You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2536 lines
69 KiB
2536 lines
69 KiB
/* |
|
* Copyright (c) 2016 Open-RnD Sp. z o.o. |
|
* Copyright (c) 2016 Linaro Limited. |
|
* Copyright (c) 2024 STMicroelectronics |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
#define DT_DRV_COMPAT st_stm32_uart |
|
|
|
/** |
|
* @brief Driver for UART port on STM32 family processor. |
|
* @note LPUART and U(S)ART have the same base and |
|
* majority of operations are performed the same way. |
|
* Please validate for newly added series. |
|
*/ |
|
|
|
#include <zephyr/kernel.h> |
|
#include <zephyr/arch/cpu.h> |
|
#include <zephyr/sys/__assert.h> |
|
#include <soc.h> |
|
#include <stm32_cache.h> |
|
#include <zephyr/init.h> |
|
#include <zephyr/drivers/clock_control.h> |
|
#include <zephyr/pm/policy.h> |
|
#include <zephyr/pm/device.h> |
|
|
|
#ifdef CONFIG_UART_ASYNC_API |
|
#include <zephyr/drivers/dma/dma_stm32.h> |
|
#include <zephyr/drivers/dma.h> |
|
#endif |
|
|
|
#include <zephyr/linker/sections.h> |
|
#include <zephyr/drivers/clock_control/stm32_clock_control.h> |
|
#include "uart_stm32.h" |
|
|
|
#include <stm32_ll_usart.h> |
|
#include <stm32_ll_lpuart.h> |
|
#if defined(CONFIG_PM) && defined(IS_UART_WAKEUP_FROMSTOP_INSTANCE) |
|
#include <stm32_ll_exti.h> |
|
#endif /* CONFIG_PM */ |
|
|
|
#include <zephyr/linker/linker-defs.h> |
|
#include <zephyr/mem_mgmt/mem_attr.h> |
|
#include <zephyr/dt-bindings/memory-attr/memory-attr-arm.h> |
|
|
|
#include <zephyr/logging/log.h> |
|
#include <zephyr/irq.h> |
|
LOG_MODULE_REGISTER(uart_stm32, CONFIG_UART_LOG_LEVEL); |
|
|
|
/* This symbol takes the value 1 if one of the device instances */ |
|
/* is configured in dts with a domain clock */ |
|
#if STM32_DT_INST_DEV_DOMAIN_CLOCK_SUPPORT |
|
#define STM32_UART_DOMAIN_CLOCK_SUPPORT 1 |
|
#else |
|
#define STM32_UART_DOMAIN_CLOCK_SUPPORT 0 |
|
#endif |
|
|
|
#define HAS_LPUART DT_HAS_COMPAT_STATUS_OKAY(st_stm32_lpuart) |
|
|
|
/* Available everywhere except l1, f1, f2, f4. */ |
|
#ifdef USART_CR3_DEM |
|
#define HAS_DRIVER_ENABLE 1 |
|
#else |
|
#define HAS_DRIVER_ENABLE 0 |
|
#endif |
|
|
|
#ifdef CONFIG_PM |
|
/* Placeholder value when wakeup-line DT property is not defined */ |
|
#define STM32_WAKEUP_LINE_NONE 0xFFFFFFFF |
|
#endif |
|
|
|
#if HAS_LPUART |
|
#ifdef USART_PRESC_PRESCALER |
|
uint32_t lpuartdiv_calc(const uint64_t clock_rate, const uint16_t presc_idx, |
|
const uint32_t baud_rate) |
|
{ |
|
uint64_t lpuartdiv; |
|
|
|
lpuartdiv = clock_rate / LPUART_PRESCALER_TAB[presc_idx]; |
|
lpuartdiv *= LPUART_LPUARTDIV_FREQ_MUL; |
|
lpuartdiv += baud_rate / 2; |
|
lpuartdiv /= baud_rate; |
|
|
|
return (uint32_t)lpuartdiv; |
|
} |
|
#else |
|
uint32_t lpuartdiv_calc(const uint64_t clock_rate, const uint32_t baud_rate) |
|
{ |
|
uint64_t lpuartdiv; |
|
|
|
lpuartdiv = clock_rate * LPUART_LPUARTDIV_FREQ_MUL; |
|
lpuartdiv += baud_rate / 2; |
|
lpuartdiv /= baud_rate; |
|
|
|
return (uint32_t)lpuartdiv; |
|
} |
|
#endif /* USART_PRESC_PRESCALER */ |
|
#endif /* HAS_LPUART */ |
|
|
|
#ifdef CONFIG_UART_ASYNC_API |
|
#define STM32_ASYNC_STATUS_TIMEOUT (DMA_STATUS_BLOCK + 1) |
|
#endif |
|
|
|
#ifdef CONFIG_PM |
|
static void uart_stm32_pm_policy_state_lock_get_unconditional(void) |
|
{ |
|
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES); |
|
if (IS_ENABLED(CONFIG_PM_S2RAM)) { |
|
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES); |
|
} |
|
} |
|
|
|
static void uart_stm32_pm_policy_state_lock_get(const struct device *dev) |
|
{ |
|
struct uart_stm32_data *data = dev->data; |
|
|
|
if (!data->pm_policy_state_on) { |
|
data->pm_policy_state_on = true; |
|
uart_stm32_pm_policy_state_lock_get_unconditional(); |
|
} |
|
} |
|
|
|
static void uart_stm32_pm_policy_state_lock_put_unconditional(void) |
|
{ |
|
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES); |
|
if (IS_ENABLED(CONFIG_PM_S2RAM)) { |
|
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES); |
|
} |
|
} |
|
|
|
static void uart_stm32_pm_policy_state_lock_put(const struct device *dev) |
|
{ |
|
struct uart_stm32_data *data = dev->data; |
|
|
|
if (data->pm_policy_state_on) { |
|
data->pm_policy_state_on = false; |
|
uart_stm32_pm_policy_state_lock_put_unconditional(); |
|
} |
|
} |
|
#endif /* CONFIG_PM */ |
|
|
|
static inline void uart_stm32_set_baudrate(const struct device *dev, uint32_t baud_rate) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
USART_TypeDef *usart = config->usart; |
|
struct uart_stm32_data *data = dev->data; |
|
|
|
uint32_t clock_rate; |
|
|
|
/* Get clock rate */ |
|
if (IS_ENABLED(STM32_UART_DOMAIN_CLOCK_SUPPORT) && (config->pclk_len > 1)) { |
|
if (clock_control_get_rate(data->clock, |
|
(clock_control_subsys_t)&config->pclken[1], |
|
&clock_rate) < 0) { |
|
LOG_ERR("Failed call clock_control_get_rate(pclken[1])"); |
|
return; |
|
} |
|
} else { |
|
if (clock_control_get_rate(data->clock, |
|
(clock_control_subsys_t)&config->pclken[0], |
|
&clock_rate) < 0) { |
|
LOG_ERR("Failed call clock_control_get_rate(pclken[0])"); |
|
return; |
|
} |
|
} |
|
|
|
#if HAS_LPUART |
|
if (IS_LPUART_INSTANCE(usart)) { |
|
uint32_t lpuartdiv; |
|
#ifdef USART_PRESC_PRESCALER |
|
uint8_t presc_idx; |
|
uint32_t presc_val; |
|
|
|
for (presc_idx = 0; presc_idx < ARRAY_SIZE(LPUART_PRESCALER_TAB); presc_idx++) { |
|
lpuartdiv = lpuartdiv_calc(clock_rate, presc_idx, baud_rate); |
|
if (lpuartdiv >= LPUART_BRR_MIN_VALUE && lpuartdiv <= LPUART_BRR_MASK) { |
|
break; |
|
} |
|
} |
|
|
|
if (presc_idx == ARRAY_SIZE(LPUART_PRESCALER_TAB)) { |
|
LOG_ERR("Unable to set %s to %d", dev->name, baud_rate); |
|
return; |
|
} |
|
|
|
presc_val = presc_idx << USART_PRESC_PRESCALER_Pos; |
|
|
|
LL_LPUART_SetPrescaler(usart, presc_val); |
|
#else |
|
lpuartdiv = lpuartdiv_calc(clock_rate, baud_rate); |
|
if (lpuartdiv < LPUART_BRR_MIN_VALUE || lpuartdiv > LPUART_BRR_MASK) { |
|
LOG_ERR("Unable to set %s to %d", dev->name, baud_rate); |
|
return; |
|
} |
|
#endif /* USART_PRESC_PRESCALER */ |
|
LL_LPUART_SetBaudRate(usart, |
|
clock_rate, |
|
#ifdef USART_PRESC_PRESCALER |
|
presc_val, |
|
#endif |
|
baud_rate); |
|
/* Check BRR is greater than or equal to 0x300 */ |
|
__ASSERT(LL_LPUART_ReadReg(usart, BRR) >= 0x300U, |
|
"BaudRateReg >= 0x300"); |
|
|
|
/* Check BRR is lower than or equal to 0xFFFFF */ |
|
__ASSERT(LL_LPUART_ReadReg(usart, BRR) < 0x000FFFFFU, |
|
"BaudRateReg < 0xFFFF"); |
|
} else { |
|
#endif /* HAS_LPUART */ |
|
#ifdef USART_CR1_OVER8 |
|
LL_USART_SetOverSampling(usart, |
|
LL_USART_OVERSAMPLING_16); |
|
#endif |
|
LL_USART_SetBaudRate(usart, |
|
clock_rate, |
|
#ifdef USART_PRESC_PRESCALER |
|
LL_USART_PRESCALER_DIV1, |
|
#endif |
|
#ifdef USART_CR1_OVER8 |
|
LL_USART_OVERSAMPLING_16, |
|
#endif |
|
baud_rate); |
|
/* Check BRR is greater than or equal to 16d */ |
|
__ASSERT(LL_USART_ReadReg(usart, BRR) >= 16, |
|
"BaudRateReg >= 16"); |
|
|
|
#if HAS_LPUART |
|
} |
|
#endif /* HAS_LPUART */ |
|
} |
|
|
|
static inline void uart_stm32_set_parity(const struct device *dev, |
|
uint32_t parity) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
|
|
LL_USART_SetParity(config->usart, parity); |
|
} |
|
|
|
static inline uint32_t uart_stm32_get_parity(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
|
|
return LL_USART_GetParity(config->usart); |
|
} |
|
|
|
static inline void uart_stm32_set_stopbits(const struct device *dev, |
|
uint32_t stopbits) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
|
|
LL_USART_SetStopBitsLength(config->usart, stopbits); |
|
} |
|
|
|
static inline uint32_t uart_stm32_get_stopbits(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
|
|
return LL_USART_GetStopBitsLength(config->usart); |
|
} |
|
|
|
static inline void uart_stm32_set_databits(const struct device *dev, |
|
uint32_t databits) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
|
|
LL_USART_SetDataWidth(config->usart, databits); |
|
} |
|
|
|
static inline uint32_t uart_stm32_get_databits(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
|
|
return LL_USART_GetDataWidth(config->usart); |
|
} |
|
|
|
static inline void uart_stm32_set_hwctrl(const struct device *dev, |
|
uint32_t hwctrl) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
|
|
LL_USART_SetHWFlowCtrl(config->usart, hwctrl); |
|
} |
|
|
|
static inline uint32_t uart_stm32_get_hwctrl(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
|
|
return LL_USART_GetHWFlowCtrl(config->usart); |
|
} |
|
|
|
#if HAS_DRIVER_ENABLE |
|
static inline void uart_stm32_set_driver_enable(const struct device *dev, |
|
bool driver_enable) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
|
|
if (driver_enable) { |
|
LL_USART_EnableDEMode(config->usart); |
|
} else { |
|
LL_USART_DisableDEMode(config->usart); |
|
} |
|
} |
|
|
|
static inline bool uart_stm32_get_driver_enable(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
|
|
return LL_USART_IsEnabledDEMode(config->usart); |
|
} |
|
#endif |
|
|
|
static inline uint32_t uart_stm32_cfg2ll_parity(enum uart_config_parity parity) |
|
{ |
|
switch (parity) { |
|
case UART_CFG_PARITY_ODD: |
|
return LL_USART_PARITY_ODD; |
|
case UART_CFG_PARITY_EVEN: |
|
return LL_USART_PARITY_EVEN; |
|
case UART_CFG_PARITY_NONE: |
|
default: |
|
return LL_USART_PARITY_NONE; |
|
} |
|
} |
|
|
|
static inline enum uart_config_parity uart_stm32_ll2cfg_parity(uint32_t parity) |
|
{ |
|
switch (parity) { |
|
case LL_USART_PARITY_ODD: |
|
return UART_CFG_PARITY_ODD; |
|
case LL_USART_PARITY_EVEN: |
|
return UART_CFG_PARITY_EVEN; |
|
case LL_USART_PARITY_NONE: |
|
default: |
|
return UART_CFG_PARITY_NONE; |
|
} |
|
} |
|
|
|
static inline uint32_t uart_stm32_cfg2ll_stopbits(const struct uart_stm32_config *config, |
|
enum uart_config_stop_bits sb) |
|
{ |
|
switch (sb) { |
|
/* Some MCU's don't support 0.5 stop bits */ |
|
#ifdef LL_USART_STOPBITS_0_5 |
|
case UART_CFG_STOP_BITS_0_5: |
|
#if HAS_LPUART |
|
if (IS_LPUART_INSTANCE(config->usart)) { |
|
/* return the default */ |
|
return LL_USART_STOPBITS_1; |
|
} |
|
#endif /* HAS_LPUART */ |
|
return LL_USART_STOPBITS_0_5; |
|
#endif /* LL_USART_STOPBITS_0_5 */ |
|
case UART_CFG_STOP_BITS_1: |
|
return LL_USART_STOPBITS_1; |
|
/* Some MCU's don't support 1.5 stop bits */ |
|
#ifdef LL_USART_STOPBITS_1_5 |
|
case UART_CFG_STOP_BITS_1_5: |
|
#if HAS_LPUART |
|
if (IS_LPUART_INSTANCE(config->usart)) { |
|
/* return the default */ |
|
return LL_USART_STOPBITS_2; |
|
} |
|
#endif |
|
return LL_USART_STOPBITS_1_5; |
|
#endif /* LL_USART_STOPBITS_1_5 */ |
|
case UART_CFG_STOP_BITS_2: |
|
default: |
|
return LL_USART_STOPBITS_2; |
|
} |
|
} |
|
|
|
static inline enum uart_config_stop_bits uart_stm32_ll2cfg_stopbits(uint32_t sb) |
|
{ |
|
switch (sb) { |
|
/* Some MCU's don't support 0.5 stop bits */ |
|
#ifdef LL_USART_STOPBITS_0_5 |
|
case LL_USART_STOPBITS_0_5: |
|
return UART_CFG_STOP_BITS_0_5; |
|
#endif /* LL_USART_STOPBITS_0_5 */ |
|
case LL_USART_STOPBITS_1: |
|
return UART_CFG_STOP_BITS_1; |
|
/* Some MCU's don't support 1.5 stop bits */ |
|
#ifdef LL_USART_STOPBITS_1_5 |
|
case LL_USART_STOPBITS_1_5: |
|
return UART_CFG_STOP_BITS_1_5; |
|
#endif /* LL_USART_STOPBITS_1_5 */ |
|
case LL_USART_STOPBITS_2: |
|
default: |
|
return UART_CFG_STOP_BITS_2; |
|
} |
|
} |
|
|
|
static inline uint32_t uart_stm32_cfg2ll_databits(enum uart_config_data_bits db, |
|
enum uart_config_parity p) |
|
{ |
|
switch (db) { |
|
/* Some MCU's don't support 7B or 9B datawidth */ |
|
#ifdef LL_USART_DATAWIDTH_7B |
|
case UART_CFG_DATA_BITS_7: |
|
if (p == UART_CFG_PARITY_NONE) { |
|
return LL_USART_DATAWIDTH_7B; |
|
} else { |
|
return LL_USART_DATAWIDTH_8B; |
|
} |
|
#endif /* LL_USART_DATAWIDTH_7B */ |
|
#ifdef LL_USART_DATAWIDTH_9B |
|
case UART_CFG_DATA_BITS_9: |
|
return LL_USART_DATAWIDTH_9B; |
|
#endif /* LL_USART_DATAWIDTH_9B */ |
|
case UART_CFG_DATA_BITS_8: |
|
default: |
|
#ifdef LL_USART_DATAWIDTH_9B |
|
if (p != UART_CFG_PARITY_NONE) { |
|
return LL_USART_DATAWIDTH_9B; |
|
} |
|
#endif |
|
return LL_USART_DATAWIDTH_8B; |
|
} |
|
} |
|
|
|
static inline enum uart_config_data_bits uart_stm32_ll2cfg_databits(uint32_t db, |
|
uint32_t p) |
|
{ |
|
switch (db) { |
|
/* Some MCU's don't support 7B or 9B datawidth */ |
|
#ifdef LL_USART_DATAWIDTH_7B |
|
case LL_USART_DATAWIDTH_7B: |
|
if (p == LL_USART_PARITY_NONE) { |
|
return UART_CFG_DATA_BITS_7; |
|
} else { |
|
return UART_CFG_DATA_BITS_6; |
|
} |
|
#endif /* LL_USART_DATAWIDTH_7B */ |
|
#ifdef LL_USART_DATAWIDTH_9B |
|
case LL_USART_DATAWIDTH_9B: |
|
if (p == LL_USART_PARITY_NONE) { |
|
return UART_CFG_DATA_BITS_9; |
|
} else { |
|
return UART_CFG_DATA_BITS_8; |
|
} |
|
#endif /* LL_USART_DATAWIDTH_9B */ |
|
case LL_USART_DATAWIDTH_8B: |
|
default: |
|
if (p == LL_USART_PARITY_NONE) { |
|
return UART_CFG_DATA_BITS_8; |
|
} else { |
|
return UART_CFG_DATA_BITS_7; |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* @brief Get LL hardware flow control define from |
|
* Zephyr hardware flow control option. |
|
* @note Supports only UART_CFG_FLOW_CTRL_RTS_CTS and UART_CFG_FLOW_CTRL_RS485. |
|
* @param fc: Zephyr hardware flow control option. |
|
* @retval LL_USART_HWCONTROL_RTS_CTS, or LL_USART_HWCONTROL_NONE. |
|
*/ |
|
static inline uint32_t uart_stm32_cfg2ll_hwctrl(enum uart_config_flow_control fc) |
|
{ |
|
if (fc == UART_CFG_FLOW_CTRL_RTS_CTS) { |
|
return LL_USART_HWCONTROL_RTS_CTS; |
|
} else if (fc == UART_CFG_FLOW_CTRL_RS485) { |
|
/* Driver Enable is handled separately */ |
|
return LL_USART_HWCONTROL_NONE; |
|
} |
|
|
|
return LL_USART_HWCONTROL_NONE; |
|
} |
|
|
|
/** |
|
* @brief Get Zephyr hardware flow control option from |
|
* LL hardware flow control define. |
|
* @note Supports only LL_USART_HWCONTROL_RTS_CTS. |
|
* @param fc: LL hardware flow control definition. |
|
* @retval UART_CFG_FLOW_CTRL_RTS_CTS, or UART_CFG_FLOW_CTRL_NONE. |
|
*/ |
|
static inline enum uart_config_flow_control uart_stm32_ll2cfg_hwctrl(uint32_t fc) |
|
{ |
|
if (fc == LL_USART_HWCONTROL_RTS_CTS) { |
|
return UART_CFG_FLOW_CTRL_RTS_CTS; |
|
} |
|
|
|
return UART_CFG_FLOW_CTRL_NONE; |
|
} |
|
|
|
static void uart_stm32_parameters_set(const struct device *dev, |
|
const struct uart_config *cfg) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
struct uart_stm32_data *data = dev->data; |
|
struct uart_config *uart_cfg = data->uart_cfg; |
|
const uint32_t parity = uart_stm32_cfg2ll_parity(cfg->parity); |
|
const uint32_t stopbits = uart_stm32_cfg2ll_stopbits(config, cfg->stop_bits); |
|
const uint32_t databits = uart_stm32_cfg2ll_databits(cfg->data_bits, |
|
cfg->parity); |
|
const uint32_t flowctrl = uart_stm32_cfg2ll_hwctrl(cfg->flow_ctrl); |
|
#if HAS_DRIVER_ENABLE |
|
bool driver_enable = cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RS485; |
|
#endif |
|
|
|
if (cfg == uart_cfg) { |
|
/* Called via (re-)init function, so the SoC either just booted, |
|
* or is returning from a low-power state where it lost register |
|
* contents |
|
*/ |
|
LL_USART_ConfigCharacter(config->usart, |
|
databits, |
|
parity, |
|
stopbits); |
|
uart_stm32_set_hwctrl(dev, flowctrl); |
|
uart_stm32_set_baudrate(dev, cfg->baudrate); |
|
} else { |
|
/* Called from application/subsys via uart_configure syscall */ |
|
if (parity != uart_stm32_get_parity(dev)) { |
|
uart_stm32_set_parity(dev, parity); |
|
} |
|
|
|
if (stopbits != uart_stm32_get_stopbits(dev)) { |
|
uart_stm32_set_stopbits(dev, stopbits); |
|
} |
|
|
|
if (databits != uart_stm32_get_databits(dev)) { |
|
uart_stm32_set_databits(dev, databits); |
|
} |
|
|
|
if (flowctrl != uart_stm32_get_hwctrl(dev)) { |
|
uart_stm32_set_hwctrl(dev, flowctrl); |
|
} |
|
|
|
#if HAS_DRIVER_ENABLE |
|
if (driver_enable != uart_stm32_get_driver_enable(dev)) { |
|
uart_stm32_set_driver_enable(dev, driver_enable); |
|
} |
|
#endif |
|
|
|
if (cfg->baudrate != uart_cfg->baudrate) { |
|
uart_stm32_set_baudrate(dev, cfg->baudrate); |
|
uart_cfg->baudrate = cfg->baudrate; |
|
} |
|
} |
|
} |
|
|
|
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE |
|
static int uart_stm32_configure(const struct device *dev, |
|
const struct uart_config *cfg) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
USART_TypeDef *usart = config->usart; |
|
struct uart_stm32_data *data = dev->data; |
|
struct uart_config *uart_cfg = data->uart_cfg; |
|
const uint32_t parity = uart_stm32_cfg2ll_parity(cfg->parity); |
|
const uint32_t stopbits = uart_stm32_cfg2ll_stopbits(config, cfg->stop_bits); |
|
const uint32_t databits = uart_stm32_cfg2ll_databits(cfg->data_bits, |
|
cfg->parity); |
|
|
|
/* Hardware doesn't support mark or space parity */ |
|
if ((cfg->parity == UART_CFG_PARITY_MARK) || |
|
(cfg->parity == UART_CFG_PARITY_SPACE)) { |
|
return -ENOTSUP; |
|
} |
|
|
|
/* Driver does not supports parity + 9 databits */ |
|
if ((cfg->parity != UART_CFG_PARITY_NONE) && |
|
(cfg->data_bits == UART_CFG_DATA_BITS_9)) { |
|
return -ENOTSUP; |
|
} |
|
|
|
/* When the transformed ll stop bits don't match with what was requested, then it's not |
|
* supported |
|
*/ |
|
if (uart_stm32_ll2cfg_stopbits(stopbits) != cfg->stop_bits) { |
|
return -ENOTSUP; |
|
} |
|
|
|
/* When the transformed ll databits don't match with what was requested, then it's not |
|
* supported |
|
*/ |
|
if (uart_stm32_ll2cfg_databits(databits, parity) != cfg->data_bits) { |
|
return -ENOTSUP; |
|
} |
|
|
|
/* Driver supports only RTS/CTS and RS485 flow control */ |
|
if (!(cfg->flow_ctrl == UART_CFG_FLOW_CTRL_NONE |
|
|| (cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RTS_CTS && |
|
IS_UART_HWFLOW_INSTANCE(usart)) |
|
#if HAS_DRIVER_ENABLE |
|
|| (cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RS485 && |
|
IS_UART_DRIVER_ENABLE_INSTANCE(usart)) |
|
#endif |
|
)) { |
|
return -ENOTSUP; |
|
} |
|
|
|
LL_USART_Disable(usart); |
|
|
|
/* Set basic parameters, such as data-/stop-bit, parity, and baudrate */ |
|
uart_stm32_parameters_set(dev, cfg); |
|
|
|
LL_USART_Enable(usart); |
|
|
|
/* Upon successful configuration, persist the syscall-passed |
|
* uart_config. |
|
* This allows restoring it, should the device return from a low-power |
|
* mode in which register contents are lost. |
|
*/ |
|
*uart_cfg = *cfg; |
|
|
|
return 0; |
|
}; |
|
|
|
static int uart_stm32_config_get(const struct device *dev, |
|
struct uart_config *cfg) |
|
{ |
|
struct uart_stm32_data *data = dev->data; |
|
struct uart_config *uart_cfg = data->uart_cfg; |
|
|
|
cfg->baudrate = uart_cfg->baudrate; |
|
cfg->parity = uart_stm32_ll2cfg_parity(uart_stm32_get_parity(dev)); |
|
cfg->stop_bits = uart_stm32_ll2cfg_stopbits( |
|
uart_stm32_get_stopbits(dev)); |
|
cfg->data_bits = uart_stm32_ll2cfg_databits( |
|
uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)); |
|
cfg->flow_ctrl = uart_stm32_ll2cfg_hwctrl( |
|
uart_stm32_get_hwctrl(dev)); |
|
#if HAS_DRIVER_ENABLE |
|
if (uart_stm32_get_driver_enable(dev)) { |
|
cfg->flow_ctrl = UART_CFG_FLOW_CTRL_RS485; |
|
} |
|
#endif |
|
return 0; |
|
} |
|
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */ |
|
|
|
typedef void (*poll_in_fn)( |
|
USART_TypeDef *usart, |
|
void *in); |
|
|
|
static int uart_stm32_poll_in_visitor(const struct device *dev, void *in, poll_in_fn get_fn) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
USART_TypeDef *usart = config->usart; |
|
|
|
/* Clear overrun error flag */ |
|
if (LL_USART_IsActiveFlag_ORE(usart)) { |
|
LL_USART_ClearFlag_ORE(usart); |
|
} |
|
|
|
/* |
|
* On stm32 F4X, F1X, and F2X, the RXNE flag is affected (cleared) by |
|
* the uart_err_check function call (on errors flags clearing) |
|
*/ |
|
if (!LL_USART_IsActiveFlag_RXNE(usart)) { |
|
return -1; |
|
} |
|
|
|
get_fn(usart, in); |
|
|
|
return 0; |
|
} |
|
|
|
typedef void (*poll_out_fn)( |
|
USART_TypeDef *usart, uint16_t out); |
|
|
|
static void uart_stm32_poll_out_visitor(const struct device *dev, uint16_t out, poll_out_fn set_fn) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
USART_TypeDef *usart = config->usart; |
|
#ifdef CONFIG_PM |
|
struct uart_stm32_data *data = dev->data; |
|
#endif |
|
unsigned int key; |
|
|
|
/* Wait for TXE flag to be raised |
|
* When TXE flag is raised, we lock interrupts to prevent interrupts (notably that of usart) |
|
* or thread switch. Then, we can safely send our character. The character sent will be |
|
* interlaced with the characters potentially send with interrupt transmission API |
|
*/ |
|
while (1) { |
|
if (LL_USART_IsActiveFlag_TXE(usart)) { |
|
key = irq_lock(); |
|
if (LL_USART_IsActiveFlag_TXE(usart)) { |
|
break; |
|
} |
|
irq_unlock(key); |
|
} |
|
} |
|
|
|
#ifdef CONFIG_PM |
|
|
|
/* If an interrupt transmission is in progress, the pm constraint is already managed by the |
|
* call of uart_stm32_irq_tx_[en|dis]able |
|
*/ |
|
if (!data->tx_poll_stream_on && !data->tx_int_stream_on) { |
|
data->tx_poll_stream_on = true; |
|
|
|
/* Don't allow system to suspend until stream |
|
* transmission has completed |
|
*/ |
|
uart_stm32_pm_policy_state_lock_get(dev); |
|
|
|
/* Enable TC interrupt so we can release suspend |
|
* constraint when done |
|
*/ |
|
LL_USART_EnableIT_TC(usart); |
|
} |
|
#endif /* CONFIG_PM */ |
|
|
|
set_fn(usart, out); |
|
irq_unlock(key); |
|
} |
|
|
|
static void poll_in_u8(USART_TypeDef *usart, void *in) |
|
{ |
|
*((unsigned char *)in) = (unsigned char)LL_USART_ReceiveData8(usart); |
|
} |
|
|
|
static void poll_out_u8(USART_TypeDef *usart, uint16_t out) |
|
{ |
|
LL_USART_TransmitData8(usart, (uint8_t)out); |
|
} |
|
|
|
static int uart_stm32_poll_in(const struct device *dev, unsigned char *c) |
|
{ |
|
return uart_stm32_poll_in_visitor(dev, (void *)c, poll_in_u8); |
|
} |
|
|
|
static void uart_stm32_poll_out(const struct device *dev, unsigned char c) |
|
{ |
|
uart_stm32_poll_out_visitor(dev, c, poll_out_u8); |
|
} |
|
|
|
#ifdef CONFIG_UART_WIDE_DATA |
|
|
|
static void poll_out_u9(USART_TypeDef *usart, uint16_t out) |
|
{ |
|
LL_USART_TransmitData9(usart, out); |
|
} |
|
|
|
static void poll_in_u9(USART_TypeDef *usart, void *in) |
|
{ |
|
*((uint16_t *)in) = LL_USART_ReceiveData9(usart); |
|
} |
|
|
|
static int uart_stm32_poll_in_u16(const struct device *dev, uint16_t *in_u16) |
|
{ |
|
return uart_stm32_poll_in_visitor(dev, (void *)in_u16, poll_in_u9); |
|
} |
|
|
|
static void uart_stm32_poll_out_u16(const struct device *dev, uint16_t out_u16) |
|
{ |
|
uart_stm32_poll_out_visitor(dev, out_u16, poll_out_u9); |
|
} |
|
|
|
#endif |
|
|
|
static int uart_stm32_err_check(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
USART_TypeDef *usart = config->usart; |
|
uint32_t err = 0U; |
|
|
|
/* Check for errors, then clear them. |
|
* Some SoC clear all error flags when at least |
|
* one is cleared. (e.g. F4X, F1X, and F2X). |
|
* The stm32 F4X, F1X, and F2X also reads the usart DR when clearing Errors |
|
*/ |
|
if (LL_USART_IsActiveFlag_ORE(usart)) { |
|
err |= UART_ERROR_OVERRUN; |
|
} |
|
|
|
if (LL_USART_IsActiveFlag_PE(usart)) { |
|
err |= UART_ERROR_PARITY; |
|
} |
|
|
|
if (LL_USART_IsActiveFlag_FE(usart)) { |
|
err |= UART_ERROR_FRAMING; |
|
} |
|
|
|
if (LL_USART_IsActiveFlag_NE(usart)) { |
|
err |= UART_ERROR_NOISE; |
|
} |
|
|
|
#if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT) |
|
if (LL_USART_IsActiveFlag_LBD(usart)) { |
|
err |= UART_BREAK; |
|
} |
|
|
|
if (err & UART_BREAK) { |
|
LL_USART_ClearFlag_LBD(usart); |
|
} |
|
#endif |
|
/* Clearing error : |
|
* the stm32 F4X, F1X, and F2X sw sequence is reading the usart SR |
|
* then the usart DR to clear the Error flags ORE, PE, FE, NE |
|
* --> so is the RXNE flag also cleared ! |
|
*/ |
|
if (err & UART_ERROR_OVERRUN) { |
|
LL_USART_ClearFlag_ORE(usart); |
|
} |
|
|
|
if (err & UART_ERROR_PARITY) { |
|
LL_USART_ClearFlag_PE(usart); |
|
} |
|
|
|
if (err & UART_ERROR_FRAMING) { |
|
LL_USART_ClearFlag_FE(usart); |
|
} |
|
|
|
if (err & UART_ERROR_NOISE) { |
|
LL_USART_ClearFlag_NE(usart); |
|
} |
|
|
|
return err; |
|
} |
|
|
|
static inline void __uart_stm32_get_clock(const struct device *dev) |
|
{ |
|
struct uart_stm32_data *data = dev->data; |
|
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); |
|
|
|
data->clock = clk; |
|
} |
|
|
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN |
|
|
|
typedef void (*fifo_fill_fn)(USART_TypeDef *usart, const void *tx_data, const int offset); |
|
|
|
static int uart_stm32_fifo_fill_visitor(const struct device *dev, const void *tx_data, int size, |
|
fifo_fill_fn fill_fn) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
USART_TypeDef *usart = config->usart; |
|
int num_tx = 0U; |
|
unsigned int key; |
|
|
|
if (!LL_USART_IsActiveFlag_TXE(usart)) { |
|
return num_tx; |
|
} |
|
|
|
/* Lock interrupts to prevent nested interrupts or thread switch */ |
|
key = irq_lock(); |
|
|
|
while ((size - num_tx > 0) && LL_USART_IsActiveFlag_TXE(usart)) { |
|
/* TXE flag will be cleared with byte write to DR|RDR register */ |
|
|
|
/* Send a character */ |
|
fill_fn(usart, tx_data, num_tx); |
|
num_tx++; |
|
} |
|
|
|
irq_unlock(key); |
|
|
|
return num_tx; |
|
} |
|
|
|
static void fifo_fill_with_u8(USART_TypeDef *usart, const void *tx_data, const int offset) |
|
{ |
|
const uint8_t *data = (const uint8_t *)tx_data; |
|
/* Send a character (8bit) */ |
|
LL_USART_TransmitData8(usart, data[offset]); |
|
} |
|
|
|
static int uart_stm32_fifo_fill(const struct device *dev, const uint8_t *tx_data, int size) |
|
{ |
|
if (uart_stm32_ll2cfg_databits(uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)) == |
|
UART_CFG_DATA_BITS_9) { |
|
return -ENOTSUP; |
|
} |
|
return uart_stm32_fifo_fill_visitor(dev, (const void *)tx_data, size, |
|
fifo_fill_with_u8); |
|
} |
|
|
|
typedef void (*fifo_read_fn)(USART_TypeDef *usart, void *rx_data, const int offset); |
|
|
|
static int uart_stm32_fifo_read_visitor(const struct device *dev, void *rx_data, const int size, |
|
fifo_read_fn read_fn) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
USART_TypeDef *usart = config->usart; |
|
int num_rx = 0U; |
|
|
|
while ((size - num_rx > 0) && LL_USART_IsActiveFlag_RXNE(usart)) { |
|
/* RXNE flag will be cleared upon read from DR|RDR register */ |
|
|
|
read_fn(usart, rx_data, num_rx); |
|
num_rx++; |
|
|
|
/* Clear overrun error flag */ |
|
if (LL_USART_IsActiveFlag_ORE(usart)) { |
|
LL_USART_ClearFlag_ORE(usart); |
|
/* |
|
* On stm32 F4X, F1X, and F2X, the RXNE flag is affected (cleared) by |
|
* the uart_err_check function call (on errors flags clearing) |
|
*/ |
|
} |
|
} |
|
|
|
return num_rx; |
|
} |
|
|
|
static void fifo_read_with_u8(USART_TypeDef *usart, void *rx_data, const int offset) |
|
{ |
|
uint8_t *data = (uint8_t *)rx_data; |
|
|
|
data[offset] = LL_USART_ReceiveData8(usart); |
|
} |
|
|
|
static int uart_stm32_fifo_read(const struct device *dev, uint8_t *rx_data, const int size) |
|
{ |
|
if (uart_stm32_ll2cfg_databits(uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)) == |
|
UART_CFG_DATA_BITS_9) { |
|
return -ENOTSUP; |
|
} |
|
return uart_stm32_fifo_read_visitor(dev, (void *)rx_data, size, |
|
fifo_read_with_u8); |
|
} |
|
|
|
#ifdef CONFIG_UART_WIDE_DATA |
|
|
|
static void fifo_fill_with_u16(USART_TypeDef *usart, const void *tx_data, const int offset) |
|
{ |
|
const uint16_t *data = (const uint16_t *)tx_data; |
|
|
|
/* Send a character (9bit) */ |
|
LL_USART_TransmitData9(usart, data[offset]); |
|
} |
|
|
|
static int uart_stm32_fifo_fill_u16(const struct device *dev, const uint16_t *tx_data, int size) |
|
{ |
|
if (uart_stm32_ll2cfg_databits(uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)) != |
|
UART_CFG_DATA_BITS_9) { |
|
return -ENOTSUP; |
|
} |
|
return uart_stm32_fifo_fill_visitor(dev, (const void *)tx_data, size, |
|
fifo_fill_with_u16); |
|
} |
|
|
|
static void fifo_read_with_u16(USART_TypeDef *usart, void *rx_data, const int offset) |
|
{ |
|
uint16_t *data = (uint16_t *)rx_data; |
|
|
|
data[offset] = LL_USART_ReceiveData9(usart); |
|
} |
|
|
|
static int uart_stm32_fifo_read_u16(const struct device *dev, uint16_t *rx_data, const int size) |
|
{ |
|
if (uart_stm32_ll2cfg_databits(uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)) != |
|
UART_CFG_DATA_BITS_9) { |
|
return -ENOTSUP; |
|
} |
|
return uart_stm32_fifo_read_visitor(dev, (void *)rx_data, size, |
|
fifo_read_with_u16); |
|
} |
|
|
|
#endif |
|
|
|
static void uart_stm32_irq_tx_enable(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
#ifdef CONFIG_PM |
|
struct uart_stm32_data *data = dev->data; |
|
unsigned int key; |
|
#endif |
|
|
|
#ifdef CONFIG_PM |
|
key = irq_lock(); |
|
data->tx_poll_stream_on = false; |
|
data->tx_int_stream_on = true; |
|
uart_stm32_pm_policy_state_lock_get(dev); |
|
#endif |
|
LL_USART_EnableIT_TC(config->usart); |
|
|
|
#ifdef CONFIG_PM |
|
irq_unlock(key); |
|
#endif |
|
} |
|
|
|
static void uart_stm32_irq_tx_disable(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
#ifdef CONFIG_PM |
|
struct uart_stm32_data *data = dev->data; |
|
unsigned int key; |
|
|
|
key = irq_lock(); |
|
#endif |
|
|
|
LL_USART_DisableIT_TC(config->usart); |
|
|
|
#ifdef CONFIG_PM |
|
data->tx_int_stream_on = false; |
|
uart_stm32_pm_policy_state_lock_put(dev); |
|
#endif |
|
|
|
#ifdef CONFIG_PM |
|
irq_unlock(key); |
|
#endif |
|
} |
|
|
|
static int uart_stm32_irq_tx_ready(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
|
|
return LL_USART_IsActiveFlag_TXE(config->usart) && |
|
LL_USART_IsEnabledIT_TC(config->usart); |
|
} |
|
|
|
static int uart_stm32_irq_tx_complete(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
|
|
return LL_USART_IsActiveFlag_TC(config->usart); |
|
} |
|
|
|
static void uart_stm32_irq_rx_enable(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
|
|
LL_USART_EnableIT_RXNE(config->usart); |
|
} |
|
|
|
static void uart_stm32_irq_rx_disable(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
|
|
LL_USART_DisableIT_RXNE(config->usart); |
|
} |
|
|
|
static int uart_stm32_irq_rx_ready(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
/* |
|
* On stm32 F4X, F1X, and F2X, the RXNE flag is affected (cleared) by |
|
* the uart_err_check function call (on errors flags clearing) |
|
*/ |
|
return LL_USART_IsActiveFlag_RXNE(config->usart); |
|
} |
|
|
|
static void uart_stm32_irq_err_enable(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
USART_TypeDef *usart = config->usart; |
|
|
|
/* Enable FE, ORE interruptions */ |
|
LL_USART_EnableIT_ERROR(usart); |
|
#if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT) |
|
/* Enable Line break detection */ |
|
if (IS_UART_LIN_INSTANCE(usart)) { |
|
LL_USART_EnableIT_LBD(usart); |
|
} |
|
#endif |
|
/* Enable parity error interruption */ |
|
LL_USART_EnableIT_PE(usart); |
|
} |
|
|
|
static void uart_stm32_irq_err_disable(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
USART_TypeDef *usart = config->usart; |
|
|
|
/* Disable FE, ORE interruptions */ |
|
LL_USART_DisableIT_ERROR(usart); |
|
#if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT) |
|
/* Disable Line break detection */ |
|
if (IS_UART_LIN_INSTANCE(usart)) { |
|
LL_USART_DisableIT_LBD(usart); |
|
} |
|
#endif |
|
/* Disable parity error interruption */ |
|
LL_USART_DisableIT_PE(usart); |
|
} |
|
|
|
static int uart_stm32_irq_is_pending(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
USART_TypeDef *usart = config->usart; |
|
|
|
return ((LL_USART_IsActiveFlag_RXNE(usart) && |
|
LL_USART_IsEnabledIT_RXNE(usart)) || |
|
(LL_USART_IsActiveFlag_TC(usart) && |
|
LL_USART_IsEnabledIT_TC(usart))); |
|
} |
|
|
|
static int uart_stm32_irq_update(const struct device *dev) |
|
{ |
|
return 1; |
|
} |
|
|
|
static void uart_stm32_irq_callback_set(const struct device *dev, |
|
uart_irq_callback_user_data_t cb, |
|
void *cb_data) |
|
{ |
|
struct uart_stm32_data *data = dev->data; |
|
|
|
data->user_cb = cb; |
|
data->user_data = cb_data; |
|
|
|
#if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS) |
|
data->async_cb = NULL; |
|
data->async_user_data = NULL; |
|
#endif |
|
} |
|
|
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */ |
|
|
|
#ifdef CONFIG_UART_ASYNC_API |
|
|
|
static inline void async_user_callback(struct uart_stm32_data *data, |
|
struct uart_event *event) |
|
{ |
|
if (data->async_cb) { |
|
data->async_cb(data->uart_dev, event, data->async_user_data); |
|
} |
|
} |
|
|
|
static inline void async_evt_rx_rdy(struct uart_stm32_data *data) |
|
{ |
|
LOG_DBG("rx_rdy: (%d %d)", data->dma_rx.offset, data->dma_rx.counter); |
|
|
|
struct uart_event event = { |
|
.type = UART_RX_RDY, |
|
.data.rx.buf = data->dma_rx.buffer, |
|
.data.rx.len = data->dma_rx.counter - data->dma_rx.offset, |
|
.data.rx.offset = data->dma_rx.offset |
|
}; |
|
|
|
/* When cyclic DMA is used, buffer positions are not updated - call callback every time*/ |
|
if (data->dma_rx.dma_cfg.cyclic == 0) { |
|
/* update the current pos for new data */ |
|
data->dma_rx.offset = data->dma_rx.counter; |
|
|
|
/* send event only for new data */ |
|
if (event.data.rx.len > 0) { |
|
async_user_callback(data, &event); |
|
} |
|
} else { |
|
async_user_callback(data, &event); |
|
} |
|
} |
|
|
|
static inline void async_evt_rx_err(struct uart_stm32_data *data, int err_code) |
|
{ |
|
LOG_DBG("rx error: %d", err_code); |
|
|
|
struct uart_event event = { |
|
.type = UART_RX_STOPPED, |
|
.data.rx_stop.reason = err_code, |
|
.data.rx_stop.data.len = data->dma_rx.counter, |
|
.data.rx_stop.data.offset = 0, |
|
.data.rx_stop.data.buf = data->dma_rx.buffer |
|
}; |
|
|
|
async_user_callback(data, &event); |
|
} |
|
|
|
static inline void async_evt_tx_done(struct uart_stm32_data *data) |
|
{ |
|
LOG_DBG("tx done: %d", data->dma_tx.counter); |
|
|
|
struct uart_event event = { |
|
.type = UART_TX_DONE, |
|
.data.tx.buf = data->dma_tx.buffer, |
|
.data.tx.len = data->dma_tx.counter |
|
}; |
|
|
|
/* Reset tx buffer */ |
|
data->dma_tx.buffer_length = 0; |
|
data->dma_tx.counter = 0; |
|
#ifdef CONFIG_PM |
|
data->tx_int_stream_on = false; |
|
#endif |
|
|
|
async_user_callback(data, &event); |
|
} |
|
|
|
static inline void async_evt_tx_abort(struct uart_stm32_data *data) |
|
{ |
|
LOG_DBG("tx abort: %d", data->dma_tx.counter); |
|
|
|
struct uart_event event = { |
|
.type = UART_TX_ABORTED, |
|
.data.tx.buf = data->dma_tx.buffer, |
|
.data.tx.len = data->dma_tx.counter |
|
}; |
|
|
|
/* Reset tx buffer */ |
|
data->dma_tx.buffer_length = 0; |
|
data->dma_tx.counter = 0; |
|
#ifdef CONFIG_PM |
|
data->tx_int_stream_on = false; |
|
#endif |
|
|
|
async_user_callback(data, &event); |
|
} |
|
|
|
static inline void async_evt_rx_buf_request(struct uart_stm32_data *data) |
|
{ |
|
struct uart_event evt = { |
|
.type = UART_RX_BUF_REQUEST, |
|
}; |
|
|
|
async_user_callback(data, &evt); |
|
} |
|
|
|
static inline void async_evt_rx_buf_release(struct uart_stm32_data *data) |
|
{ |
|
struct uart_event evt = { |
|
.type = UART_RX_BUF_RELEASED, |
|
.data.rx_buf.buf = data->dma_rx.buffer, |
|
}; |
|
|
|
async_user_callback(data, &evt); |
|
} |
|
|
|
static inline void async_timer_start(struct k_work_delayable *work, |
|
int32_t timeout) |
|
{ |
|
if ((timeout != SYS_FOREVER_US) && (timeout != 0)) { |
|
/* start timer */ |
|
LOG_DBG("async timer started for %d us", timeout); |
|
k_work_reschedule(work, K_USEC(timeout)); |
|
} |
|
} |
|
|
|
static void uart_stm32_dma_rx_flush(const struct device *dev, int status) |
|
{ |
|
struct dma_status stat; |
|
struct uart_stm32_data *data = dev->data; |
|
|
|
size_t rx_rcv_len = 0; |
|
|
|
switch (status) { |
|
case DMA_STATUS_COMPLETE: |
|
/* fully complete */ |
|
data->dma_rx.counter = data->dma_rx.buffer_length; |
|
break; |
|
case DMA_STATUS_BLOCK: |
|
/* half complete */ |
|
data->dma_rx.counter = data->dma_rx.buffer_length / 2; |
|
|
|
break; |
|
default: /* likely STM32_ASYNC_STATUS_TIMEOUT */ |
|
if (dma_get_status(data->dma_rx.dma_dev, data->dma_rx.dma_channel, &stat) == 0) { |
|
rx_rcv_len = data->dma_rx.buffer_length - stat.pending_length; |
|
data->dma_rx.counter = rx_rcv_len; |
|
} |
|
break; |
|
} |
|
|
|
async_evt_rx_rdy(data); |
|
|
|
switch (status) { /* update offset*/ |
|
case DMA_STATUS_COMPLETE: |
|
/* fully complete */ |
|
data->dma_rx.offset = 0; |
|
break; |
|
case DMA_STATUS_BLOCK: |
|
/* half complete */ |
|
data->dma_rx.offset = data->dma_rx.buffer_length / 2; |
|
break; |
|
default: /* likely STM32_ASYNC_STATUS_TIMEOUT */ |
|
data->dma_rx.offset += rx_rcv_len - data->dma_rx.offset; |
|
break; |
|
} |
|
} |
|
|
|
#endif /* CONFIG_UART_ASYNC_API */ |
|
|
|
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || \ |
|
defined(CONFIG_UART_ASYNC_API) || \ |
|
defined(CONFIG_PM) |
|
|
|
static void uart_stm32_isr(const struct device *dev) |
|
{ |
|
struct uart_stm32_data *data = dev->data; |
|
#if defined(CONFIG_PM) || defined(CONFIG_UART_ASYNC_API) |
|
const struct uart_stm32_config *config = dev->config; |
|
USART_TypeDef *usart = config->usart; |
|
#endif |
|
|
|
#ifdef CONFIG_PM |
|
if (LL_USART_IsEnabledIT_TC(usart) && |
|
LL_USART_IsActiveFlag_TC(usart)) { |
|
|
|
if (data->tx_poll_stream_on) { |
|
/* A poll stream transmission just completed, |
|
* allow system to suspend |
|
*/ |
|
LL_USART_DisableIT_TC(usart); |
|
data->tx_poll_stream_on = false; |
|
uart_stm32_pm_policy_state_lock_put(dev); |
|
} |
|
/* Stream transmission was either async or IRQ based, |
|
* constraint will be released at the same time TC IT |
|
* is disabled |
|
*/ |
|
} |
|
#endif |
|
|
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN |
|
if (data->user_cb) { |
|
data->user_cb(dev, data->user_data); |
|
} |
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */ |
|
|
|
#if defined(CONFIG_PM) && defined(IS_UART_WAKEUP_FROMSTOP_INSTANCE) \ |
|
&& defined(USART_CR3_WUFIE) |
|
if (LL_USART_IsEnabledIT_WKUP(usart) && |
|
LL_USART_IsActiveFlag_WKUP(usart)) { |
|
|
|
LL_USART_ClearFlag_WKUP(usart); |
|
|
|
if (!data->rx_woken) { |
|
/* Prevent SoC from entering STOP mode until RX goes IDLE */ |
|
uart_stm32_pm_policy_state_lock_get_unconditional(); |
|
data->rx_woken = true; |
|
} |
|
|
|
#ifdef USART_ISR_REACK |
|
while (LL_USART_IsActiveFlag_REACK(usart) == 0) { |
|
} |
|
#endif |
|
} |
|
#endif |
|
|
|
#ifdef CONFIG_UART_ASYNC_API |
|
if (LL_USART_IsEnabledIT_IDLE(usart) && |
|
LL_USART_IsActiveFlag_IDLE(usart)) { |
|
|
|
LL_USART_ClearFlag_IDLE(usart); |
|
|
|
LOG_DBG("idle interrupt occurred"); |
|
|
|
#ifdef CONFIG_PM |
|
if (data->rx_woken) { |
|
/* Allow SoC to enter STOP mode now that RX is IDLE */ |
|
uart_stm32_pm_policy_state_lock_put_unconditional(); |
|
data->rx_woken = false; |
|
} |
|
#endif |
|
|
|
if (data->dma_rx.timeout == 0) { |
|
uart_stm32_dma_rx_flush(dev, STM32_ASYNC_STATUS_TIMEOUT); |
|
} else { |
|
/* Start the RX timer not null */ |
|
async_timer_start(&data->dma_rx.timeout_work, |
|
data->dma_rx.timeout); |
|
} |
|
} else if (LL_USART_IsEnabledIT_TC(usart) && |
|
LL_USART_IsActiveFlag_TC(usart)) { |
|
|
|
LL_USART_DisableIT_TC(usart); |
|
/* Generate TX_DONE event when transmission is done */ |
|
async_evt_tx_done(data); |
|
#ifdef CONFIG_PM |
|
uart_stm32_pm_policy_state_lock_put_unconditional(); |
|
#endif |
|
} else if (LL_USART_IsEnabledIT_RXNE(usart) && |
|
LL_USART_IsActiveFlag_RXNE(usart)) { |
|
#ifdef USART_SR_RXNE |
|
/* clear the RXNE flag, because Rx data was not read */ |
|
LL_USART_ClearFlag_RXNE(usart); |
|
#else |
|
/* clear the RXNE by flushing the fifo, because Rx data was not read */ |
|
LL_USART_RequestRxDataFlush(usart); |
|
#endif /* USART_SR_RXNE */ |
|
} |
|
|
|
/* Clear errors */ |
|
uart_stm32_err_check(dev); |
|
#endif /* CONFIG_UART_ASYNC_API */ |
|
|
|
} |
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API || CONFIG_PM */ |
|
|
|
#ifdef CONFIG_UART_ASYNC_API |
|
|
|
static int uart_stm32_async_callback_set(const struct device *dev, |
|
uart_callback_t callback, |
|
void *user_data) |
|
{ |
|
struct uart_stm32_data *data = dev->data; |
|
|
|
data->async_cb = callback; |
|
data->async_user_data = user_data; |
|
|
|
#if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS) |
|
data->user_cb = NULL; |
|
data->user_data = NULL; |
|
#endif |
|
|
|
return 0; |
|
} |
|
|
|
static inline void uart_stm32_dma_tx_enable(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
|
|
LL_USART_EnableDMAReq_TX(config->usart); |
|
} |
|
|
|
static inline void uart_stm32_dma_tx_disable(const struct device *dev) |
|
{ |
|
#ifdef CONFIG_UART_STM32U5_ERRATA_DMAT_NOCLEAR |
|
ARG_UNUSED(dev); |
|
|
|
/* |
|
* Errata Sheet ES0499 : STM32U575xx and STM32U585xx device errata |
|
* USART does not generate DMA requests after setting/clearing DMAT bit |
|
* (also seen on stm32H5 serie) |
|
*/ |
|
#else |
|
const struct uart_stm32_config *config = dev->config; |
|
|
|
LL_USART_DisableDMAReq_TX(config->usart); |
|
#endif |
|
} |
|
|
|
static inline void uart_stm32_dma_rx_enable(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
struct uart_stm32_data *data = dev->data; |
|
|
|
LL_USART_EnableDMAReq_RX(config->usart); |
|
|
|
data->dma_rx.enabled = true; |
|
} |
|
|
|
static inline void uart_stm32_dma_rx_disable(const struct device *dev) |
|
{ |
|
struct uart_stm32_data *data = dev->data; |
|
|
|
data->dma_rx.enabled = false; |
|
} |
|
|
|
static int uart_stm32_async_rx_disable(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
USART_TypeDef *usart = config->usart; |
|
struct uart_stm32_data *data = dev->data; |
|
struct uart_event disabled_event = { |
|
.type = UART_RX_DISABLED |
|
}; |
|
|
|
if (!data->dma_rx.enabled) { |
|
async_user_callback(data, &disabled_event); |
|
return -EFAULT; |
|
} |
|
|
|
LL_USART_DisableIT_IDLE(usart); |
|
|
|
uart_stm32_dma_rx_flush(dev, STM32_ASYNC_STATUS_TIMEOUT); |
|
|
|
async_evt_rx_buf_release(data); |
|
|
|
uart_stm32_dma_rx_disable(dev); |
|
|
|
(void)k_work_cancel_delayable(&data->dma_rx.timeout_work); |
|
|
|
dma_stop(data->dma_rx.dma_dev, data->dma_rx.dma_channel); |
|
|
|
if (data->rx_next_buffer) { |
|
struct uart_event rx_next_buf_release_evt = { |
|
.type = UART_RX_BUF_RELEASED, |
|
.data.rx_buf.buf = data->rx_next_buffer, |
|
}; |
|
async_user_callback(data, &rx_next_buf_release_evt); |
|
} |
|
|
|
data->rx_next_buffer = NULL; |
|
data->rx_next_buffer_len = 0; |
|
|
|
/* When async rx is disabled, enable interruptible instance of uart to function normally */ |
|
LL_USART_EnableIT_RXNE(usart); |
|
|
|
LOG_DBG("rx: disabled"); |
|
|
|
async_user_callback(data, &disabled_event); |
|
|
|
return 0; |
|
} |
|
|
|
void uart_stm32_dma_tx_cb(const struct device *dma_dev, void *user_data, |
|
uint32_t channel, int status) |
|
{ |
|
const struct device *uart_dev = user_data; |
|
struct uart_stm32_data *data = uart_dev->data; |
|
struct dma_status stat; |
|
unsigned int key = irq_lock(); |
|
|
|
/* Disable TX */ |
|
uart_stm32_dma_tx_disable(uart_dev); |
|
|
|
(void)k_work_cancel_delayable(&data->dma_tx.timeout_work); |
|
|
|
if (!dma_get_status(data->dma_tx.dma_dev, |
|
data->dma_tx.dma_channel, &stat)) { |
|
data->dma_tx.counter = data->dma_tx.buffer_length - |
|
stat.pending_length; |
|
} |
|
|
|
irq_unlock(key); |
|
} |
|
|
|
static void uart_stm32_dma_replace_buffer(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
USART_TypeDef *usart = config->usart; |
|
struct uart_stm32_data *data = dev->data; |
|
|
|
/* Replace the buffer and reload the DMA */ |
|
LOG_DBG("Replacing RX buffer: %d", data->rx_next_buffer_len); |
|
|
|
/* reload DMA */ |
|
data->dma_rx.offset = 0; |
|
data->dma_rx.counter = 0; |
|
data->dma_rx.buffer = data->rx_next_buffer; |
|
data->dma_rx.buffer_length = data->rx_next_buffer_len; |
|
data->dma_rx.blk_cfg.block_size = data->dma_rx.buffer_length; |
|
data->dma_rx.blk_cfg.dest_address = (uint32_t)data->dma_rx.buffer; |
|
data->rx_next_buffer = NULL; |
|
data->rx_next_buffer_len = 0; |
|
|
|
dma_reload(data->dma_rx.dma_dev, data->dma_rx.dma_channel, |
|
data->dma_rx.blk_cfg.source_address, |
|
data->dma_rx.blk_cfg.dest_address, |
|
data->dma_rx.blk_cfg.block_size); |
|
|
|
dma_start(data->dma_rx.dma_dev, data->dma_rx.dma_channel); |
|
|
|
LL_USART_ClearFlag_IDLE(usart); |
|
|
|
/* Request next buffer */ |
|
async_evt_rx_buf_request(data); |
|
} |
|
|
|
void uart_stm32_dma_rx_cb(const struct device *dma_dev, void *user_data, |
|
uint32_t channel, int status) |
|
{ |
|
const struct device *uart_dev = user_data; |
|
struct uart_stm32_data *data = uart_dev->data; |
|
|
|
if (status < 0) { |
|
async_evt_rx_err(data, status); |
|
return; |
|
} |
|
|
|
(void)k_work_cancel_delayable(&data->dma_rx.timeout_work); |
|
|
|
/* If we are in NORMAL MODE */ |
|
if (data->dma_rx.dma_cfg.cyclic == 0) { |
|
|
|
/* true since this functions occurs when buffer is full */ |
|
data->dma_rx.counter = data->dma_rx.buffer_length; |
|
async_evt_rx_rdy(data); |
|
if (data->rx_next_buffer != NULL) { |
|
async_evt_rx_buf_release(data); |
|
|
|
/* replace the buffer when the current |
|
* is full and not the same as the next |
|
* one. |
|
*/ |
|
uart_stm32_dma_replace_buffer(uart_dev); |
|
} else { |
|
/* Buffer full without valid next buffer, |
|
* an UART_RX_DISABLED event must be generated, |
|
* but uart_stm32_async_rx_disable() cannot be |
|
* called in ISR context. So force the RX timeout |
|
* to minimum value and let the RX timeout to do the job. |
|
*/ |
|
k_work_reschedule(&data->dma_rx.timeout_work, K_TICKS(1)); |
|
} |
|
} else { |
|
/* CIRCULAR MODE */ |
|
uart_stm32_dma_rx_flush(data->uart_dev, status); |
|
} |
|
} |
|
|
|
static int uart_stm32_async_tx(const struct device *dev, |
|
const uint8_t *tx_data, size_t buf_size, int32_t timeout) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
USART_TypeDef *usart = config->usart; |
|
struct uart_stm32_data *data = dev->data; |
|
__maybe_unused unsigned int key; |
|
int ret; |
|
|
|
/* Check size of singl character (1 or 2 bytes) */ |
|
const int char_size = (IS_ENABLED(CONFIG_UART_WIDE_DATA) && |
|
(LL_USART_GetDataWidth(usart) == LL_USART_DATAWIDTH_9B) && |
|
(LL_USART_GetParity(usart) == LL_USART_PARITY_NONE)) |
|
? 2 |
|
: 1; |
|
|
|
if (data->dma_tx.dma_dev == NULL) { |
|
return -ENODEV; |
|
} |
|
|
|
if (data->dma_tx.buffer_length != 0) { |
|
return -EBUSY; |
|
} |
|
|
|
if (!stm32_buf_in_nocache((uintptr_t)tx_data, buf_size)) { |
|
LOG_ERR("Tx buffer should be placed in a nocache memory region"); |
|
return -EFAULT; |
|
} |
|
|
|
#ifdef CONFIG_PM |
|
data->tx_poll_stream_on = false; |
|
data->tx_int_stream_on = true; |
|
#endif |
|
data->dma_tx.buffer = (uint8_t *)tx_data; |
|
data->dma_tx.buffer_length = buf_size; |
|
data->dma_tx.timeout = timeout; |
|
|
|
LOG_DBG("tx: l=%d", data->dma_tx.buffer_length); |
|
|
|
/* Clear TC flag */ |
|
LL_USART_ClearFlag_TC(usart); |
|
|
|
/* Enable TC interrupt so we can signal correct TX done */ |
|
LL_USART_EnableIT_TC(usart); |
|
|
|
/** |
|
* Setup DMA descriptor for TX. |
|
* If DMAT low-power errata workaround is enabled, |
|
* we send the first character using polling and the rest |
|
* using DMA; as such, single-character transfers use only |
|
* polling and don't need to prepare a DMA descriptor. |
|
* In other configurations, the DMA is always used. |
|
*/ |
|
if (!IS_ENABLED(CONFIG_UART_STM32U5_ERRATA_DMAT_LOWPOWER) || |
|
data->dma_tx.buffer_length > char_size) { |
|
if (IS_ENABLED(CONFIG_UART_STM32U5_ERRATA_DMAT_LOWPOWER)) { |
|
/* set source address */ |
|
data->dma_tx.blk_cfg.source_address = |
|
((uint32_t)data->dma_tx.buffer) + char_size; |
|
data->dma_tx.blk_cfg.block_size = data->dma_tx.buffer_length - char_size; |
|
} else { |
|
/* set source address */ |
|
data->dma_tx.blk_cfg.source_address = ((uint32_t)data->dma_tx.buffer); |
|
data->dma_tx.blk_cfg.block_size = data->dma_tx.buffer_length; |
|
} |
|
|
|
ret = dma_config(data->dma_tx.dma_dev, data->dma_tx.dma_channel, |
|
&data->dma_tx.dma_cfg); |
|
|
|
if (ret != 0) { |
|
LOG_ERR("dma tx config error!"); |
|
return -EINVAL; |
|
} |
|
|
|
if (dma_start(data->dma_tx.dma_dev, data->dma_tx.dma_channel)) { |
|
LOG_ERR("UART err: TX DMA start failed!"); |
|
return -EFAULT; |
|
} |
|
|
|
/* Start TX timer */ |
|
async_timer_start(&data->dma_tx.timeout_work, data->dma_tx.timeout); |
|
} |
|
|
|
#ifdef CONFIG_PM |
|
|
|
/* Do not allow system to suspend until transmission has completed */ |
|
uart_stm32_pm_policy_state_lock_get_unconditional(); |
|
#endif |
|
|
|
if (IS_ENABLED(CONFIG_UART_STM32U5_ERRATA_DMAT_LOWPOWER)) { |
|
/** |
|
* Send first character using polling. |
|
* The DMA TX needs to be enabled before the UART transmits |
|
* the character and triggers transfer complete event. |
|
*/ |
|
key = irq_lock(); |
|
|
|
if (char_size > 1) { |
|
LL_USART_TransmitData9(usart, *(const uint16_t *)tx_data); |
|
} else { |
|
LL_USART_TransmitData8(usart, *tx_data); |
|
} |
|
|
|
if (data->dma_tx.buffer_length > char_size) { |
|
/* Enable TX DMA requests */ |
|
uart_stm32_dma_tx_enable(dev); |
|
} |
|
|
|
irq_unlock(key); |
|
} else { |
|
/* Enable TX DMA requests */ |
|
uart_stm32_dma_tx_enable(dev); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int uart_stm32_async_rx_enable(const struct device *dev, |
|
uint8_t *rx_buf, size_t buf_size, int32_t timeout) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
USART_TypeDef *usart = config->usart; |
|
struct uart_stm32_data *data = dev->data; |
|
int ret; |
|
|
|
if (data->dma_rx.dma_dev == NULL) { |
|
return -ENODEV; |
|
} |
|
|
|
if (data->dma_rx.enabled) { |
|
LOG_WRN("RX was already enabled"); |
|
return -EBUSY; |
|
} |
|
|
|
if (!stm32_buf_in_nocache((uintptr_t)rx_buf, buf_size)) { |
|
LOG_ERR("Rx buffer should be placed in a nocache memory region"); |
|
return -EFAULT; |
|
} |
|
|
|
data->dma_rx.offset = 0; |
|
data->dma_rx.buffer = rx_buf; |
|
data->dma_rx.buffer_length = buf_size; |
|
data->dma_rx.counter = 0; |
|
data->dma_rx.timeout = timeout; |
|
|
|
/* Disable RX interrupts to let DMA to handle it */ |
|
LL_USART_DisableIT_RXNE(usart); |
|
|
|
data->dma_rx.blk_cfg.block_size = buf_size; |
|
data->dma_rx.blk_cfg.dest_address = (uint32_t)data->dma_rx.buffer; |
|
|
|
ret = dma_config(data->dma_rx.dma_dev, data->dma_rx.dma_channel, |
|
&data->dma_rx.dma_cfg); |
|
|
|
if (ret != 0) { |
|
LOG_ERR("UART ERR: RX DMA config failed!"); |
|
return -EINVAL; |
|
} |
|
|
|
if (dma_start(data->dma_rx.dma_dev, data->dma_rx.dma_channel)) { |
|
LOG_ERR("UART ERR: RX DMA start failed!"); |
|
return -EFAULT; |
|
} |
|
|
|
/* Flush RX data buffer */ |
|
#ifdef USART_SR_RXNE |
|
LL_USART_ClearFlag_RXNE(usart); |
|
#else |
|
LL_USART_RequestRxDataFlush(usart); |
|
#endif /* USART_SR_RXNE */ |
|
|
|
/* Enable RX DMA requests */ |
|
uart_stm32_dma_rx_enable(dev); |
|
|
|
/* Enable IRQ IDLE to define the end of a |
|
* RX DMA transaction. |
|
*/ |
|
LL_USART_ClearFlag_IDLE(usart); |
|
LL_USART_EnableIT_IDLE(usart); |
|
|
|
LL_USART_EnableIT_ERROR(usart); |
|
|
|
/* Request next buffer */ |
|
async_evt_rx_buf_request(data); |
|
|
|
LOG_DBG("async rx enabled"); |
|
|
|
return ret; |
|
} |
|
|
|
static int uart_stm32_async_tx_abort(const struct device *dev) |
|
{ |
|
struct uart_stm32_data *data = dev->data; |
|
size_t tx_buffer_length = data->dma_tx.buffer_length; |
|
struct dma_status stat; |
|
|
|
if (tx_buffer_length == 0) { |
|
return -EFAULT; |
|
} |
|
|
|
(void)k_work_cancel_delayable(&data->dma_tx.timeout_work); |
|
if (!dma_get_status(data->dma_tx.dma_dev, |
|
data->dma_tx.dma_channel, &stat)) { |
|
data->dma_tx.counter = tx_buffer_length - stat.pending_length; |
|
} |
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32u5_dma) |
|
dma_suspend(data->dma_tx.dma_dev, data->dma_tx.dma_channel); |
|
#endif |
|
dma_stop(data->dma_tx.dma_dev, data->dma_tx.dma_channel); |
|
async_evt_tx_abort(data); |
|
|
|
return 0; |
|
} |
|
|
|
static void uart_stm32_async_rx_timeout(struct k_work *work) |
|
{ |
|
struct k_work_delayable *dwork = k_work_delayable_from_work(work); |
|
struct uart_dma_stream *rx_stream = CONTAINER_OF(dwork, |
|
struct uart_dma_stream, timeout_work); |
|
struct uart_stm32_data *data = CONTAINER_OF(rx_stream, |
|
struct uart_stm32_data, dma_rx); |
|
const struct device *dev = data->uart_dev; |
|
|
|
LOG_DBG("rx timeout"); |
|
|
|
/* The DMA is still active and could trigger an interrupt |
|
* while we are processing this timeout, which could cause |
|
* data corruption when the DMA ISR modifies shared data |
|
* as we are operating on it. Prevent data race with ISR by |
|
* masking all interrupts until we're done. |
|
*/ |
|
unsigned int key = irq_lock(); |
|
|
|
if (data->dma_rx.counter == data->dma_rx.buffer_length) { |
|
uart_stm32_async_rx_disable(dev); |
|
} else { |
|
uart_stm32_dma_rx_flush(dev, STM32_ASYNC_STATUS_TIMEOUT); |
|
} |
|
|
|
irq_unlock(key); |
|
} |
|
|
|
static void uart_stm32_async_tx_timeout(struct k_work *work) |
|
{ |
|
struct k_work_delayable *dwork = k_work_delayable_from_work(work); |
|
struct uart_dma_stream *tx_stream = CONTAINER_OF(dwork, |
|
struct uart_dma_stream, timeout_work); |
|
struct uart_stm32_data *data = CONTAINER_OF(tx_stream, |
|
struct uart_stm32_data, dma_tx); |
|
const struct device *dev = data->uart_dev; |
|
|
|
uart_stm32_async_tx_abort(dev); |
|
|
|
LOG_DBG("tx: async timeout"); |
|
} |
|
|
|
static int uart_stm32_async_rx_buf_rsp(const struct device *dev, uint8_t *buf, |
|
size_t len) |
|
{ |
|
struct uart_stm32_data *data = dev->data; |
|
unsigned int key; |
|
int err = 0; |
|
|
|
LOG_DBG("replace buffer (%d)", len); |
|
|
|
key = irq_lock(); |
|
|
|
if (data->rx_next_buffer != NULL) { |
|
err = -EBUSY; |
|
} else if (!data->dma_rx.enabled) { |
|
err = -EACCES; |
|
} else { |
|
if (!stm32_buf_in_nocache((uintptr_t)buf, len)) { |
|
LOG_ERR("Rx buffer should be placed in a nocache memory region"); |
|
return -EFAULT; |
|
} |
|
data->rx_next_buffer = buf; |
|
data->rx_next_buffer_len = len; |
|
} |
|
|
|
irq_unlock(key); |
|
|
|
return err; |
|
} |
|
|
|
static int uart_stm32_async_init(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
USART_TypeDef *usart = config->usart; |
|
struct uart_stm32_data *data = dev->data; |
|
|
|
data->uart_dev = dev; |
|
|
|
if (data->dma_rx.dma_dev != NULL) { |
|
if (!device_is_ready(data->dma_rx.dma_dev)) { |
|
return -ENODEV; |
|
} |
|
} |
|
|
|
if (data->dma_tx.dma_dev != NULL) { |
|
if (!device_is_ready(data->dma_tx.dma_dev)) { |
|
return -ENODEV; |
|
} |
|
} |
|
|
|
/* Disable both TX and RX DMA requests */ |
|
uart_stm32_dma_rx_disable(dev); |
|
uart_stm32_dma_tx_disable(dev); |
|
|
|
k_work_init_delayable(&data->dma_rx.timeout_work, |
|
uart_stm32_async_rx_timeout); |
|
k_work_init_delayable(&data->dma_tx.timeout_work, |
|
uart_stm32_async_tx_timeout); |
|
|
|
/* Configure dma rx config */ |
|
memset(&data->dma_rx.blk_cfg, 0, sizeof(data->dma_rx.blk_cfg)); |
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32F1X) || \ |
|
defined(CONFIG_SOC_SERIES_STM32F2X) || \ |
|
defined(CONFIG_SOC_SERIES_STM32F4X) || \ |
|
defined(CONFIG_SOC_SERIES_STM32L1X) |
|
data->dma_rx.blk_cfg.source_address = |
|
LL_USART_DMA_GetRegAddr(usart); |
|
#else |
|
data->dma_rx.blk_cfg.source_address = |
|
LL_USART_DMA_GetRegAddr(usart, |
|
LL_USART_DMA_REG_DATA_RECEIVE); |
|
#endif |
|
|
|
data->dma_rx.blk_cfg.dest_address = 0; /* dest not ready */ |
|
|
|
if (data->dma_rx.src_addr_increment) { |
|
data->dma_rx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
|
} else { |
|
data->dma_rx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
|
} |
|
|
|
if (data->dma_rx.dst_addr_increment) { |
|
data->dma_rx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
|
} else { |
|
data->dma_rx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
|
} |
|
|
|
/* Enable/disable RX circular buffer */ |
|
data->dma_rx.blk_cfg.source_reload_en = data->dma_rx.dma_cfg.cyclic; |
|
data->dma_rx.blk_cfg.dest_reload_en = data->dma_rx.dma_cfg.cyclic; |
|
|
|
data->dma_rx.blk_cfg.fifo_mode_control = data->dma_rx.fifo_threshold; |
|
|
|
data->dma_rx.dma_cfg.head_block = &data->dma_rx.blk_cfg; |
|
data->dma_rx.dma_cfg.user_data = (void *)dev; |
|
data->rx_next_buffer = NULL; |
|
data->rx_next_buffer_len = 0; |
|
|
|
/* Configure dma tx config */ |
|
memset(&data->dma_tx.blk_cfg, 0, sizeof(data->dma_tx.blk_cfg)); |
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32F1X) || \ |
|
defined(CONFIG_SOC_SERIES_STM32F2X) || \ |
|
defined(CONFIG_SOC_SERIES_STM32F4X) || \ |
|
defined(CONFIG_SOC_SERIES_STM32L1X) |
|
data->dma_tx.blk_cfg.dest_address = |
|
LL_USART_DMA_GetRegAddr(usart); |
|
#else |
|
data->dma_tx.blk_cfg.dest_address = |
|
LL_USART_DMA_GetRegAddr(usart, |
|
LL_USART_DMA_REG_DATA_TRANSMIT); |
|
#endif |
|
|
|
data->dma_tx.blk_cfg.source_address = 0; /* not ready */ |
|
|
|
if (data->dma_tx.src_addr_increment) { |
|
data->dma_tx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
|
} else { |
|
data->dma_tx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
|
} |
|
|
|
if (data->dma_tx.dst_addr_increment) { |
|
data->dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
|
} else { |
|
data->dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
|
} |
|
|
|
/* Enable/disable TX circular buffer */ |
|
data->dma_tx.blk_cfg.source_reload_en = data->dma_tx.dma_cfg.cyclic; |
|
data->dma_tx.blk_cfg.dest_reload_en = data->dma_tx.dma_cfg.cyclic; |
|
|
|
data->dma_tx.blk_cfg.fifo_mode_control = data->dma_tx.fifo_threshold; |
|
|
|
data->dma_tx.dma_cfg.head_block = &data->dma_tx.blk_cfg; |
|
data->dma_tx.dma_cfg.user_data = (void *)dev; |
|
|
|
return 0; |
|
} |
|
|
|
#ifdef CONFIG_UART_WIDE_DATA |
|
|
|
static int uart_stm32_async_tx_u16(const struct device *dev, const uint16_t *tx_data, |
|
size_t buf_size, int32_t timeout) |
|
{ |
|
return uart_stm32_async_tx(dev, (const uint8_t *)tx_data, buf_size * 2, timeout); |
|
} |
|
|
|
static int uart_stm32_async_rx_enable_u16(const struct device *dev, uint16_t *buf, size_t len, |
|
int32_t timeout) |
|
{ |
|
return uart_stm32_async_rx_enable(dev, (uint8_t *)buf, len * 2, timeout); |
|
} |
|
|
|
static int uart_stm32_async_rx_buf_rsp_u16(const struct device *dev, uint16_t *buf, size_t len) |
|
{ |
|
return uart_stm32_async_rx_buf_rsp(dev, (uint8_t *)buf, len * 2); |
|
} |
|
|
|
#endif |
|
|
|
#endif /* CONFIG_UART_ASYNC_API */ |
|
|
|
static DEVICE_API(uart, uart_stm32_driver_api) = { |
|
.poll_in = uart_stm32_poll_in, |
|
.poll_out = uart_stm32_poll_out, |
|
#ifdef CONFIG_UART_WIDE_DATA |
|
.poll_in_u16 = uart_stm32_poll_in_u16, |
|
.poll_out_u16 = uart_stm32_poll_out_u16, |
|
#endif |
|
.err_check = uart_stm32_err_check, |
|
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE |
|
.configure = uart_stm32_configure, |
|
.config_get = uart_stm32_config_get, |
|
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */ |
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN |
|
.fifo_fill = uart_stm32_fifo_fill, |
|
.fifo_read = uart_stm32_fifo_read, |
|
#ifdef CONFIG_UART_WIDE_DATA |
|
.fifo_fill_u16 = uart_stm32_fifo_fill_u16, |
|
.fifo_read_u16 = uart_stm32_fifo_read_u16, |
|
#endif |
|
.irq_tx_enable = uart_stm32_irq_tx_enable, |
|
.irq_tx_disable = uart_stm32_irq_tx_disable, |
|
.irq_tx_ready = uart_stm32_irq_tx_ready, |
|
.irq_tx_complete = uart_stm32_irq_tx_complete, |
|
.irq_rx_enable = uart_stm32_irq_rx_enable, |
|
.irq_rx_disable = uart_stm32_irq_rx_disable, |
|
.irq_rx_ready = uart_stm32_irq_rx_ready, |
|
.irq_err_enable = uart_stm32_irq_err_enable, |
|
.irq_err_disable = uart_stm32_irq_err_disable, |
|
.irq_is_pending = uart_stm32_irq_is_pending, |
|
.irq_update = uart_stm32_irq_update, |
|
.irq_callback_set = uart_stm32_irq_callback_set, |
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */ |
|
#ifdef CONFIG_UART_ASYNC_API |
|
.callback_set = uart_stm32_async_callback_set, |
|
.tx = uart_stm32_async_tx, |
|
.tx_abort = uart_stm32_async_tx_abort, |
|
.rx_enable = uart_stm32_async_rx_enable, |
|
.rx_disable = uart_stm32_async_rx_disable, |
|
.rx_buf_rsp = uart_stm32_async_rx_buf_rsp, |
|
#ifdef CONFIG_UART_WIDE_DATA |
|
.tx_u16 = uart_stm32_async_tx_u16, |
|
.rx_enable_u16 = uart_stm32_async_rx_enable_u16, |
|
.rx_buf_rsp_u16 = uart_stm32_async_rx_buf_rsp_u16, |
|
#endif |
|
#endif /* CONFIG_UART_ASYNC_API */ |
|
}; |
|
|
|
static int uart_stm32_clocks_enable(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
struct uart_stm32_data *data = dev->data; |
|
int err; |
|
|
|
__uart_stm32_get_clock(dev); |
|
|
|
if (!device_is_ready(data->clock)) { |
|
LOG_ERR("clock control device not ready"); |
|
return -ENODEV; |
|
} |
|
|
|
/* enable clock */ |
|
err = clock_control_on(data->clock, (clock_control_subsys_t)&config->pclken[0]); |
|
if (err != 0) { |
|
LOG_ERR("Could not enable (LP)UART clock"); |
|
return err; |
|
} |
|
|
|
if (IS_ENABLED(STM32_UART_DOMAIN_CLOCK_SUPPORT) && (config->pclk_len > 1)) { |
|
err = clock_control_configure(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE), |
|
(clock_control_subsys_t) &config->pclken[1], |
|
NULL); |
|
if (err != 0) { |
|
LOG_ERR("Could not select UART domain clock"); |
|
return err; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int uart_stm32_registers_configure(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
USART_TypeDef *usart = config->usart; |
|
struct uart_stm32_data *data = dev->data; |
|
struct uart_config *uart_cfg = data->uart_cfg; |
|
|
|
LL_USART_Disable(usart); |
|
|
|
if (!device_is_ready(config->reset.dev)) { |
|
LOG_ERR("reset controller not ready"); |
|
return -ENODEV; |
|
} |
|
|
|
/* Reset UART to default state using RCC */ |
|
(void)reset_line_toggle_dt(&config->reset); |
|
|
|
/* TX/RX direction */ |
|
LL_USART_SetTransferDirection(usart, LL_USART_DIRECTION_TX_RX); |
|
|
|
/* Set basic parameters, such as data-/stop-bit, parity, and baudrate */ |
|
uart_stm32_parameters_set(dev, uart_cfg); |
|
|
|
/* Enable the single wire / half-duplex mode */ |
|
if (config->single_wire) { |
|
LL_USART_EnableHalfDuplex(usart); |
|
} |
|
|
|
#ifdef LL_USART_TXRX_SWAPPED |
|
if (config->tx_rx_swap) { |
|
LL_USART_SetTXRXSwap(usart, LL_USART_TXRX_SWAPPED); |
|
} |
|
#endif |
|
|
|
#ifdef LL_USART_RXPIN_LEVEL_INVERTED |
|
if (config->rx_invert) { |
|
LL_USART_SetRXPinLevel(usart, LL_USART_RXPIN_LEVEL_INVERTED); |
|
} |
|
#endif |
|
|
|
#ifdef LL_USART_TXPIN_LEVEL_INVERTED |
|
if (config->tx_invert) { |
|
LL_USART_SetTXPinLevel(usart, LL_USART_TXPIN_LEVEL_INVERTED); |
|
} |
|
#endif |
|
|
|
#if HAS_DRIVER_ENABLE |
|
if (config->de_enable) { |
|
if (!IS_UART_DRIVER_ENABLE_INSTANCE(usart)) { |
|
LOG_ERR("%s does not support driver enable", dev->name); |
|
return -EINVAL; |
|
} |
|
|
|
uart_stm32_set_driver_enable(dev, true); |
|
LL_USART_SetDEAssertionTime(usart, config->de_assert_time); |
|
LL_USART_SetDEDeassertionTime(usart, config->de_deassert_time); |
|
|
|
if (config->de_invert) { |
|
LL_USART_SetDESignalPolarity(usart, LL_USART_DE_POLARITY_LOW); |
|
} |
|
} |
|
#endif |
|
|
|
#ifdef USART_CR1_FIFOEN |
|
if (config->fifo_enable) { |
|
LL_USART_EnableFIFO(usart); |
|
} |
|
#endif |
|
|
|
#if defined(CONFIG_PM) && defined(IS_UART_WAKEUP_FROMSTOP_INSTANCE) |
|
if (config->wakeup_source) { |
|
/* Enable ability to wakeup device in Stop mode |
|
* Effect depends on CONFIG_PM_DEVICE status: |
|
* CONFIG_PM_DEVICE=n : Always active |
|
* CONFIG_PM_DEVICE=y : Controlled by pm_device_wakeup_enable() |
|
*/ |
|
#ifdef USART_CR3_WUFIE |
|
LL_USART_SetWKUPType(usart, LL_USART_WAKEUP_ON_RXNE); |
|
LL_USART_EnableIT_WKUP(usart); |
|
LL_USART_ClearFlag_WKUP(usart); |
|
#endif |
|
LL_USART_EnableInStopMode(usart); |
|
|
|
if (config->wakeup_line != STM32_WAKEUP_LINE_NONE) { |
|
/* Prepare the WAKEUP with the expected EXTI line */ |
|
LL_EXTI_EnableIT_0_31(BIT(config->wakeup_line)); |
|
} |
|
} |
|
#endif /* CONFIG_PM */ |
|
|
|
LL_USART_Enable(usart); |
|
|
|
#ifdef USART_ISR_TEACK |
|
/* Wait until TEACK flag is set */ |
|
while (!(LL_USART_IsActiveFlag_TEACK(usart))) { |
|
} |
|
#endif /* !USART_ISR_TEACK */ |
|
|
|
#ifdef USART_ISR_REACK |
|
/* Wait until REACK flag is set */ |
|
while (!(LL_USART_IsActiveFlag_REACK(usart))) { |
|
} |
|
#endif /* !USART_ISR_REACK */ |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* @brief Initialize UART channel |
|
* |
|
* This routine is called to reset the chip in a quiescent state. |
|
* It is assumed that this function is called only once per UART. |
|
* |
|
* @param dev UART device struct |
|
* |
|
* @return 0 |
|
*/ |
|
static int uart_stm32_init(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
int err; |
|
|
|
err = uart_stm32_clocks_enable(dev); |
|
if (err < 0) { |
|
return err; |
|
} |
|
|
|
/* Configure dt provided device signals when available */ |
|
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); |
|
if (err < 0) { |
|
return err; |
|
} |
|
|
|
err = uart_stm32_registers_configure(dev); |
|
if (err < 0) { |
|
return err; |
|
} |
|
|
|
#if defined(CONFIG_PM) || \ |
|
defined(CONFIG_UART_INTERRUPT_DRIVEN) || \ |
|
defined(CONFIG_UART_ASYNC_API) |
|
config->irq_config_func(dev); |
|
#endif /* CONFIG_PM || CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API */ |
|
|
|
#ifdef CONFIG_UART_ASYNC_API |
|
return uart_stm32_async_init(dev); |
|
#else |
|
return 0; |
|
#endif |
|
} |
|
|
|
#ifdef CONFIG_PM_DEVICE |
|
static void uart_stm32_suspend_setup(const struct device *dev) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
USART_TypeDef *usart = config->usart; |
|
|
|
#ifdef USART_ISR_BUSY |
|
/* Make sure that no USART transfer is on-going */ |
|
while (LL_USART_IsActiveFlag_BUSY(usart) == 1) { |
|
} |
|
#endif |
|
while (LL_USART_IsActiveFlag_TC(usart) == 0) { |
|
} |
|
#ifdef USART_ISR_REACK |
|
/* Make sure that USART is ready for reception */ |
|
while (LL_USART_IsActiveFlag_REACK(usart) == 0) { |
|
} |
|
#endif |
|
/* Clear OVERRUN flag */ |
|
LL_USART_ClearFlag_ORE(usart); |
|
} |
|
|
|
static int uart_stm32_pm_action(const struct device *dev, |
|
enum pm_device_action action) |
|
{ |
|
const struct uart_stm32_config *config = dev->config; |
|
struct uart_stm32_data *data = dev->data; |
|
int err; |
|
|
|
|
|
switch (action) { |
|
case PM_DEVICE_ACTION_RESUME: |
|
/* Set pins to active state */ |
|
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); |
|
if (err < 0) { |
|
return err; |
|
} |
|
|
|
/* Enable clock */ |
|
err = clock_control_on(data->clock, |
|
(clock_control_subsys_t)&config->pclken[0]); |
|
if (err < 0) { |
|
LOG_ERR("Could not enable (LP)UART clock"); |
|
return err; |
|
} |
|
|
|
if ((IS_ENABLED(CONFIG_PM_S2RAM)) && |
|
(!LL_USART_IsEnabled(config->usart))) { |
|
/* When exiting low power mode, check whether UART is enabled. |
|
* If not, it means we are exiting Suspend to RAM mode (STM32 |
|
* Standby), and the driver needs to be reinitialized. |
|
*/ |
|
uart_stm32_init(dev); |
|
} |
|
break; |
|
case PM_DEVICE_ACTION_SUSPEND: |
|
uart_stm32_suspend_setup(dev); |
|
/* Stop device clock. Note: fixed clocks are not handled yet. */ |
|
err = clock_control_off(data->clock, (clock_control_subsys_t)&config->pclken[0]); |
|
if (err < 0) { |
|
LOG_ERR("Could not enable (LP)UART clock"); |
|
return err; |
|
} |
|
|
|
/* Move pins to sleep state */ |
|
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_SLEEP); |
|
if ((err < 0) && (err != -ENOENT)) { |
|
/* |
|
* If returning -ENOENT, no pins where defined for sleep mode : |
|
* Do not output on console (might sleep already) when going to sleep, |
|
* "(LP)UART pinctrl sleep state not available" |
|
* and don't block PM suspend. |
|
* Else return the error. |
|
*/ |
|
return err; |
|
} |
|
break; |
|
default: |
|
return -ENOTSUP; |
|
} |
|
|
|
return 0; |
|
} |
|
#endif /* CONFIG_PM_DEVICE */ |
|
|
|
#ifdef CONFIG_UART_ASYNC_API |
|
|
|
/* src_dev and dest_dev should be 'MEMORY' or 'PERIPHERAL'. */ |
|
#define UART_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \ |
|
.dma_dev = DEVICE_DT_GET(STM32_DMA_CTLR(index, dir)), \ |
|
.dma_channel = DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \ |
|
.dma_cfg = { \ |
|
.dma_slot = STM32_DMA_SLOT(index, dir, slot),\ |
|
.channel_direction = STM32_DMA_CONFIG_DIRECTION( \ |
|
STM32_DMA_CHANNEL_CONFIG(index, dir)),\ |
|
.cyclic = STM32_DMA_CONFIG_CYCLIC( \ |
|
STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
|
.channel_priority = STM32_DMA_CONFIG_PRIORITY( \ |
|
STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
|
.source_data_size = STM32_DMA_CONFIG_##src_dev##_DATA_SIZE(\ |
|
STM32_DMA_CHANNEL_CONFIG(index, dir)),\ |
|
.dest_data_size = STM32_DMA_CONFIG_##dest_dev##_DATA_SIZE(\ |
|
STM32_DMA_CHANNEL_CONFIG(index, dir)),\ |
|
.source_burst_length = 1, /* SINGLE transfer */ \ |
|
.dest_burst_length = 1, \ |
|
.block_count = 1, \ |
|
.dma_callback = uart_stm32_dma_##dir##_cb, \ |
|
}, \ |
|
.src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC( \ |
|
STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
|
.dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC( \ |
|
STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
|
.fifo_threshold = STM32_DMA_FEATURES_FIFO_THRESHOLD( \ |
|
STM32_DMA_FEATURES(index, dir)), \ |
|
|
|
#endif |
|
|
|
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) || \ |
|
defined(CONFIG_PM) |
|
#define STM32_UART_IRQ_HANDLER_DECL(index) \ |
|
static void uart_stm32_irq_config_func_##index(const struct device *dev); |
|
#define STM32_UART_IRQ_HANDLER(index) \ |
|
static void uart_stm32_irq_config_func_##index(const struct device *dev) \ |
|
{ \ |
|
IRQ_CONNECT(DT_INST_IRQN(index), \ |
|
DT_INST_IRQ(index, priority), \ |
|
uart_stm32_isr, DEVICE_DT_INST_GET(index), \ |
|
0); \ |
|
irq_enable(DT_INST_IRQN(index)); \ |
|
} |
|
#else |
|
#define STM32_UART_IRQ_HANDLER_DECL(index) /* Not used */ |
|
#define STM32_UART_IRQ_HANDLER(index) /* Not used */ |
|
#endif |
|
|
|
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) || \ |
|
defined(CONFIG_PM) |
|
#define STM32_UART_IRQ_HANDLER_FUNC(index) \ |
|
.irq_config_func = uart_stm32_irq_config_func_##index, |
|
#else |
|
#define STM32_UART_IRQ_HANDLER_FUNC(index) /* Not used */ |
|
#endif |
|
|
|
#ifdef CONFIG_UART_ASYNC_API |
|
#define UART_DMA_CHANNEL(index, dir, DIR, src, dest) \ |
|
.dma_##dir = { \ |
|
COND_CODE_1(DT_INST_DMAS_HAS_NAME(index, dir), \ |
|
(UART_DMA_CHANNEL_INIT(index, dir, DIR, src, dest)), \ |
|
(NULL)) \ |
|
}, |
|
|
|
#else |
|
#define UART_DMA_CHANNEL(index, dir, DIR, src, dest) |
|
#endif |
|
|
|
#ifdef CONFIG_PM |
|
#define STM32_UART_PM_WAKEUP(index) \ |
|
.wakeup_source = DT_INST_PROP(index, wakeup_source), \ |
|
.wakeup_line = COND_CODE_1(DT_INST_NODE_HAS_PROP(index, wakeup_line), \ |
|
(DT_INST_PROP(index, wakeup_line)), \ |
|
(STM32_WAKEUP_LINE_NONE)), |
|
#else |
|
#define STM32_UART_PM_WAKEUP(index) /* Not used */ |
|
#endif |
|
|
|
/* Ensure DTS doesn't present an incompatible parity configuration. |
|
* Mark/space parity isn't supported on the STM32 family. |
|
* If 9 data bits are configured, ensure that a parity bit isn't set. |
|
*/ |
|
#define STM32_UART_CHECK_DT_PARITY(index) \ |
|
BUILD_ASSERT( \ |
|
!(DT_INST_ENUM_IDX(index, parity) == UART_CFG_PARITY_MARK || \ |
|
DT_INST_ENUM_IDX(index, parity) == UART_CFG_PARITY_SPACE), \ |
|
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \ |
|
" has unsupported parity configuration"); \ |
|
BUILD_ASSERT( \ |
|
!(DT_INST_ENUM_IDX(index, parity) != UART_CFG_PARITY_NONE && \ |
|
DT_INST_ENUM_IDX(index, data_bits) == UART_CFG_DATA_BITS_9), \ |
|
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \ |
|
" has unsupported parity + data bits combination"); |
|
|
|
/* Ensure DTS doesn't present an incompatible data bits configuration |
|
* The STM32 family doesn't support 5 data bits, or 6 data bits without parity. |
|
* Only some series support 7 data bits. |
|
*/ |
|
#ifdef LL_USART_DATAWIDTH_7B |
|
#define STM32_UART_CHECK_DT_DATA_BITS(index) \ |
|
BUILD_ASSERT( \ |
|
!(DT_INST_ENUM_IDX(index, data_bits) == UART_CFG_DATA_BITS_5 || \ |
|
(DT_INST_ENUM_IDX(index, data_bits) == UART_CFG_DATA_BITS_6 && \ |
|
DT_INST_ENUM_IDX(index, parity) == UART_CFG_PARITY_NONE)), \ |
|
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \ |
|
" has unsupported data bits configuration"); |
|
#else |
|
#define STM32_UART_CHECK_DT_DATA_BITS(index) \ |
|
BUILD_ASSERT( \ |
|
!(DT_INST_ENUM_IDX(index, data_bits) == UART_CFG_DATA_BITS_5 || \ |
|
DT_INST_ENUM_IDX(index, data_bits) == UART_CFG_DATA_BITS_6 || \ |
|
(DT_INST_ENUM_IDX(index, data_bits) == UART_CFG_DATA_BITS_7 && \ |
|
DT_INST_ENUM_IDX(index, parity) == UART_CFG_PARITY_NONE)), \ |
|
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \ |
|
" has unsupported data bits configuration"); |
|
#endif |
|
|
|
/* Ensure DTS doesn't present an incompatible stop bits configuration. |
|
* Some STM32 series USARTs don't support 0.5 stop bits, and it generally isn't |
|
* supported for LPUART. |
|
*/ |
|
#ifndef LL_USART_STOPBITS_0_5 |
|
#define STM32_UART_CHECK_DT_STOP_BITS_0_5(index) \ |
|
BUILD_ASSERT( \ |
|
DT_INST_ENUM_IDX(index, stop_bits) != UART_CFG_STOP_BITS_0_5, \ |
|
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \ |
|
" has unsupported stop bits configuration"); |
|
/* LPUARTs don't support 0.5 stop bits configurations */ |
|
#else |
|
#define STM32_UART_CHECK_DT_STOP_BITS_0_5(index) \ |
|
BUILD_ASSERT( \ |
|
!(DT_HAS_COMPAT_STATUS_OKAY(st_stm32_lpuart) && \ |
|
DT_INST_ENUM_IDX(index, stop_bits) == UART_CFG_STOP_BITS_0_5), \ |
|
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \ |
|
" has unsupported stop bits configuration"); |
|
#endif |
|
|
|
/* Ensure DTS doesn't present an incompatible stop bits configuration. |
|
* Some STM32 series USARTs don't support 1.5 stop bits, and it generally isn't |
|
* supported for LPUART. |
|
*/ |
|
#ifndef LL_USART_STOPBITS_1_5 |
|
#define STM32_UART_CHECK_DT_STOP_BITS_1_5(index) \ |
|
BUILD_ASSERT( \ |
|
DT_INST_ENUM_IDX(index, stop_bits) != UART_CFG_STOP_BITS_1_5, \ |
|
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \ |
|
" has unsupported stop bits configuration"); |
|
/* LPUARTs don't support 1.5 stop bits configurations */ |
|
#else |
|
#define STM32_UART_CHECK_DT_STOP_BITS_1_5(index) \ |
|
BUILD_ASSERT( \ |
|
!(DT_HAS_COMPAT_STATUS_OKAY(st_stm32_lpuart) && \ |
|
DT_INST_ENUM_IDX(index, stop_bits) == UART_CFG_STOP_BITS_1_5), \ |
|
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \ |
|
" has unsupported stop bits configuration"); |
|
#endif |
|
|
|
#define STM32_UART_INIT(index) \ |
|
STM32_UART_IRQ_HANDLER_DECL(index) \ |
|
\ |
|
PINCTRL_DT_INST_DEFINE(index); \ |
|
\ |
|
static const struct stm32_pclken pclken_##index[] = \ |
|
STM32_DT_INST_CLOCKS(index);\ |
|
\ |
|
static struct uart_config uart_cfg_##index = { \ |
|
.baudrate = DT_INST_PROP(index, current_speed), \ |
|
.parity = DT_INST_ENUM_IDX(index, parity), \ |
|
.stop_bits = DT_INST_ENUM_IDX(index, stop_bits), \ |
|
.data_bits = DT_INST_ENUM_IDX(index, data_bits), \ |
|
.flow_ctrl = DT_INST_PROP(index, hw_flow_control) \ |
|
? UART_CFG_FLOW_CTRL_RTS_CTS \ |
|
: UART_CFG_FLOW_CTRL_NONE, \ |
|
}; \ |
|
\ |
|
static const struct uart_stm32_config uart_stm32_cfg_##index = { \ |
|
.usart = (USART_TypeDef *)DT_INST_REG_ADDR(index), \ |
|
.reset = RESET_DT_SPEC_GET(DT_DRV_INST(index)), \ |
|
.pclken = pclken_##index, \ |
|
.pclk_len = DT_INST_NUM_CLOCKS(index), \ |
|
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \ |
|
.single_wire = DT_INST_PROP(index, single_wire), \ |
|
.tx_rx_swap = DT_INST_PROP(index, tx_rx_swap), \ |
|
.rx_invert = DT_INST_PROP(index, rx_invert), \ |
|
.tx_invert = DT_INST_PROP(index, tx_invert), \ |
|
.de_enable = DT_INST_PROP(index, de_enable), \ |
|
.de_assert_time = DT_INST_PROP(index, de_assert_time), \ |
|
.de_deassert_time = DT_INST_PROP(index, de_deassert_time), \ |
|
.de_invert = DT_INST_PROP(index, de_invert), \ |
|
.fifo_enable = DT_INST_PROP(index, fifo_enable), \ |
|
STM32_UART_IRQ_HANDLER_FUNC(index) \ |
|
STM32_UART_PM_WAKEUP(index) \ |
|
}; \ |
|
\ |
|
static struct uart_stm32_data uart_stm32_data_##index = { \ |
|
.uart_cfg = &uart_cfg_##index, \ |
|
UART_DMA_CHANNEL(index, rx, RX, PERIPHERAL, MEMORY) \ |
|
UART_DMA_CHANNEL(index, tx, TX, MEMORY, PERIPHERAL) \ |
|
}; \ |
|
\ |
|
PM_DEVICE_DT_INST_DEFINE(index, uart_stm32_pm_action); \ |
|
\ |
|
DEVICE_DT_INST_DEFINE(index, \ |
|
uart_stm32_init, \ |
|
PM_DEVICE_DT_INST_GET(index), \ |
|
&uart_stm32_data_##index, &uart_stm32_cfg_##index, \ |
|
PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, \ |
|
&uart_stm32_driver_api); \ |
|
\ |
|
STM32_UART_IRQ_HANDLER(index) \ |
|
\ |
|
STM32_UART_CHECK_DT_PARITY(index) \ |
|
STM32_UART_CHECK_DT_DATA_BITS(index) \ |
|
STM32_UART_CHECK_DT_STOP_BITS_0_5(index) \ |
|
STM32_UART_CHECK_DT_STOP_BITS_1_5(index) |
|
|
|
DT_INST_FOREACH_STATUS_OKAY(STM32_UART_INIT)
|
|
|