Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

976 lines
29 KiB

/*
* Copyright (c) 2017, Christian Taedcke
* Copyright (c) 2020 Lemonbeat GmbH
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <errno.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/irq.h>
#include <zephyr/pm/device.h>
#include <em_usart.h>
#include <em_cmu.h>
#include <soc.h>
#ifdef CONFIG_PINCTRL
#include <zephyr/drivers/pinctrl.h>
#else
#include <em_gpio.h>
#endif /* CONFIG_PINCTRL */
#if DT_NODE_HAS_PROP(id, peripheral_id)
#define USART_PREFIX cmuClock_USART
#define UART_PREFIX cmuClock_UART
#define CLOCK_USART(id) _CONCAT(USART_PREFIX, id)
#define CLOCK_UART(id) _CONCAT(UART_PREFIX, id)
#define GET_GECKO_USART_CLOCK(id) \
.clock = CLOCK_USART(DT_INST_PROP(id, peripheral_id)),
#define GET_GECKO_UART_CLOCK(id) \
.clock = CLOCK_UART(DT_INST_PROP(id, peripheral_id)),
#else
#if (USART_COUNT == 1)
#define CLOCK_USART(ref) (((ref) == USART0) ? cmuClock_USART0 \
: -1)
#elif (USART_COUNT == 2)
#define CLOCK_USART(ref) (((ref) == USART0) ? cmuClock_USART0 \
: ((ref) == USART1) ? cmuClock_USART1 \
: -1)
#elif (USART_COUNT == 3)
#define CLOCK_USART(ref) (((ref) == USART0) ? cmuClock_USART0 \
: ((ref) == USART1) ? cmuClock_USART1 \
: ((ref) == USART2) ? cmuClock_USART2 \
: -1)
#elif (USART_COUNT == 4)
#define CLOCK_USART(ref) (((ref) == USART0) ? cmuClock_USART0 \
: ((ref) == USART1) ? cmuClock_USART1 \
: ((ref) == USART2) ? cmuClock_USART2 \
: ((ref) == USART3) ? cmuClock_USART3 \
: -1)
#elif (USART_COUNT == 5)
#define CLOCK_USART(ref) (((ref) == USART0) ? cmuClock_USART0 \
: ((ref) == USART1) ? cmuClock_USART1 \
: ((ref) == USART2) ? cmuClock_USART2 \
: ((ref) == USART3) ? cmuClock_USART3 \
: ((ref) == USART4) ? cmuClock_USART4 \
: -1)
#elif (USART_COUNT == 6)
#define CLOCK_USART(ref) (((ref) == USART0) ? cmuClock_USART0 \
: ((ref) == USART1) ? cmuClock_USART1 \
: ((ref) == USART2) ? cmuClock_USART2 \
: ((ref) == USART3) ? cmuClock_USART3 \
: ((ref) == USART4) ? cmuClock_USART4 \
: ((ref) == USART5) ? cmuClock_USART5 \
: -1)
#else
#error "Undefined number of USARTs."
#endif /* USART_COUNT */
#define CLOCK_UART(ref) (((ref) == UART0) ? cmuClock_UART0 \
: ((ref) == UART1) ? cmuClock_UART1 \
: -1)
#define GET_GECKO_USART_CLOCK(id) \
.clock = CLOCK_USART((USART_TypeDef *)DT_INST_REG_ADDR(id)),
#define GET_GECKO_UART_CLOCK(id) \
.clock = CLOCK_UART((USART_TypeDef *)DT_INST_REG_ADDR(id)),
#endif /* DT_NODE_HAS_PROP(id, peripheral_id) */
/* Helper define to determine if SOC supports hardware flow control */
#if ((_SILICON_LABS_32B_SERIES > 0) || \
(defined(_USART_ROUTEPEN_RTSPEN_MASK) && \
defined(_USART_ROUTEPEN_CTSPEN_MASK)))
#define HW_FLOWCONTROL_IS_SUPPORTED_BY_SOC
#endif
#define HAS_HFC_OR(inst) DT_INST_PROP(inst, hw_flow_control) ||
#define DT_DRV_COMPAT silabs_gecko_uart
/* Has any enabled uart instance hw-flow-control enabled? */
#define UART_GECKO_UART_HW_FLOW_CONTROL_ENABLED \
DT_INST_FOREACH_STATUS_OKAY(HAS_HFC_OR) 0
#undef DT_DRV_COMPAT
#define DT_DRV_COMPAT silabs_gecko_usart
/* Has any enabled usart instance hw-flow-control enabled? */
#define UART_GECKO_USART_HW_FLOW_CONTROL_ENABLED \
DT_INST_FOREACH_STATUS_OKAY(HAS_HFC_OR) 0
#if UART_GECKO_USART_HW_FLOW_CONTROL_ENABLED || \
UART_GECKO_UART_HW_FLOW_CONTROL_ENABLED
#define UART_GECKO_HW_FLOW_CONTROL
#endif
/* Sanity check for hardware flow control */
#if defined(UART_GECKO_HW_FLOW_CONTROL) && \
(!(defined(HW_FLOWCONTROL_IS_SUPPORTED_BY_SOC)))
#error "Hardware flow control is activated for at least one UART/USART, \
but not supported by this SOC"
#endif
#if defined(UART_GECKO_HW_FLOW_CONTROL) && \
(!defined(CONFIG_SOC_GECKO_HAS_INDIVIDUAL_PIN_LOCATION) && \
!defined(GPIO_USART_ROUTEEN_RTSPEN))
#error "Driver not supporting hardware flow control for this SOC"
#endif
/**
* @brief Config struct for UART
*/
struct uart_gecko_config {
#ifdef CONFIG_PINCTRL
const struct pinctrl_dev_config *pcfg;
#endif /* CONFIG_PINCTRL */
USART_TypeDef *base;
CMU_Clock_TypeDef clock;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
void (*irq_config_func)(const struct device *dev);
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifndef CONFIG_PINCTRL
struct soc_gpio_pin pin_rx;
struct soc_gpio_pin pin_tx;
#ifdef UART_GECKO_HW_FLOW_CONTROL
struct soc_gpio_pin pin_rts;
struct soc_gpio_pin pin_cts;
#endif /* UART_GECKO_HW_FLOW_CONTROL */
#ifdef CONFIG_SOC_GECKO_HAS_INDIVIDUAL_PIN_LOCATION
uint8_t loc_rx;
uint8_t loc_tx;
#ifdef UART_GECKO_HW_FLOW_CONTROL
uint8_t loc_rts;
uint8_t loc_cts;
#endif /* UART_GECKO_HW_FLOW_CONTROL */
#else /* CONFIG_SOC_GECKO_HAS_INDIVIDUAL_PIN_LOCATION */
uint8_t loc;
#endif /* CONFIG_SOC_GECKO_HAS_INDIVIDUAL_PIN_LOCATION */
#endif
};
struct uart_gecko_data {
struct uart_config *uart_cfg;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t callback;
void *cb_data;
#endif
};
static int uart_gecko_poll_in(const struct device *dev, unsigned char *c)
{
const struct uart_gecko_config *config = dev->config;
uint32_t flags = USART_StatusGet(config->base);
if (flags & USART_STATUS_RXDATAV) {
*c = USART_Rx(config->base);
return 0;
}
return -1;
}
static void uart_gecko_poll_out(const struct device *dev, unsigned char c)
{
const struct uart_gecko_config *config = dev->config;
USART_Tx(config->base, c);
}
static int uart_gecko_err_check(const struct device *dev)
{
const struct uart_gecko_config *config = dev->config;
uint32_t flags = USART_IntGet(config->base);
int err = 0;
if (flags & USART_IF_RXOF) {
err |= UART_ERROR_OVERRUN;
}
if (flags & USART_IF_PERR) {
err |= UART_ERROR_PARITY;
}
if (flags & USART_IF_FERR) {
err |= UART_ERROR_FRAMING;
}
USART_IntClear(config->base, USART_IF_RXOF |
USART_IF_PERR |
USART_IF_FERR);
return err;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int uart_gecko_fifo_fill(const struct device *dev, const uint8_t *tx_data,
int len)
{
const struct uart_gecko_config *config = dev->config;
int num_tx = 0U;
while ((len - num_tx > 0) &&
(config->base->STATUS & USART_STATUS_TXBL)) {
config->base->TXDATA = (uint32_t)tx_data[num_tx++];
}
return num_tx;
}
static int uart_gecko_fifo_read(const struct device *dev, uint8_t *rx_data,
const int len)
{
const struct uart_gecko_config *config = dev->config;
int num_rx = 0U;
while ((len - num_rx > 0) &&
(config->base->STATUS & USART_STATUS_RXDATAV)) {
rx_data[num_rx++] = (uint8_t)config->base->RXDATA;
}
return num_rx;
}
static void uart_gecko_irq_tx_enable(const struct device *dev)
{
const struct uart_gecko_config *config = dev->config;
uint32_t mask = USART_IEN_TXBL | USART_IEN_TXC;
USART_IntEnable(config->base, mask);
}
static void uart_gecko_irq_tx_disable(const struct device *dev)
{
const struct uart_gecko_config *config = dev->config;
uint32_t mask = USART_IEN_TXBL | USART_IEN_TXC;
USART_IntDisable(config->base, mask);
}
static int uart_gecko_irq_tx_complete(const struct device *dev)
{
const struct uart_gecko_config *config = dev->config;
uint32_t flags = USART_IntGet(config->base);
USART_IntClear(config->base, USART_IF_TXC);
return (flags & USART_IF_TXC) != 0U;
}
static int uart_gecko_irq_tx_ready(const struct device *dev)
{
const struct uart_gecko_config *config = dev->config;
uint32_t flags = USART_IntGetEnabled(config->base);
return (flags & USART_IF_TXBL) != 0U;
}
static void uart_gecko_irq_rx_enable(const struct device *dev)
{
const struct uart_gecko_config *config = dev->config;
uint32_t mask = USART_IEN_RXDATAV;
USART_IntEnable(config->base, mask);
}
static void uart_gecko_irq_rx_disable(const struct device *dev)
{
const struct uart_gecko_config *config = dev->config;
uint32_t mask = USART_IEN_RXDATAV;
USART_IntDisable(config->base, mask);
}
static int uart_gecko_irq_rx_full(const struct device *dev)
{
const struct uart_gecko_config *config = dev->config;
uint32_t flags = USART_IntGet(config->base);
return (flags & USART_IF_RXDATAV) != 0U;
}
static int uart_gecko_irq_rx_ready(const struct device *dev)
{
const struct uart_gecko_config *config = dev->config;
uint32_t mask = USART_IEN_RXDATAV;
return (config->base->IEN & mask)
&& uart_gecko_irq_rx_full(dev);
}
static void uart_gecko_irq_err_enable(const struct device *dev)
{
const struct uart_gecko_config *config = dev->config;
USART_IntEnable(config->base, USART_IF_RXOF |
USART_IF_PERR |
USART_IF_FERR);
}
static void uart_gecko_irq_err_disable(const struct device *dev)
{
const struct uart_gecko_config *config = dev->config;
USART_IntDisable(config->base, USART_IF_RXOF |
USART_IF_PERR |
USART_IF_FERR);
}
static int uart_gecko_irq_is_pending(const struct device *dev)
{
return uart_gecko_irq_tx_ready(dev) || uart_gecko_irq_rx_ready(dev);
}
static int uart_gecko_irq_update(const struct device *dev)
{
return 1;
}
static void uart_gecko_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct uart_gecko_data *data = dev->data;
data->callback = cb;
data->cb_data = cb_data;
}
static void uart_gecko_isr(const struct device *dev)
{
struct uart_gecko_data *data = dev->data;
if (data->callback) {
data->callback(dev, data->cb_data);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
/**
* @brief Subroutine initializer of UART pins
*
* @param dev UART device to configure
*/
#ifndef CONFIG_PINCTRL
static void uart_gecko_init_pins(const struct device *dev)
{
const struct uart_gecko_config *config = dev->config;
/* Configure RX and TX */
GPIO_PinModeSet(config->pin_rx.port, config->pin_rx.pin,
config->pin_rx.mode, config->pin_rx.out);
GPIO_PinModeSet(config->pin_tx.port, config->pin_tx.pin,
config->pin_tx.mode, config->pin_tx.out);
#ifdef CONFIG_SOC_GECKO_HAS_INDIVIDUAL_PIN_LOCATION
/* For SOCs with configurable pin locations (set in SOC Kconfig) */
config->base->ROUTEPEN = USART_ROUTEPEN_RXPEN | USART_ROUTEPEN_TXPEN;
config->base->ROUTELOC0 =
(config->loc_tx << _USART_ROUTELOC0_TXLOC_SHIFT) |
(config->loc_rx << _USART_ROUTELOC0_RXLOC_SHIFT);
config->base->ROUTELOC1 = _USART_ROUTELOC1_RESETVALUE;
#elif defined(USART_ROUTE_RXPEN) && defined(USART_ROUTE_TXPEN)
/* For olders SOCs with only one pin location */
config->base->ROUTE = USART_ROUTE_RXPEN | USART_ROUTE_TXPEN
| (config->loc << 8);
#elif defined(GPIO_USART_ROUTEEN_RXPEN) && defined(GPIO_USART_ROUTEEN_TXPEN)
GPIO->USARTROUTE[USART_NUM(config->base)].ROUTEEN =
GPIO_USART_ROUTEEN_TXPEN | GPIO_USART_ROUTEEN_RXPEN;
GPIO->USARTROUTE[USART_NUM(config->base)].TXROUTE =
(config->pin_tx.pin << _GPIO_USART_TXROUTE_PIN_SHIFT) |
(config->pin_tx.port << _GPIO_USART_TXROUTE_PORT_SHIFT);
GPIO->USARTROUTE[USART_NUM(config->base)].RXROUTE =
(config->pin_rx.pin << _GPIO_USART_RXROUTE_PIN_SHIFT) |
(config->pin_rx.port << _GPIO_USART_RXROUTE_PORT_SHIFT);
#endif /* CONFIG_SOC_GECKO_HAS_INDIVIDUAL_PIN_LOCATION */
#ifdef UART_GECKO_HW_FLOW_CONTROL
const struct uart_gecko_data *data = dev->data;
const struct uart_config *uart_cfg = data->uart_cfg;
/* Configure HW flow control (RTS, CTS) */
if (uart_cfg->flow_ctrl) {
GPIO_PinModeSet(config->pin_rts.port, config->pin_rts.pin,
config->pin_rts.mode, config->pin_rts.out);
GPIO_PinModeSet(config->pin_cts.port, config->pin_cts.pin,
config->pin_cts.mode, config->pin_cts.out);
#ifdef CONFIG_SOC_GECKO_HAS_INDIVIDUAL_PIN_LOCATION
config->base->ROUTEPEN =
USART_ROUTEPEN_RXPEN |
USART_ROUTEPEN_TXPEN |
USART_ROUTEPEN_RTSPEN |
USART_ROUTEPEN_CTSPEN;
config->base->ROUTELOC1 =
(config->loc_rts << _USART_ROUTELOC1_RTSLOC_SHIFT) |
(config->loc_cts << _USART_ROUTELOC1_CTSLOC_SHIFT);
#elif defined(GPIO_USART_ROUTEEN_RTSPEN) && defined(GPIO_USART_ROUTEEN_CTSPEN)
GPIO->USARTROUTE[USART_NUM(config->base)].ROUTEEN =
GPIO_USART_ROUTEEN_TXPEN |
GPIO_USART_ROUTEEN_RXPEN |
GPIO_USART_ROUTEPEN_RTSPEN |
GPIO_USART_ROUTEPEN_CTSPEN;
GPIO->USARTROUTE[USART_NUM(config->base)].RTSROUTE =
(config->pin_rts.pin << _GPIO_USART_RTSROUTE_PIN_SHIFT) |
(config->pin_rts.port << _GPIO_USART_RTSROUTE_PORT_SHIFT);
GPIO->USARTROUTE[USART_NUM(config->base)].CTSROUTE =
(config->pin_cts.pin << _GPIO_USART_CTSROUTE_PIN_SHIFT) |
(config->pin_cts.port << _GPIO_USART_CTSROUTE_PORT_SHIFT);
#endif /* CONFIG_SOC_GECKO_HAS_INDIVIDUAL_PIN_LOCATION */
}
#endif /* UART_GECKO_HW_FLOW_CONTROL */
}
#endif /* !CONFIG_PINCTRL */
static inline USART_Parity_TypeDef uart_gecko_cfg2ll_parity(enum uart_config_parity parity)
{
switch (parity) {
case UART_CFG_PARITY_ODD:
return usartOddParity;
case UART_CFG_PARITY_EVEN:
return usartEvenParity;
case UART_CFG_PARITY_NONE:
default:
return usartNoParity;
}
}
static inline enum uart_config_parity uart_gecko_ll2cfg_parity(USART_Parity_TypeDef parity)
{
switch (parity) {
case usartOddParity:
return UART_CFG_PARITY_ODD;
case usartEvenParity:
return UART_CFG_PARITY_EVEN;
case usartNoParity:
default:
return UART_CFG_PARITY_NONE;
}
}
static inline USART_Stopbits_TypeDef uart_gecko_cfg2ll_stopbits(enum uart_config_stop_bits sb)
{
switch (sb) {
case UART_CFG_STOP_BITS_0_5:
return usartStopbits0p5;
case UART_CFG_STOP_BITS_1:
return usartStopbits1;
case UART_CFG_STOP_BITS_2:
return usartStopbits2;
case UART_CFG_STOP_BITS_1_5:
return usartStopbits1p5;
default:
return usartStopbits1;
}
}
static inline enum uart_config_stop_bits uart_gecko_ll2cfg_stopbits(USART_Stopbits_TypeDef sb)
{
switch (sb) {
case usartStopbits0p5:
return UART_CFG_STOP_BITS_0_5;
case usartStopbits1:
return UART_CFG_STOP_BITS_1;
case usartStopbits1p5:
return UART_CFG_STOP_BITS_1_5;
case usartStopbits2:
return UART_CFG_STOP_BITS_2;
default:
return UART_CFG_STOP_BITS_1;
}
}
static inline USART_Databits_TypeDef uart_gecko_cfg2ll_databits(enum uart_config_data_bits db,
enum uart_config_parity p)
{
switch (db) {
case UART_CFG_DATA_BITS_7:
if (p == UART_CFG_PARITY_NONE) {
return usartDatabits7;
} else {
return usartDatabits8;
}
case UART_CFG_DATA_BITS_9:
return usartDatabits9;
case UART_CFG_DATA_BITS_8:
default:
if (p == UART_CFG_PARITY_NONE) {
return usartDatabits8;
} else {
return usartDatabits9;
}
return usartDatabits8;
}
}
static inline enum uart_config_data_bits uart_gecko_ll2cfg_databits(USART_Databits_TypeDef db,
USART_Parity_TypeDef p)
{
switch (db) {
case usartDatabits7:
if (p == usartNoParity) {
return UART_CFG_DATA_BITS_7;
} else {
return UART_CFG_DATA_BITS_6;
}
case usartDatabits9:
if (p == usartNoParity) {
return UART_CFG_DATA_BITS_9;
} else {
return UART_CFG_DATA_BITS_8;
}
case usartDatabits8:
default:
if (p == usartNoParity) {
return UART_CFG_DATA_BITS_8;
} else {
return UART_CFG_DATA_BITS_7;
}
}
}
#if UART_GECKO_HW_FLOW_CONTROL
/**
* @brief Get LL hardware flow control define from
* Zephyr hardware flow control option.
* @note Supports only UART_CFG_FLOW_CTRL_RTS_CTS and UART_CFG_FLOW_CTRL_RS485.
* @param fc: Zephyr hardware flow control option.
* @retval usartHwFlowControlCtsAndRts, or usartHwFlowControlNone.
*/
static inline USART_HwFlowControl_TypeDef uart_gecko_cfg2ll_hwctrl(
enum uart_config_flow_control fc)
{
if (fc == UART_CFG_FLOW_CTRL_RTS_CTS) {
return usartHwFlowControlCtsAndRts;
}
return usartHwFlowControlNone;
}
/**
* @brief Get Zephyr hardware flow control option from
* LL hardware flow control define.
* @note Supports only usartHwFlowControlCtsAndRts.
* @param fc: LL hardware flow control definition.
* @retval UART_CFG_FLOW_CTRL_RTS_CTS, or UART_CFG_FLOW_CTRL_NONE.
*/
static inline enum uart_config_flow_control uart_gecko_ll2cfg_hwctrl(
USART_HwFlowControl_TypeDef fc)
{
if (fc == usartHwFlowControlCtsAndRts) {
return UART_CFG_FLOW_CTRL_RTS_CTS;
}
return UART_CFG_FLOW_CTRL_NONE;
}
#endif
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int uart_gecko_configure(const struct device *dev,
const struct uart_config *cfg)
{
const struct uart_gecko_config *config = dev->config;
USART_TypeDef *base = config->base;
struct uart_gecko_data *data = dev->data;
struct uart_config *uart_cfg = data->uart_cfg;
if (uart_cfg->parity != cfg->parity) {
return -ENOTSUP;
}
if (uart_cfg->stop_bits != cfg->stop_bits) {
return -ENOTSUP;
}
if (uart_cfg->data_bits != cfg->data_bits) {
return -ENOTSUP;
}
if (uart_cfg->flow_ctrl != cfg->flow_ctrl) {
return -ENOTSUP;
}
USART_BaudrateAsyncSet(base, 0, cfg->baudrate, usartOVS16);
/* Upon successful configuration, persist the syscall-passed
* uart_config.
* This allows restoring it, should the device return from a low-power
* mode in which register contents are lost.
*/
*uart_cfg = *cfg;
return 0;
};
static int uart_gecko_config_get(const struct device *dev,
struct uart_config *cfg)
{
struct uart_gecko_data *data = dev->data;
struct uart_config *uart_cfg = data->uart_cfg;
cfg->baudrate = uart_cfg->baudrate;
cfg->parity = uart_cfg->parity;
cfg->stop_bits = uart_cfg->stop_bits;
cfg->data_bits = uart_cfg->data_bits;
cfg->flow_ctrl = uart_cfg->flow_ctrl;
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
/**
* @brief Main initializer for UART
*
* @param dev UART device to be initialized
* @return int 0
*/
static int uart_gecko_init(const struct device *dev)
{
#ifdef CONFIG_PINCTRL
int err;
#endif /* CONFIG_PINCTRL */
const struct uart_gecko_config *config = dev->config;
const struct uart_gecko_data *data = dev->data;
const struct uart_config *uart_cfg = data->uart_cfg;
USART_InitAsync_TypeDef usartInit = USART_INITASYNC_DEFAULT;
/* The peripheral and gpio clock are already enabled from soc and gpio driver */
/* Enable USART clock */
CMU_ClockEnable(config->clock, true);
/* Init USART */
usartInit.baudrate = uart_cfg->baudrate;
usartInit.parity = uart_gecko_cfg2ll_parity(uart_cfg->parity);
usartInit.stopbits = uart_gecko_cfg2ll_stopbits(uart_cfg->stop_bits);
usartInit.databits = uart_gecko_cfg2ll_databits(uart_cfg->data_bits, uart_cfg->parity);
#ifdef UART_GECKO_HW_FLOW_CONTROL
usartInit.hwFlowControl = uart_cfg->flow_ctrl ?
usartHwFlowControlCtsAndRts : usartHwFlowControlNone;
#endif
USART_InitAsync(config->base, &usartInit);
#ifdef CONFIG_PINCTRL
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (err < 0) {
return err;
}
#else
/* Initialize USART pins */
uart_gecko_init_pins(dev);
#endif /* CONFIG_PINCTRL */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
config->irq_config_func(dev);
#endif
return 0;
}
#ifdef CONFIG_PM_DEVICE
static int uart_gecko_pm_action(const struct device *dev, enum pm_device_action action)
{
__maybe_unused const struct uart_gecko_config *config = dev->config;
switch (action) {
case PM_DEVICE_ACTION_SUSPEND:
#ifdef USART_STATUS_TXIDLE
/* Wait for TX FIFO to flush before suspending */
while (!(USART_StatusGet(config->base) & USART_STATUS_TXIDLE)) {
}
#endif
break;
case PM_DEVICE_ACTION_RESUME:
break;
default:
return -ENOTSUP;
}
return 0;
}
#endif
static DEVICE_API(uart, uart_gecko_driver_api) = {
.poll_in = uart_gecko_poll_in,
.poll_out = uart_gecko_poll_out,
.err_check = uart_gecko_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = uart_gecko_configure,
.config_get = uart_gecko_config_get,
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_gecko_fifo_fill,
.fifo_read = uart_gecko_fifo_read,
.irq_tx_enable = uart_gecko_irq_tx_enable,
.irq_tx_disable = uart_gecko_irq_tx_disable,
.irq_tx_complete = uart_gecko_irq_tx_complete,
.irq_tx_ready = uart_gecko_irq_tx_ready,
.irq_rx_enable = uart_gecko_irq_rx_enable,
.irq_rx_disable = uart_gecko_irq_rx_disable,
.irq_rx_ready = uart_gecko_irq_rx_ready,
.irq_err_enable = uart_gecko_irq_err_enable,
.irq_err_disable = uart_gecko_irq_err_disable,
.irq_is_pending = uart_gecko_irq_is_pending,
.irq_update = uart_gecko_irq_update,
.irq_callback_set = uart_gecko_irq_callback_set,
#endif
};
#undef DT_DRV_COMPAT
#define DT_DRV_COMPAT silabs_gecko_uart
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define GECKO_UART_IRQ_HANDLER_DECL(idx) \
static void uart_gecko_config_func_##idx(const struct device *dev)
#define GECKO_UART_IRQ_HANDLER_FUNC(idx) \
.irq_config_func = uart_gecko_config_func_##idx,
#define GECKO_UART_IRQ_HANDLER(idx) \
static void uart_gecko_config_func_##idx(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(idx, rx, irq), \
DT_INST_IRQ_BY_NAME(idx, rx, priority), \
uart_gecko_isr, DEVICE_DT_INST_GET(idx), 0); \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(idx, tx, irq), \
DT_INST_IRQ_BY_NAME(idx, tx, priority), \
uart_gecko_isr, DEVICE_DT_INST_GET(idx), 0); \
\
irq_enable(DT_INST_IRQ_BY_NAME(idx, rx, irq)); \
irq_enable(DT_INST_IRQ_BY_NAME(idx, tx, irq)); \
}
#else /* CONFIG_UART_INTERRUPT_DRIVEN */
#define GECKO_UART_IRQ_HANDLER_DECL(idx)
#define GECKO_UART_IRQ_HANDLER_FUNC(idx)
#define GECKO_UART_IRQ_HANDLER(idx)
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_SOC_GECKO_HAS_INDIVIDUAL_PIN_LOCATION
#define GECKO_UART_RX_TX_PIN_LOCATIONS(idx) \
.loc_rx = DT_INST_PROP_BY_IDX(idx, location_rx, 0), \
.loc_tx = DT_INST_PROP_BY_IDX(idx, location_tx, 0),
#define VALIDATE_GECKO_UART_RX_TX_PIN_LOCATIONS(idx)
#else
#define GECKO_UART_RX_TX_PIN_LOCATIONS(idx) \
.loc = DT_INST_PROP_BY_IDX(idx, location_rx, 0),
#define VALIDATE_GECKO_UART_RX_TX_PIN_LOCATIONS(idx) \
BUILD_ASSERT(DT_INST_PROP_BY_IDX(idx, location_rx, 0) == \
DT_INST_PROP_BY_IDX(idx, location_tx, 0), \
"DTS location-* properties must have identical value")
#endif
#define PIN_UART_RXD(idx) \
{ \
DT_INST_PROP_BY_IDX(idx, location_rx, 1), \
DT_INST_PROP_BY_IDX(idx, location_rx, 2), \
gpioModeInput, 1 \
}
#define PIN_UART_TXD(idx) \
{ \
DT_INST_PROP_BY_IDX(idx, location_tx, 1), \
DT_INST_PROP_BY_IDX(idx, location_tx, 2), \
gpioModePushPull, 1 \
}
#define GECKO_UART_RX_TX_PINS(idx) \
.pin_rx = PIN_UART_RXD(idx), \
.pin_tx = PIN_UART_TXD(idx),
#ifdef UART_GECKO_HW_FLOW_CONTROL
#ifdef CONFIG_SOC_GECKO_HAS_INDIVIDUAL_PIN_LOCATION
#define GECKO_UART_RTS_CTS_PIN_LOCATIONS(idx) \
.loc_rts = COND_CODE_1(DT_INST_PROP(idx, hw_flow_control), \
(DT_INST_PROP_BY_IDX(idx, location_rts, 0)), \
(0)), \
.loc_cts = COND_CODE_1(DT_INST_PROP(idx, hw_flow_control), \
(DT_INST_PROP_BY_IDX(idx, location_cts, 0)), \
(0)),
#define VALIDATE_GECKO_UART_RTS_CTS_PIN_LOCATIONS(idx) \
COND_CODE_1(DT_INST_PROP(idx, hw_flow_control), \
(BUILD_ASSERT(DT_INST_NODE_HAS_PROP(idx, location_rts) && \
DT_INST_NODE_HAS_PROP(idx, location_cts), \
"DTS location-rts and location-cts are mandatory")), \
())
#else /* CONFIG_SOC_GECKO_HAS_INDIVIDUAL_PIN_LOCATION */
/* Hardware flow control not supported for these SOCs */
#define GECKO_UART_RTS_CTS_PIN_LOCATIONS(idx)
#define VALIDATE_GECKO_UART_RTS_CTS_PIN_LOCATIONS(idx)
#endif /* CONFIG_SOC_GECKO_HAS_INDIVIDUAL_PIN_LOCATION */
#define PIN_UART_RTS(idx) \
COND_CODE_1(DT_INST_PROP(idx, hw_flow_control), \
({ \
DT_INST_PROP_BY_IDX(idx, location_rts, 1), \
DT_INST_PROP_BY_IDX(idx, location_rts, 2), \
gpioModePushPull, 1 \
}), \
({0}))
#define PIN_UART_CTS(idx) \
COND_CODE_1(DT_INST_PROP(idx, hw_flow_control), \
({ \
DT_INST_PROP_BY_IDX(idx, location_cts, 1), \
DT_INST_PROP_BY_IDX(idx, location_cts, 2), \
gpioModeInput, 1 \
}), \
({0}))
#define GECKO_UART_RTS_CTS_PINS(idx) \
.pin_rts = PIN_UART_RTS(idx), \
.pin_cts = PIN_UART_CTS(idx),
#else /* UART_GECKO_HW_FLOW_CONTROL */
#define GECKO_UART_RTS_CTS_PIN_LOCATIONS(idx)
#define VALIDATE_GECKO_UART_RTS_CTS_PIN_LOCATIONS(idx)
#define GECKO_UART_RTS_CTS_PINS(idx)
#endif /* UART_GECKO_HW_FLOW_CONTROL */
#define GECKO_UART_INIT(idx) \
VALIDATE_GECKO_UART_RX_TX_PIN_LOCATIONS(idx); \
VALIDATE_GECKO_UART_RTS_CTS_PIN_LOCATIONS(idx); \
\
GECKO_UART_IRQ_HANDLER_DECL(idx); \
PM_DEVICE_DT_INST_DEFINE(idx, uart_gecko_pm_action); \
\
static struct uart_config uart_cfg_##idx = { \
.baudrate = DT_INST_PROP(idx, current_speed), \
.parity = DT_INST_ENUM_IDX(idx, parity), \
.stop_bits = DT_INST_ENUM_IDX(idx, stop_bits), \
.data_bits = DT_INST_ENUM_IDX(idx, data_bits), \
.flow_ctrl = DT_INST_PROP(idx, hw_flow_control) \
? UART_CFG_FLOW_CTRL_RTS_CTS \
: UART_CFG_FLOW_CTRL_NONE, \
}; \
\
static const struct uart_gecko_config uart_gecko_cfg_##idx = { \
.base = (USART_TypeDef *)DT_INST_REG_ADDR(idx), \
GET_GECKO_UART_CLOCK(idx) \
GECKO_UART_RX_TX_PINS(idx) \
GECKO_UART_RTS_CTS_PINS(idx) \
GECKO_UART_RX_TX_PIN_LOCATIONS(idx) \
GECKO_UART_RTS_CTS_PIN_LOCATIONS(idx) \
GECKO_UART_IRQ_HANDLER_FUNC(idx) \
}; \
\
\
static struct uart_gecko_data uart_gecko_data_##idx = { \
.uart_cfg = &uart_cfg_##idx, \
}; \
\
DEVICE_DT_INST_DEFINE(idx, uart_gecko_init, PM_DEVICE_DT_INST_GET(idx), \
&uart_gecko_data_##idx, &uart_gecko_cfg_##idx, \
PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, \
&uart_gecko_driver_api); \
\
GECKO_UART_IRQ_HANDLER(idx)
DT_INST_FOREACH_STATUS_OKAY(GECKO_UART_INIT)
#undef DT_DRV_COMPAT
#define DT_DRV_COMPAT silabs_gecko_usart
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define GECKO_USART_IRQ_HANDLER_DECL(idx) \
static void usart_gecko_config_func_##idx(const struct device *dev)
#define GECKO_USART_IRQ_HANDLER_FUNC(idx) \
.irq_config_func = usart_gecko_config_func_##idx,
#define GECKO_USART_IRQ_HANDLER(idx) \
static void usart_gecko_config_func_##idx(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(idx, rx, irq), \
DT_INST_IRQ_BY_NAME(idx, rx, priority), \
uart_gecko_isr, DEVICE_DT_INST_GET(idx), 0); \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(idx, tx, irq), \
DT_INST_IRQ_BY_NAME(idx, tx, priority), \
uart_gecko_isr, DEVICE_DT_INST_GET(idx), 0); \
\
irq_enable(DT_INST_IRQ_BY_NAME(idx, rx, irq)); \
irq_enable(DT_INST_IRQ_BY_NAME(idx, tx, irq)); \
}
#else
#define GECKO_USART_IRQ_HANDLER_DECL(idx)
#define GECKO_USART_IRQ_HANDLER_FUNC(idx)
#define GECKO_USART_IRQ_HANDLER(idx)
#endif
#ifdef CONFIG_PINCTRL
#define GECKO_USART_INIT(idx) \
PINCTRL_DT_INST_DEFINE(idx); \
GECKO_USART_IRQ_HANDLER_DECL(idx); \
PM_DEVICE_DT_INST_DEFINE(idx, uart_gecko_pm_action); \
\
static struct uart_config uart_cfg_##idx = { \
.baudrate = DT_INST_PROP(idx, current_speed), \
.parity = DT_INST_ENUM_IDX(idx, parity), \
.stop_bits = DT_INST_ENUM_IDX(idx, stop_bits), \
.data_bits = DT_INST_ENUM_IDX(idx, data_bits), \
.flow_ctrl = DT_INST_PROP(idx, hw_flow_control) \
? UART_CFG_FLOW_CTRL_RTS_CTS \
: UART_CFG_FLOW_CTRL_NONE, \
}; \
\
static const struct uart_gecko_config usart_gecko_cfg_##idx = { \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx), \
.base = (USART_TypeDef *)DT_INST_REG_ADDR(idx), \
GET_GECKO_USART_CLOCK(idx) \
GECKO_USART_IRQ_HANDLER_FUNC(idx) \
} ; \
\
static struct uart_gecko_data usart_gecko_data_##idx = { \
.uart_cfg = &uart_cfg_##idx, \
}; \
\
DEVICE_DT_INST_DEFINE(idx, uart_gecko_init, PM_DEVICE_DT_INST_GET(idx), \
&usart_gecko_data_##idx, \
&usart_gecko_cfg_##idx, PRE_KERNEL_1, \
CONFIG_SERIAL_INIT_PRIORITY, \
&uart_gecko_driver_api); \
\
GECKO_USART_IRQ_HANDLER(idx)
#else
#define GECKO_USART_INIT(idx) \
VALIDATE_GECKO_UART_RX_TX_PIN_LOCATIONS(idx); \
VALIDATE_GECKO_UART_RTS_CTS_PIN_LOCATIONS(idx); \
\
GECKO_USART_IRQ_HANDLER_DECL(idx); \
PM_DEVICE_DT_INST_DEFINE(idx, uart_gecko_pm_action); \
\
static struct uart_config uart_cfg_##idx = { \
.baudrate = DT_INST_PROP(idx, current_speed), \
.parity = DT_INST_ENUM_IDX(idx, parity), \
.stop_bits = DT_INST_ENUM_IDX(idx, stop_bits), \
.data_bits = DT_INST_ENUM_IDX(idx, data_bits), \
.flow_ctrl = DT_INST_PROP(idx, hw_flow_control) \
? UART_CFG_FLOW_CTRL_RTS_CTS \
: UART_CFG_FLOW_CTRL_NONE, \
}; \
\
static const struct uart_gecko_config usart_gecko_cfg_##idx = { \
.base = (USART_TypeDef *)DT_INST_REG_ADDR(idx), \
GET_GECKO_USART_CLOCK(idx) \
GECKO_UART_RX_TX_PINS(idx) \
GECKO_UART_RTS_CTS_PINS(idx) \
GECKO_UART_RX_TX_PIN_LOCATIONS(idx) \
GECKO_UART_RTS_CTS_PIN_LOCATIONS(idx) \
GECKO_USART_IRQ_HANDLER_FUNC(idx) \
}; \
\
static struct uart_gecko_data usart_gecko_data_##idx = { \
.uart_cfg = &uart_cfg_##idx, \
}; \
\
DEVICE_DT_INST_DEFINE(idx, uart_gecko_init, PM_DEVICE_DT_INST_GET(idx), \
&usart_gecko_data_##idx, \
&usart_gecko_cfg_##idx, PRE_KERNEL_1, \
CONFIG_SERIAL_INIT_PRIORITY, \
&uart_gecko_driver_api); \
\
GECKO_USART_IRQ_HANDLER(idx)
#endif
DT_INST_FOREACH_STATUS_OKAY(GECKO_USART_INIT)