You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
895 lines
23 KiB
895 lines
23 KiB
/* |
|
* Copyright (c) 2017-2022 Linaro Limited. |
|
* Copyright (c) 2017 RnDity Sp. z o.o. |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
#include <soc.h> |
|
#include <stm32_ll_bus.h> |
|
#include <stm32_ll_pwr.h> |
|
#include <stm32_ll_rcc.h> |
|
#include <stm32_ll_system.h> |
|
#include <stm32_ll_utils.h> |
|
#include <zephyr/arch/cpu.h> |
|
#include <zephyr/drivers/clock_control.h> |
|
#include <zephyr/sys/util.h> |
|
#include <zephyr/sys/__assert.h> |
|
#include <zephyr/drivers/clock_control/stm32_clock_control.h> |
|
#include "clock_stm32_ll_common.h" |
|
#include "clock_stm32_ll_mco.h" |
|
#include "stm32_hsem.h" |
|
|
|
/* Macros to fill up prescaler values */ |
|
#define z_hsi_divider(v) LL_RCC_HSI_DIV_ ## v |
|
#define hsi_divider(v) z_hsi_divider(v) |
|
|
|
#define fn_ahb_prescaler(v) LL_RCC_SYSCLK_DIV_ ## v |
|
#define ahb_prescaler(v) fn_ahb_prescaler(v) |
|
|
|
#define fn_apb1_prescaler(v) LL_RCC_APB1_DIV_ ## v |
|
#define apb1_prescaler(v) fn_apb1_prescaler(v) |
|
|
|
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), apb2_prescaler) |
|
#define fn_apb2_prescaler(v) LL_RCC_APB2_DIV_ ## v |
|
#define apb2_prescaler(v) fn_apb2_prescaler(v) |
|
#endif |
|
|
|
#if defined(RCC_CFGR_ADCPRE) |
|
#define z_adc12_prescaler(v) LL_RCC_ADC_CLKSRC_PCLK2_DIV_ ## v |
|
#define adc12_prescaler(v) z_adc12_prescaler(v) |
|
#elif defined(RCC_CFGR2_ADC1PRES) |
|
#define z_adc12_prescaler(v) \ |
|
COND_CODE_1(IS_EQ(v, 0), \ |
|
LL_RCC_ADC1_CLKSRC_HCLK, \ |
|
LL_RCC_ADC1_CLKSRC_PLL_DIV_ ## v) |
|
#define adc12_prescaler(v) z_adc12_prescaler(v) |
|
#else |
|
#define z_adc12_prescaler(v) \ |
|
COND_CODE_1(IS_EQ(v, 0), \ |
|
(LL_RCC_ADC12_CLKSRC_HCLK), \ |
|
(LL_RCC_ADC12_CLKSRC_PLL_DIV_ ## v)) |
|
#define adc12_prescaler(v) z_adc12_prescaler(v) |
|
#define z_adc34_prescaler(v) \ |
|
COND_CODE_1(IS_EQ(v, 0), \ |
|
(LL_RCC_ADC34_CLKSRC_HCLK), \ |
|
(LL_RCC_ADC34_CLKSRC_PLL_DIV_ ## v)) |
|
#define adc34_prescaler(v) z_adc34_prescaler(v) |
|
#endif |
|
|
|
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb4_prescaler) |
|
#define RCC_CALC_FLASH_FREQ __LL_RCC_CALC_HCLK4_FREQ |
|
#define GET_CURRENT_FLASH_PRESCALER LL_RCC_GetAHB4Prescaler |
|
#elif DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb3_prescaler) |
|
#define RCC_CALC_FLASH_FREQ __LL_RCC_CALC_HCLK3_FREQ |
|
#define GET_CURRENT_FLASH_PRESCALER LL_RCC_GetAHB3Prescaler |
|
#else |
|
#define RCC_CALC_FLASH_FREQ __LL_RCC_CALC_HCLK_FREQ |
|
#define GET_CURRENT_FLASH_PRESCALER LL_RCC_GetAHBPrescaler |
|
#endif |
|
|
|
#if defined(RCC_PLLCFGR_PLLPEN) |
|
#define RCC_PLLP_ENABLE() SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLPEN) |
|
#else |
|
#define RCC_PLLP_ENABLE() |
|
#endif /* RCC_PLLCFGR_PLLPEN */ |
|
#if defined(RCC_PLLCFGR_PLLQEN) |
|
#define RCC_PLLQ_ENABLE() SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQEN) |
|
#else |
|
#define RCC_PLLQ_ENABLE() |
|
#endif /* RCC_PLLCFGR_PLLQEN */ |
|
|
|
/** |
|
* @brief Return frequency for pll with 2 dividers and a multiplier |
|
*/ |
|
__unused |
|
static uint32_t get_pll_div_frequency(uint32_t pllsrc_freq, |
|
int pllm_div, |
|
int plln_mul, |
|
int pllout_div) |
|
{ |
|
__ASSERT_NO_MSG(pllm_div && pllout_div); |
|
|
|
return pllsrc_freq / pllm_div * plln_mul / pllout_div; |
|
} |
|
|
|
static uint32_t get_bus_clock(uint32_t clock, uint32_t prescaler) |
|
{ |
|
return clock / prescaler; |
|
} |
|
|
|
__unused |
|
static uint32_t get_msi_frequency(void) |
|
{ |
|
#if defined(STM32_MSI_ENABLED) |
|
#if !defined(LL_RCC_MSIRANGESEL_RUN) |
|
return __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); |
|
#else |
|
return __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGESEL_RUN, |
|
LL_RCC_MSI_GetRange()); |
|
#endif |
|
#endif |
|
return 0; |
|
} |
|
|
|
/** @brief Verifies clock is part of active clock configuration */ |
|
int enabled_clock(uint32_t src_clk) |
|
{ |
|
int r = 0; |
|
|
|
switch (src_clk) { |
|
#if defined(STM32_SRC_SYSCLK) |
|
case STM32_SRC_SYSCLK: |
|
break; |
|
#endif /* STM32_SRC_SYSCLK */ |
|
#if defined(STM32_SRC_PCLK) |
|
case STM32_SRC_PCLK: |
|
break; |
|
#endif /* STM32_SRC_PCLK */ |
|
#if defined(STM32_SRC_HSE) |
|
case STM32_SRC_HSE: |
|
if (!IS_ENABLED(STM32_HSE_ENABLED)) { |
|
r = -ENOTSUP; |
|
} |
|
break; |
|
#endif /* STM32_SRC_HSE */ |
|
#if defined(STM32_SRC_EXT_HSE) |
|
case STM32_SRC_EXT_HSE: |
|
/* EXT_HSE is the raw OSC_IN signal, so it is always |
|
* available, regardless of the clocks configuration. |
|
*/ |
|
break; |
|
#endif /* STM32_SRC_HSE */ |
|
#if defined(STM32_SRC_HSI) |
|
case STM32_SRC_HSI: |
|
if (!IS_ENABLED(STM32_HSI_ENABLED)) { |
|
r = -ENOTSUP; |
|
} |
|
break; |
|
#endif /* STM32_SRC_HSI */ |
|
#if defined(STM32_SRC_LSE) |
|
case STM32_SRC_LSE: |
|
if (!IS_ENABLED(STM32_LSE_ENABLED)) { |
|
r = -ENOTSUP; |
|
} |
|
break; |
|
#endif /* STM32_SRC_LSE */ |
|
#if defined(STM32_SRC_LSI) |
|
case STM32_SRC_LSI: |
|
if (!IS_ENABLED(STM32_LSI_ENABLED)) { |
|
r = -ENOTSUP; |
|
} |
|
break; |
|
#endif /* STM32_SRC_LSI */ |
|
#if defined(STM32_SRC_HSI14) |
|
case STM32_SRC_HSI14: |
|
if (!IS_ENABLED(STM32_HSI14_ENABLED)) { |
|
r = -ENOTSUP; |
|
} |
|
break; |
|
#endif /* STM32_SRC_HSI14 */ |
|
#if defined(STM32_SRC_HSI48) |
|
case STM32_SRC_HSI48: |
|
if (!IS_ENABLED(STM32_HSI48_ENABLED)) { |
|
r = -ENOTSUP; |
|
} |
|
break; |
|
#endif /* STM32_SRC_HSI48 */ |
|
#if defined(STM32_SRC_MSI) |
|
case STM32_SRC_MSI: |
|
if (!IS_ENABLED(STM32_MSI_ENABLED)) { |
|
r = -ENOTSUP; |
|
} |
|
break; |
|
#endif /* STM32_SRC_MSI */ |
|
#if defined(STM32_SRC_PLLCLK) |
|
case STM32_SRC_PLLCLK: |
|
if (!IS_ENABLED(STM32_PLL_ENABLED)) { |
|
r = -ENOTSUP; |
|
} |
|
break; |
|
#endif /* STM32_SRC_PLLCLK */ |
|
#if defined(STM32_SRC_PLL_P) |
|
case STM32_SRC_PLL_P: |
|
if (!IS_ENABLED(STM32_PLL_P_ENABLED)) { |
|
r = -ENOTSUP; |
|
} |
|
break; |
|
#endif /* STM32_SRC_PLL_P */ |
|
#if defined(STM32_SRC_PLL_Q) |
|
case STM32_SRC_PLL_Q: |
|
if (!IS_ENABLED(STM32_PLL_Q_ENABLED)) { |
|
r = -ENOTSUP; |
|
} |
|
break; |
|
#endif /* STM32_SRC_PLL_Q */ |
|
#if defined(STM32_SRC_PLL_R) |
|
case STM32_SRC_PLL_R: |
|
if (!IS_ENABLED(STM32_PLL_R_ENABLED)) { |
|
r = -ENOTSUP; |
|
} |
|
break; |
|
#endif /* STM32_SRC_PLL_R */ |
|
#if defined(STM32_SRC_PLLI2S_R) |
|
case STM32_SRC_PLLI2S_R: |
|
if (!IS_ENABLED(STM32_PLLI2S_R_ENABLED)) { |
|
r = -ENOTSUP; |
|
} |
|
break; |
|
#endif /* STM32_SRC_PLLI2S_R */ |
|
#if defined(STM32_SRC_PLL2CLK) |
|
case STM32_SRC_PLL2CLK: |
|
if (!IS_ENABLED(STM32_PLL2_ENABLED)) { |
|
r = -ENOTSUP; |
|
} |
|
break; |
|
#endif |
|
#if defined(STM32_SRC_PLL3CLK) |
|
case STM32_SRC_PLL3CLK: |
|
if (!IS_ENABLED(STM32_PLL3_ENABLED)) { |
|
r = -ENOTSUP; |
|
} |
|
break; |
|
#endif |
|
default: |
|
return -ENOTSUP; |
|
} |
|
|
|
return r; |
|
} |
|
|
|
static inline int stm32_clock_control_on(const struct device *dev, |
|
clock_control_subsys_t sub_system) |
|
{ |
|
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system); |
|
volatile int temp; |
|
|
|
ARG_UNUSED(dev); |
|
|
|
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) { |
|
/* Attempt to change a wrong periph clock bit */ |
|
return -ENOTSUP; |
|
} |
|
|
|
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus, |
|
pclken->enr); |
|
/* Delay after enabling the clock, to allow it to become active. |
|
* See (for example) RM0440 7.2.17 |
|
*/ |
|
temp = sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus); |
|
UNUSED(temp); |
|
|
|
return 0; |
|
} |
|
|
|
static inline int stm32_clock_control_off(const struct device *dev, |
|
clock_control_subsys_t sub_system) |
|
{ |
|
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system); |
|
|
|
ARG_UNUSED(dev); |
|
|
|
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) { |
|
/* Attempt to toggle a wrong periph clock bit */ |
|
return -ENOTSUP; |
|
} |
|
|
|
sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus, |
|
pclken->enr); |
|
|
|
return 0; |
|
} |
|
|
|
static inline int stm32_clock_control_configure(const struct device *dev, |
|
clock_control_subsys_t sub_system, |
|
void *data) |
|
{ |
|
#if defined(STM32_SRC_SYSCLK) |
|
/* At least one alt src clock available */ |
|
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system); |
|
int err; |
|
|
|
ARG_UNUSED(dev); |
|
ARG_UNUSED(data); |
|
|
|
err = enabled_clock(pclken->bus); |
|
if (err < 0) { |
|
/* Attempt to configure a src clock not available or not valid */ |
|
return err; |
|
} |
|
|
|
if (pclken->enr == NO_SEL) { |
|
/* Domain clock is fixed. Nothing to set. Exit */ |
|
return 0; |
|
} |
|
|
|
sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr), |
|
STM32_CLOCK_MASK_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr)); |
|
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr), |
|
STM32_CLOCK_VAL_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr)); |
|
|
|
return 0; |
|
#else |
|
/* No src clock available: Not supported */ |
|
return -ENOTSUP; |
|
#endif |
|
} |
|
|
|
static int stm32_clock_control_get_subsys_rate(const struct device *clock, |
|
clock_control_subsys_t sub_system, |
|
uint32_t *rate) |
|
{ |
|
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system); |
|
/* |
|
* Get AHB Clock (= SystemCoreClock = SYSCLK/prescaler) |
|
* SystemCoreClock is preferred to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC |
|
* since it will be updated after clock configuration and hence |
|
* more likely to contain actual clock speed |
|
*/ |
|
uint32_t ahb_clock = SystemCoreClock; |
|
uint32_t apb1_clock = get_bus_clock(ahb_clock, STM32_APB1_PRESCALER); |
|
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), apb2_prescaler) |
|
uint32_t apb2_clock = get_bus_clock(ahb_clock, STM32_APB2_PRESCALER); |
|
#elif defined(STM32_CLOCK_BUS_APB2) |
|
/* APB2 bus exists, but w/o dedicated prescaler */ |
|
uint32_t apb2_clock = apb1_clock; |
|
#endif |
|
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb3_prescaler) |
|
uint32_t ahb3_clock = get_bus_clock(ahb_clock * STM32_CPU1_PRESCALER, |
|
STM32_AHB3_PRESCALER); |
|
#elif defined(STM32_CLOCK_BUS_AHB3) |
|
/* AHB3 bus exists, but w/o dedicated prescaler */ |
|
uint32_t ahb3_clock = ahb_clock; |
|
#endif |
|
|
|
#if defined(STM32_SRC_PCLK) |
|
if (pclken->bus == STM32_SRC_PCLK) { |
|
/* STM32_SRC_PCLK can't be used to request a subsys freq */ |
|
/* Use STM32_CLOCK_BUS_FOO instead. */ |
|
return -ENOTSUP; |
|
} |
|
#endif |
|
|
|
ARG_UNUSED(clock); |
|
|
|
switch (pclken->bus) { |
|
case STM32_CLOCK_BUS_AHB1: |
|
#if defined(STM32_CLOCK_BUS_AHB2) |
|
case STM32_CLOCK_BUS_AHB2: |
|
#endif |
|
#if defined(STM32_CLOCK_BUS_IOP) |
|
case STM32_CLOCK_BUS_IOP: |
|
#endif |
|
*rate = ahb_clock; |
|
break; |
|
#if defined(STM32_CLOCK_BUS_AHB3) |
|
case STM32_CLOCK_BUS_AHB3: |
|
*rate = ahb3_clock; |
|
break; |
|
#endif |
|
case STM32_CLOCK_BUS_APB1: |
|
#if defined(STM32_CLOCK_BUS_APB1_2) |
|
case STM32_CLOCK_BUS_APB1_2: |
|
#endif |
|
*rate = apb1_clock; |
|
break; |
|
#if defined(STM32_CLOCK_BUS_APB2) |
|
case STM32_CLOCK_BUS_APB2: |
|
*rate = apb2_clock; |
|
break; |
|
#endif |
|
#if defined(STM32_CLOCK_BUS_APB3) |
|
case STM32_CLOCK_BUS_APB3: |
|
/* STM32WL: AHB3 and APB3 share the same clock and prescaler. */ |
|
*rate = ahb3_clock; |
|
break; |
|
#endif |
|
#if defined(STM32_SRC_SYSCLK) |
|
case STM32_SRC_SYSCLK: |
|
*rate = SystemCoreClock * STM32_CORE_PRESCALER; |
|
break; |
|
#endif |
|
#if defined(STM32_SRC_PLLCLK) & defined(STM32_SYSCLK_SRC_PLL) |
|
case STM32_SRC_PLLCLK: |
|
if (get_pllout_frequency() == 0) { |
|
return -EIO; |
|
} |
|
*rate = get_pllout_frequency(); |
|
break; |
|
#endif |
|
#if defined(STM32_SRC_PLL_P) & STM32_PLL_P_ENABLED |
|
case STM32_SRC_PLL_P: |
|
*rate = get_pll_div_frequency(get_pllsrc_frequency(), |
|
STM32_PLL_M_DIVISOR, |
|
STM32_PLL_N_MULTIPLIER, |
|
STM32_PLL_P_DIVISOR); |
|
break; |
|
#endif |
|
#if defined(STM32_SRC_PLL_Q) & STM32_PLL_Q_ENABLED |
|
case STM32_SRC_PLL_Q: |
|
*rate = get_pll_div_frequency(get_pllsrc_frequency(), |
|
STM32_PLL_M_DIVISOR, |
|
STM32_PLL_N_MULTIPLIER, |
|
STM32_PLL_Q_DIVISOR); |
|
break; |
|
#endif |
|
#if defined(STM32_SRC_PLL_R) & STM32_PLL_R_ENABLED |
|
case STM32_SRC_PLL_R: |
|
*rate = get_pll_div_frequency(get_pllsrc_frequency(), |
|
STM32_PLL_M_DIVISOR, |
|
STM32_PLL_N_MULTIPLIER, |
|
STM32_PLL_R_DIVISOR); |
|
break; |
|
#endif |
|
#if defined(STM32_SRC_PLLI2S_R) & STM32_PLLI2S_ENABLED |
|
case STM32_SRC_PLLI2S_R: |
|
*rate = get_pll_div_frequency(get_pllsrc_frequency(), |
|
STM32_PLLI2S_M_DIVISOR, |
|
STM32_PLLI2S_N_MULTIPLIER, |
|
STM32_PLLI2S_R_DIVISOR); |
|
break; |
|
#endif /* STM32_SRC_PLLI2S_R */ |
|
/* PLLSAI1x not supported yet */ |
|
/* PLLSAI2x not supported yet */ |
|
#if defined(STM32_SRC_LSE) |
|
case STM32_SRC_LSE: |
|
*rate = STM32_LSE_FREQ; |
|
break; |
|
#endif |
|
#if defined(STM32_SRC_LSI) |
|
case STM32_SRC_LSI: |
|
*rate = STM32_LSI_FREQ; |
|
break; |
|
#endif |
|
#if defined(STM32_SRC_HSI) |
|
case STM32_SRC_HSI: |
|
*rate = STM32_HSI_FREQ; |
|
break; |
|
#endif |
|
#if defined(STM32_SRC_MSI) |
|
case STM32_SRC_MSI: |
|
*rate = get_msi_frequency(); |
|
break; |
|
#endif |
|
#if defined(STM32_SRC_HSE) |
|
case STM32_SRC_HSE: |
|
*rate = STM32_HSE_FREQ; |
|
break; |
|
#endif |
|
#if defined(STM32_HSI48_ENABLED) |
|
case STM32_SRC_HSI48: |
|
*rate = STM32_HSI48_FREQ; |
|
break; |
|
#endif /* STM32_HSI48_ENABLED */ |
|
default: |
|
return -ENOTSUP; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static enum clock_control_status stm32_clock_control_get_status(const struct device *dev, |
|
clock_control_subsys_t sub_system) |
|
{ |
|
struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system; |
|
|
|
ARG_UNUSED(dev); |
|
|
|
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == true) { |
|
/* Gated clocks */ |
|
if ((sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus) & pclken->enr) |
|
== pclken->enr) { |
|
return CLOCK_CONTROL_STATUS_ON; |
|
} else { |
|
return CLOCK_CONTROL_STATUS_OFF; |
|
} |
|
} else { |
|
/* Domain clock sources */ |
|
if (enabled_clock(pclken->bus) == 0) { |
|
return CLOCK_CONTROL_STATUS_ON; |
|
} else { |
|
return CLOCK_CONTROL_STATUS_OFF; |
|
} |
|
} |
|
} |
|
|
|
static const struct clock_control_driver_api stm32_clock_control_api = { |
|
.on = stm32_clock_control_on, |
|
.off = stm32_clock_control_off, |
|
.get_rate = stm32_clock_control_get_subsys_rate, |
|
.get_status = stm32_clock_control_get_status, |
|
.configure = stm32_clock_control_configure, |
|
}; |
|
|
|
/* |
|
* Unconditionally switch the system clock source to HSI. |
|
*/ |
|
__unused |
|
static void stm32_clock_switch_to_hsi(void) |
|
{ |
|
/* Enable HSI if not enabled */ |
|
if (LL_RCC_HSI_IsReady() != 1) { |
|
/* Enable HSI */ |
|
LL_RCC_HSI_Enable(); |
|
while (LL_RCC_HSI_IsReady() != 1) { |
|
/* Wait for HSI ready */ |
|
} |
|
} |
|
|
|
/* Set HSI as SYSCLCK source */ |
|
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI); |
|
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) { |
|
} |
|
} |
|
|
|
__unused |
|
static void set_up_plls(void) |
|
{ |
|
#if defined(STM32_PLL_ENABLED) |
|
|
|
/* |
|
* Case of chain-loaded applications: |
|
* Switch to HSI and disable the PLL before configuration. |
|
* (Switching to HSI makes sure we have a SYSCLK source in |
|
* case we're currently running from the PLL we're about to |
|
* turn off and reconfigure.) |
|
* |
|
*/ |
|
if (LL_RCC_GetSysClkSource() == LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { |
|
stm32_clock_switch_to_hsi(); |
|
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); |
|
} |
|
LL_RCC_PLL_Disable(); |
|
|
|
#endif |
|
|
|
#if defined(STM32_PLL2_ENABLED) |
|
/* |
|
* Disable PLL2 after switching to HSI for SysClk |
|
* and disabling PLL, but before enabling PLL again, |
|
* since PLL source can be PLL2. |
|
*/ |
|
LL_RCC_PLL2_Disable(); |
|
|
|
config_pll2(); |
|
|
|
/* Enable PLL2 */ |
|
LL_RCC_PLL2_Enable(); |
|
while (LL_RCC_PLL2_IsReady() != 1U) { |
|
/* Wait for PLL2 ready */ |
|
} |
|
#endif /* STM32_PLL2_ENABLED */ |
|
|
|
#if defined(STM32_PLL_ENABLED) |
|
|
|
#if defined(STM32_SRC_PLL_P) & STM32_PLL_P_ENABLED |
|
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLP, pllp(STM32_PLL_P_DIVISOR)); |
|
RCC_PLLP_ENABLE(); |
|
#endif |
|
#if defined(STM32_SRC_PLL_Q) & STM32_PLL_Q_ENABLED |
|
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLQ, pllq(STM32_PLL_Q_DIVISOR)); |
|
RCC_PLLQ_ENABLE(); |
|
#endif |
|
|
|
config_pll_sysclock(); |
|
|
|
/* Enable PLL */ |
|
LL_RCC_PLL_Enable(); |
|
while (LL_RCC_PLL_IsReady() != 1U) { |
|
/* Wait for PLL ready */ |
|
} |
|
|
|
#endif /* STM32_PLL_ENABLED */ |
|
|
|
#if defined(STM32_PLLI2S_ENABLED) |
|
config_plli2s(); |
|
|
|
/* Enable PLL */ |
|
LL_RCC_PLLI2S_Enable(); |
|
while (LL_RCC_PLLI2S_IsReady() != 1U) { |
|
/* Wait for PLL ready */ |
|
} |
|
#endif /* STM32_PLLI2S_ENABLED */ |
|
} |
|
|
|
static void set_up_fixed_clock_sources(void) |
|
{ |
|
|
|
if (IS_ENABLED(STM32_HSE_ENABLED)) { |
|
#if defined(STM32_HSE_BYPASS) |
|
/* Check if need to enable HSE bypass feature or not */ |
|
if (IS_ENABLED(STM32_HSE_BYPASS)) { |
|
LL_RCC_HSE_EnableBypass(); |
|
} else { |
|
LL_RCC_HSE_DisableBypass(); |
|
} |
|
#endif |
|
#if STM32_HSE_TCXO |
|
LL_RCC_HSE_EnableTcxo(); |
|
#endif |
|
#if STM32_HSE_DIV2 |
|
LL_RCC_HSE_EnableDiv2(); |
|
#endif |
|
/* Enable HSE */ |
|
LL_RCC_HSE_Enable(); |
|
while (LL_RCC_HSE_IsReady() != 1) { |
|
/* Wait for HSE ready */ |
|
} |
|
/* Check if we need to enable HSE clock security system or not */ |
|
#if STM32_HSE_CSS |
|
z_arm_nmi_set_handler(HAL_RCC_NMI_IRQHandler); |
|
LL_RCC_HSE_EnableCSS(); |
|
#endif /* STM32_HSE_CSS */ |
|
} |
|
|
|
if (IS_ENABLED(STM32_HSI_ENABLED)) { |
|
/* Enable HSI if not enabled */ |
|
if (LL_RCC_HSI_IsReady() != 1) { |
|
/* Enable HSI */ |
|
LL_RCC_HSI_Enable(); |
|
while (LL_RCC_HSI_IsReady() != 1) { |
|
/* Wait for HSI ready */ |
|
} |
|
} |
|
#if STM32_HSI_DIV_ENABLED |
|
LL_RCC_SetHSIDiv(hsi_divider(STM32_HSI_DIVISOR)); |
|
#endif |
|
} |
|
|
|
#if defined(STM32_MSI_ENABLED) |
|
if (IS_ENABLED(STM32_MSI_ENABLED)) { |
|
/* Set MSI Range */ |
|
#if defined(RCC_CR_MSIRGSEL) |
|
LL_RCC_MSI_EnableRangeSelection(); |
|
#endif /* RCC_CR_MSIRGSEL */ |
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32L0X) || defined(CONFIG_SOC_SERIES_STM32L1X) |
|
LL_RCC_MSI_SetRange(STM32_MSI_RANGE << RCC_ICSCR_MSIRANGE_Pos); |
|
#else |
|
LL_RCC_MSI_SetRange(STM32_MSI_RANGE << RCC_CR_MSIRANGE_Pos); |
|
#endif /* CONFIG_SOC_SERIES_STM32L0X || CONFIG_SOC_SERIES_STM32L1X */ |
|
|
|
#if STM32_MSI_PLL_MODE |
|
/* Enable MSI hardware auto calibration */ |
|
LL_RCC_MSI_EnablePLLMode(); |
|
#endif |
|
|
|
LL_RCC_MSI_SetCalibTrimming(0); |
|
|
|
/* Enable MSI if not enabled */ |
|
if (LL_RCC_MSI_IsReady() != 1) { |
|
/* Enable MSI */ |
|
LL_RCC_MSI_Enable(); |
|
while (LL_RCC_MSI_IsReady() != 1) { |
|
/* Wait for MSI ready */ |
|
} |
|
} |
|
} |
|
#endif /* STM32_MSI_ENABLED */ |
|
|
|
if (IS_ENABLED(STM32_LSI_ENABLED)) { |
|
#if defined(CONFIG_SOC_SERIES_STM32WBX) |
|
LL_RCC_LSI1_Enable(); |
|
while (LL_RCC_LSI1_IsReady() != 1) { |
|
} |
|
#else |
|
LL_RCC_LSI_Enable(); |
|
while (LL_RCC_LSI_IsReady() != 1) { |
|
} |
|
#endif |
|
} |
|
|
|
if (IS_ENABLED(STM32_LSE_ENABLED)) { |
|
/* LSE belongs to the back-up domain, enable access.*/ |
|
|
|
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY); |
|
|
|
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPR_DBP) |
|
/* Set the DBP bit in the Power control register 1 (PWR_CR1) */ |
|
LL_PWR_EnableBkUpAccess(); |
|
while (!LL_PWR_IsEnabledBkUpAccess()) { |
|
/* Wait for Backup domain access */ |
|
} |
|
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ |
|
|
|
#if STM32_LSE_DRIVING |
|
/* Configure driving capability */ |
|
LL_RCC_LSE_SetDriveCapability(STM32_LSE_DRIVING << RCC_BDCR_LSEDRV_Pos); |
|
#endif |
|
|
|
if (IS_ENABLED(STM32_LSE_BYPASS)) { |
|
/* Configure LSE bypass */ |
|
LL_RCC_LSE_EnableBypass(); |
|
} |
|
|
|
/* Enable LSE Oscillator (32.768 kHz) */ |
|
LL_RCC_LSE_Enable(); |
|
while (!LL_RCC_LSE_IsReady()) { |
|
/* Wait for LSE ready */ |
|
} |
|
|
|
#ifdef RCC_BDCR_LSESYSEN |
|
LL_RCC_LSE_EnablePropagation(); |
|
/* Wait till LSESYS is ready */ |
|
while (!LL_RCC_LSE_IsPropagationReady()) { |
|
} |
|
#endif /* RCC_BDCR_LSESYSEN */ |
|
|
|
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPR_DBP) |
|
LL_PWR_DisableBkUpAccess(); |
|
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ |
|
|
|
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID); |
|
} |
|
|
|
#if defined(STM32_HSI14_ENABLED) |
|
/* For all series with HSI 14 clock support */ |
|
if (IS_ENABLED(STM32_HSI14_ENABLED)) { |
|
LL_RCC_HSI14_Enable(); |
|
while (LL_RCC_HSI14_IsReady() != 1) { |
|
} |
|
} |
|
#endif /* STM32_HSI48_ENABLED */ |
|
|
|
#if defined(STM32_HSI48_ENABLED) |
|
/* For all series with HSI 48 clock support */ |
|
if (IS_ENABLED(STM32_HSI48_ENABLED)) { |
|
#if defined(CONFIG_SOC_SERIES_STM32L0X) |
|
/* |
|
* HSI48 requires VREFINT (see RM0376 section 7.2.4). |
|
* The SYSCFG is needed to control VREFINT, so clock it. |
|
*/ |
|
LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_SYSCFG); |
|
LL_SYSCFG_VREFINT_EnableHSI48(); |
|
#endif /* CONFIG_SOC_SERIES_STM32L0X */ |
|
|
|
/* |
|
* STM32WB: Lock the CLK48 HSEM and do not release to prevent |
|
* M0 core to disable this clock (used for RNG on M0). |
|
* No-op on other series. |
|
*/ |
|
z_stm32_hsem_lock(CFG_HW_CLK48_CONFIG_SEMID, HSEM_LOCK_DEFAULT_RETRY); |
|
|
|
LL_RCC_HSI48_Enable(); |
|
while (LL_RCC_HSI48_IsReady() != 1) { |
|
} |
|
} |
|
#endif /* STM32_HSI48_ENABLED */ |
|
} |
|
|
|
/** |
|
* @brief Initialize clocks for the stm32 |
|
* |
|
* This routine is called to enable and configure the clocks and PLL |
|
* of the soc on the board. It depends on the board definition. |
|
* This function is called on the startup and also to restore the config |
|
* when exiting for low power mode. |
|
* |
|
* @param dev clock device struct |
|
* |
|
* @return 0 |
|
*/ |
|
int stm32_clock_control_init(const struct device *dev) |
|
{ |
|
ARG_UNUSED(dev); |
|
|
|
/* Some clocks would be activated by default */ |
|
config_enable_default_clocks(); |
|
config_regulator_voltage(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC); |
|
|
|
#if defined(FLASH_ACR_LATENCY) |
|
uint32_t old_flash_freq; |
|
uint32_t new_flash_freq; |
|
|
|
old_flash_freq = RCC_CALC_FLASH_FREQ(HAL_RCC_GetSysClockFreq(), |
|
GET_CURRENT_FLASH_PRESCALER()); |
|
|
|
new_flash_freq = RCC_CALC_FLASH_FREQ(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC, |
|
STM32_FLASH_PRESCALER); |
|
|
|
/* If HCLK increases, set flash latency before any clock setting */ |
|
if (old_flash_freq < new_flash_freq) { |
|
LL_SetFlashLatency(new_flash_freq); |
|
} |
|
#endif /* FLASH_ACR_LATENCY */ |
|
|
|
/* Set up individual enabled clocks */ |
|
set_up_fixed_clock_sources(); |
|
|
|
/* Set up PLLs */ |
|
set_up_plls(); |
|
|
|
if (DT_PROP(DT_NODELABEL(rcc), undershoot_prevention) && |
|
(STM32_CORE_PRESCALER == LL_RCC_SYSCLK_DIV_1) && |
|
(MHZ(80) < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC)) { |
|
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_2); |
|
} else { |
|
LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_CORE_PRESCALER)); |
|
} |
|
|
|
#if STM32_SYSCLK_SRC_PLL |
|
/* Set PLL as System Clock Source */ |
|
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL); |
|
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) { |
|
} |
|
#elif STM32_SYSCLK_SRC_HSE |
|
/* Set HSE as SYSCLCK source */ |
|
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE); |
|
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSE) { |
|
} |
|
#elif STM32_SYSCLK_SRC_MSI |
|
/* Set MSI as SYSCLCK source */ |
|
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSI); |
|
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSI) { |
|
} |
|
#elif STM32_SYSCLK_SRC_HSI |
|
stm32_clock_switch_to_hsi(); |
|
#endif /* STM32_SYSCLK_SRC_... */ |
|
|
|
if (DT_PROP(DT_NODELABEL(rcc), undershoot_prevention) && |
|
(STM32_CORE_PRESCALER == LL_RCC_SYSCLK_DIV_1) && |
|
(MHZ(80) < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC)) { |
|
LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_CORE_PRESCALER)); |
|
} |
|
|
|
#if defined(FLASH_ACR_LATENCY) |
|
/* If HCLK not increased, set flash latency after all clock setting */ |
|
if (old_flash_freq >= new_flash_freq) { |
|
LL_SetFlashLatency(new_flash_freq); |
|
} |
|
#endif /* FLASH_ACR_LATENCY */ |
|
|
|
SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC; |
|
|
|
/* Set bus prescalers prescaler */ |
|
LL_RCC_SetAPB1Prescaler(apb1_prescaler(STM32_APB1_PRESCALER)); |
|
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), apb2_prescaler) |
|
LL_RCC_SetAPB2Prescaler(apb2_prescaler(STM32_APB2_PRESCALER)); |
|
#endif |
|
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), cpu2_prescaler) |
|
LL_C2_RCC_SetAHBPrescaler(ahb_prescaler(STM32_CPU2_PRESCALER)); |
|
#endif |
|
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb3_prescaler) |
|
LL_RCC_SetAHB3Prescaler(ahb_prescaler(STM32_AHB3_PRESCALER)); |
|
#endif |
|
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb4_prescaler) |
|
LL_RCC_SetAHB4Prescaler(ahb_prescaler(STM32_AHB4_PRESCALER)); |
|
#endif |
|
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), adc_prescaler) |
|
LL_RCC_SetADCClockSource(adc12_prescaler(STM32_ADC_PRESCALER)); |
|
#endif |
|
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), adc12_prescaler) |
|
LL_RCC_SetADCClockSource(adc12_prescaler(STM32_ADC12_PRESCALER)); |
|
#endif |
|
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), adc34_prescaler) |
|
LL_RCC_SetADCClockSource(adc34_prescaler(STM32_ADC34_PRESCALER)); |
|
#endif |
|
|
|
/* configure MCO1/MCO2 based on Kconfig */ |
|
stm32_clock_control_mco_init(); |
|
|
|
return 0; |
|
} |
|
|
|
#if defined(STM32_HSE_CSS) |
|
void __weak stm32_hse_css_callback(void) {} |
|
|
|
/* Called by the HAL in response to an HSE CSS interrupt */ |
|
void HAL_RCC_CSSCallback(void) |
|
{ |
|
stm32_hse_css_callback(); |
|
} |
|
#endif |
|
|
|
void __weak config_regulator_voltage(uint32_t hclk_freq) {} |
|
/** |
|
* @brief RCC device, note that priority is intentionally set to 1 so |
|
* that the device init runs just after SOC init |
|
*/ |
|
DEVICE_DT_DEFINE(DT_NODELABEL(rcc), |
|
stm32_clock_control_init, |
|
NULL, |
|
NULL, NULL, |
|
PRE_KERNEL_1, |
|
CONFIG_CLOCK_CONTROL_INIT_PRIORITY, |
|
&stm32_clock_control_api);
|
|
|