32_dcmi_data *data = dev->data;
const struct video_stm32_dcmi_config *config = dev->config;
int ret;
/* Align DCMI format with the one provided by the sensor */
ret = video_get_format(config->sensor_dev, fmt);
if (ret < 0) {
return ret;
}
fmt->pitch = fmt->width * video_bits_per_pixel(fmt->pixelformat) / BITS_PER_BYTE;
data->fmt = *fmt;
return 0;
}
#define STM32_DCMI_GET_CAPTURE_RATE(capture_rate) \
((capture_rate) == 1 ? DCMI_CR_ALL_FRAME : \
(capture_rate) == 2 ? DCMI_CR_ALTERNATE_2_FRAME : \
(capture_rate) == 4 ? DCMI_CR_ALTERNATE_4_FRAME : \
DCMI_CR_ALL_FRAME)
static int video_stm32_dcmi_set_stream(const struct device *dev, bool enable,
enum video_buf_type type)
{
struct video_stm32_dcmi_data *data = dev->data;
const struct video_stm32_dcmi_config *config = dev->config;
int err;
if (!enable) {
err = video_stream_stop(config->sensor_dev, type);
if (err < 0) {
return err;
}
err = HAL_DCMI_Stop(&data->hdcmi);
if (err != HAL_OK) {
LOG_ERR("Failed to stop DCMI");
return -EIO;
}
/* Release the video buffer allocated when start streaming */
k_fifo_put(&data->fifo_in, data->vbuf);
return 0;
}
data->vbuf = k_fifo_get(&data->fifo_in, K_NO_WAIT);
if (data->vbuf == NULL) {
LOG_ERR("Failed to dequeue a DCMI buffer.");
return -ENOMEM;
}
/* Set the frame control */
data->hdcmi.Instance->CR &= ~(DCMI_CR_FCRC_0 | DCMI_CR_FCRC_1);
data->hdcmi.Instance->CR |= STM32_DCMI_GET_CAPTURE_RATE(data->capture_rate);
err = HAL_DCMI_Start_DMA(&data->hdcmi, DCMI_MODE_CONTINUOUS,
(uint32_t)data->vbuf->buffer, data->vbuf->bytesused / 4);
if (err != HAL_OK) {
LOG_ERR("Failed to start DCMI DMA");
return -EIO;
}
return video_stream_start(config->sensor_dev, type);
}
static int video_stm32_dcmi_enqueue(const struct device *dev, struct video_buffer *vbuf)
{
struct video_stm32_dcmi_data *data = dev->data;
const uint32_t buffer_size = data->fmt.pitch * data->fmt.height;
if (buffer_size > vbuf->size) {
return -EINVAL;
}
vbuf->bytesused = buffer_size;
vbuf->line_offset = 0;
k_fifo_put(&data->fifo_in, vbuf);
return 0;
}
static int video_stm32_dcmi_dequeue(const struct device *dev, struct video_buffer **vbuf,
k_timeout_t timeout)
{
struct video_stm32_dcmi_data *data = dev->data;
*vbuf = k_fifo_get(&data->fifo_out, timeout);
if (*vbuf == NULL) {
return -EAGAIN;
}
return 0;
}
static int video_stm32_dcmi_get_caps(const struct device *dev, struct video_caps *caps)
{
const struct video_stm32_dcmi_config *config = dev->config;
/* DCMI produces full frames */
caps->min_line_count = caps->max_line_count = LINE_COUNT_HEIGHT;
/* Forward the message to the sensor device */
return video_get_caps(config->sensor_dev, caps);
}
static int video_stm32_dcmi_enum_frmival(const struct device *dev, struct video_frmival_enum *fie)
{
const struct video_stm32_dcmi_config *config = dev->config;
int ret;
ret = video_enum_frmival(config->sensor_dev, fie);
if (ret < 0) {
return ret;
}
/* Adapt the interval in order to report the frame drop capabilities */
if (fie->type == VIDEO_FRMIVAL_TYPE_DISCRETE) {
struct video_frmival discrete = fie->discrete;
fie->type = VIDEO_FRMIVAL_TYPE_STEPWISE;
fie->stepwise.max = discrete;
fie->stepwise.min.denominator = discrete.denominator;
fie->stepwise.min.numerator = discrete.numerator * 4;
fie->stepwise.step.denominator = discrete.denominator;
fie->stepwise.step.numerator = discrete.numerator * 2;
} else {
fie->stepwise.min.numerator *= 4;
fie->stepwise.step.numerator *= 2;
}
return 0;
}
#define STM32_DCMI_MAX_FRAME_DROP 4
static int video_stm32_dcmi_set_frmival(const struct device *dev, struct video_frmival *frmival)
{
const struct video_stm32_dcmi_config *config = dev->config;
struct video_stm32_dcmi_data *data = dev->data;
struct video_frmival_enum fie = {
.format = &data->fmt,
};
struct video_frmival best_sensor_frmival;
uint64_t best_diff_nsec = INT32_MAX;
uint64_t diff_nsec = 0, a, b;
int best_capture_rate = 1;
/*
* Try to figure out a frameinterval setting allow to reach as close as
* possible to the request. At first without relying on DCMI frame control,
* then enabling it
*/
for (int capture_rate = 1; capture_rate <= STM32_DCMI_MAX_FRAME_DROP; capture_rate *= 2) {
/*
* Take into consideration the drop done by the DCMI hence multiply
* denominator by the rate introduced by the DCMI
*/
fie.discrete.numerator = frmival->numerator;
fie.discrete.denominator = frmival->denominator * capture_rate;
a = video_frmival_nsec(&fie.discrete);
video_closest_frmival(config->sensor_dev, &fie);
b = video_frmival_nsec(&fie.discrete);
diff_nsec = a > b ? a - b : b - a;
if (diff_nsec < best_diff_nsec) {
best_diff_nsec = diff_nsec;
best_sensor_frmival = fie.discrete;
best_capture_rate = capture_rate;
}
if (diff_nsec == 0) {
break;
}
}
/*
* Give back the achieved frame interval achieved, ensuring to take into
* consideration the DCMI frame control
*/
frmival->numerator = best_sensor_frmival.numerator * best_capture_rate;
frmival->denominator = best_sensor_frmival.denominator;
data->capture_rate = best_capture_rate;
return video_set_frmival(config->sensor_dev, &best_sensor_frmival);
}
static int video_stm32_dcmi_get_frmival(const struct device *dev, struct video_frmival *frmival)
{
const struct video_stm32_dcmi_config *config = dev->config;
struct video_stm32_dcmi_data *data = dev->data;
int ret;
ret = video_get_frmival(config->sensor_dev, frmival);
if (ret < 0) {
return ret;
}
frmival->numerator *= data->capture_rate;
return 0;
}
static DEVICE_API(video, video_stm32_dcmi_driver_api) = {
.set_format = video_stm32_dcmi_set_fmt,
.get_format = video_stm32_dcmi_get_fmt,
.set_stream = video_stm32_dcmi_set_stream,
.enqueue = video_stm32_dcmi_enqueue,
.dequeue = video_stm32_dcmi_dequeue,
.get_caps = video_stm32_dcmi_get_caps,
.enum_frmival = video_stm32_dcmi_enum_frmival,
.set_frmival = video_stm32_dcmi_set_frmival,
.get_frmival = video_stm32_dcmi_get_frmival,
};
static void video_stm32_dcmi_irq_config_func(const struct device *dev)
{
IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority),
stm32_dcmi_isr, DEVICE_DT_INST_GET(0), 0);
irq_enable(DT_INST_IRQN(0));
}
#define DCMI_DMA_CHANNEL_INIT(index, src_dev, dest_dev) \
.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_IDX(index, 0)), \
.channel = DT_INST_DMAS_CELL_BY_IDX(index, 0, channel), \
.reg = (DMA_TypeDef *)DT_REG_ADDR( \
DT_PHANDLE_BY_IDX(DT_DRV_INST(0), dmas, 0)), \
.cfg = { \
.dma_slot = STM32_DMA_SLOT_BY_IDX(index, 0, slot), \
.channel_direction = STM32_DMA_CONFIG_DIRECTION( \
STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)), \
.source_data_size = STM32_DMA_CONFIG_##src_dev##_DATA_SIZE( \
STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)), \
.dest_data_size = STM32_DMA_CONFIG_##dest_dev##_DATA_SIZE( \
STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)), \
.source_burst_length = 1, /* SINGLE transfer */ \
.dest_burst_length = 1, /* SINGLE transfer */ \
.channel_priority = STM32_DMA_CONFIG_PRIORITY( \
STM32_DMA_CHANNEL_CONFIG_BY_IDX(index, 0)), \
.dma_callback = dcmi_dma_callback, \
}, \
PINCTRL_DT_INST_DEFINE(0);
#define STM32_DCMI_GET_BUS_WIDTH(bus_width) \
((bus_width) == 8 ? DCMI_EXTEND_DATA_8B : \
(bus_width) == 10 ? DCMI_EXTEND_DATA_10B : \
(bus_width) == 12 ? DCMI_EXTEND_DATA_12B : \
(bus_width) == 14 ? DCMI_EXTEND_DATA_14B : \
DCMI_EXTEND_DATA_8B)
#define DCMI_DMA_CHANNEL(id, src, dest) \
.dma = { \
COND_CODE_1(DT_INST_DMAS_HAS_IDX(id, 0), \
(DCMI_DMA_CHANNEL_INIT(id, src, dest)), \
(NULL)) \
},
static struct video_stm32_dcmi_data video_stm32_dcmi_data_0 = {
.hdcmi = {
.Instance = (DCMI_TypeDef *) DT_INST_REG_ADDR(0),
.Init = {
.SynchroMode = DCMI_SYNCHRO_HARDWARE,
.PCKPolarity = DT_PROP_OR(DT_INST_ENDPOINT_BY_ID(0, 0, 0),
pclk_sample, 0) ?
DCMI_PCKPOLARITY_RISING :
DCMI_PCKPOLARITY_FALLING,
.HSPolarity = DT_PROP_OR(DT_INST_ENDPOINT_BY_ID(0, 0, 0),
hsync_active, 0) ?
DCMI_HSPOLARITY_HIGH : DCMI_HSPOLARITY_LOW,
.VSPolarity = DT_PROP_OR(DT_INST_ENDPOINT_BY_ID(0, 0, 0),
vsync_active, 0) ?
DCMI_VSPOLARITY_HIGH : DCMI_VSPOLARITY_LOW,
.ExtendedDataMode = STM32_DCMI_GET_BUS_WIDTH(
DT_PROP_OR(DT_INST_ENDPOINT_BY_ID(0, 0, 0),
bus_width, 8)),
.JPEGMode = DCMI_JPEG_DISABLE,
.ByteSelectMode = DCMI_BSM_ALL,
.ByteSelectStart = DCMI_OEBS_ODD,
.LineSelectMode = DCMI_LSM_ALL,
.LineSelectStart = DCMI_OELS_ODD,
},
},
};
#define SOURCE_DEV(n) DEVICE_DT_GET(DT_NODE_REMOTE_DEVICE(DT_INST_ENDPOINT_BY_ID(n, 0, 0)))
static const struct video_stm32_dcmi_config video_stm32_dcmi_config_0 = {
.pclken = {
.enr = DT_INST_CLOCKS_CELL(0, bits),
.bus = DT_INST_CLOCKS_CELL(0, bus)
},
.irq_config = video_stm32_dcmi_irq_config_func,
.pctrl = PINCTRL_DT_INST_DEV_CONFIG_GET(0),
.sensor_dev = SOURCE_DEV(0),
DCMI_DMA_CHANNEL(0, PERIPHERAL, MEMORY)
};
static int video_stm32_dcmi_init(const struct device *dev)
{
const struct video_stm32_dcmi_config *config = dev->config;
struct video_stm32_dcmi_data *data = dev->data;
int err;
/* Configure DT provided pins */
err = pinctrl_apply_state(config->pctrl, PINCTRL_STATE_DEFAULT);
if (err < 0) {
LOG_ERR("pinctrl setup failed. Error %d.", err);
return err;
}
/* Initialize DMA peripheral */
err = stm32_dma_init(dev);
if (err < 0) {
LOG_ERR("DMA initialization failed.");
return err;
}
/* Enable DCMI clock */
err = stm32_dcmi_enable_clock(dev);
if (err < 0) {
LOG_ERR("Clock enabling failed.");
return err;
}
data->dev = dev;
k_fifo_init(&data->fifo_in);
k_fifo_init(&data->fifo_out);
data->capture_rate = 1;
/* Run IRQ init */
config->irq_config(dev);
/* Initialize DCMI peripheral */
err = HAL_DCMI_Init(&data->hdcmi);
if (err != HAL_OK) {
LOG_ERR("DCMI initialization failed.");
return -EIO;
}
k_sleep(K_MSEC(100));
LOG_DBG("%s inited", dev->name);
return 0;
}
DEVICE_DT_INST_DEFINE(0, &video_stm32_dcmi_init,
NULL, &video_stm32_dcmi_data_0,
&video_stm32_dcmi_config_0,
POST_KERNEL, CONFIG_VIDEO_INIT_PRIORITY,
&video_stm32_dcmi_driver_api);
VIDEO_DEVICE_DEFINE(dcmi, DEVICE_DT_INST_GET(0), SOURCE_DEV(0));