Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

174 lines
5.6 KiB

/*
* Copyright (c) 2025 Silicon Laboratories Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT silabs_letimer_pwm
#include <errno.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/clock_control_silabs.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/pwm.h>
#include <zephyr/logging/log.h>
#include <zephyr/pm/device.h>
#include <sl_hal_letimer.h>
LOG_MODULE_REGISTER(pwm_silabs_letimer, CONFIG_PWM_LOG_LEVEL);
struct silabs_letimer_pwm_config {
const struct pinctrl_dev_config *pcfg;
const struct device *clock_dev;
const struct silabs_clock_control_cmu_config clock_cfg;
LETIMER_TypeDef *base;
int clock_div;
bool run_in_debug;
};
static bool silabs_letimer_channel_is_pwm(const struct silabs_letimer_pwm_config *config,
uint32_t channel)
{
uint32_t mask = (channel == 0) ? _LETIMER_CTRL_UFOA0_MASK : _LETIMER_CTRL_UFOA1_MASK;
return FIELD_GET(mask, config->base->CTRL) == _LETIMER_CTRL_UFOA0_PWM;
}
static int silabs_letimer_pwm_set_cycles(const struct device *dev, uint32_t channel,
uint32_t period_cycles, uint32_t pulse_cycles,
pwm_flags_t flags)
{
bool invert_polarity = (flags & PWM_POLARITY_MASK) == PWM_POLARITY_INVERTED;
const struct silabs_letimer_pwm_config *config = dev->config;
if (period_cycles >= BIT(24) || pulse_cycles >= BIT(24)) {
return -ENOTSUP;
}
/* The hardware is not capable of driving a constant active level.
* Convert it into a constant inactive level with opposite polarity.
*/
if (pulse_cycles > 0 && pulse_cycles == period_cycles) {
invert_polarity = !invert_polarity;
pulse_cycles = 0;
}
if (invert_polarity) {
sys_set_bit((mem_addr_t)&config->base->CTRL, channel + _LETIMER_CTRL_OPOL0_SHIFT);
} else {
sys_clear_bit((mem_addr_t)&config->base->CTRL, channel + _LETIMER_CTRL_OPOL0_SHIFT);
}
if (!silabs_letimer_channel_is_pwm(config, channel)) {
config->base->CTRL_SET =
(channel == 0) ? LETIMER_CTRL_UFOA0_PWM : LETIMER_CTRL_UFOA1_PWM;
}
sl_hal_letimer_set_compare(config->base, channel, pulse_cycles);
sl_hal_letimer_set_top(config->base, period_cycles);
if (!(config->base->STATUS & LETIMER_STATUS_RUNNING)) {
sl_hal_letimer_start(config->base);
}
return 0;
}
static int silabs_letimer_pwm_get_cycles_per_sec(const struct device *dev, uint32_t channel,
uint64_t *cycles)
{
const struct silabs_letimer_pwm_config *config = dev->config;
uint32_t clock_rate;
int err;
err = clock_control_get_rate(config->clock_dev, (clock_control_subsys_t)&config->clock_cfg,
&clock_rate);
if (err < 0) {
return err;
}
*cycles = clock_rate / BIT(config->clock_div);
return 0;
}
static int silabs_letimer_pwm_pm_action(const struct device *dev, enum pm_device_action action)
{
const struct silabs_letimer_pwm_config *config = dev->config;
int err;
if (action == PM_DEVICE_ACTION_RESUME) {
err = clock_control_on(config->clock_dev,
(clock_control_subsys_t)&config->clock_cfg);
if (err < 0 && err != -EALREADY) {
return err;
}
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (err < 0 && err != -ENOENT) {
return err;
}
sl_hal_letimer_enable(config->base);
} else if (IS_ENABLED(CONFIG_PM_DEVICE) && (action == PM_DEVICE_ACTION_SUSPEND)) {
sl_hal_letimer_disable(config->base);
err = clock_control_off(config->clock_dev,
(clock_control_subsys_t)&config->clock_cfg);
if (err < 0) {
return err;
}
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_SLEEP);
if (err < 0 && err != -ENOENT) {
return err;
}
} else {
return -ENOTSUP;
}
return 0;
}
static int silabs_letimer_pwm_init(const struct device *dev)
{
sl_hal_letimer_config_t letimer_config = SL_HAL_LETIMER_CONFIG_DEFAULT;
const struct silabs_letimer_pwm_config *config = dev->config;
int err;
err = clock_control_on(config->clock_dev, (clock_control_subsys_t)&config->clock_cfg);
if (err < 0 && err != -EALREADY) {
return err;
}
letimer_config.prescaler = config->clock_div;
letimer_config.debug_run = config->run_in_debug;
letimer_config.enable_top = true;
sl_hal_letimer_init(config->base, &letimer_config);
return pm_device_driver_init(dev, silabs_letimer_pwm_pm_action);
}
static DEVICE_API(pwm, silabs_letimer_pwm_api) = {
.set_cycles = silabs_letimer_pwm_set_cycles,
.get_cycles_per_sec = silabs_letimer_pwm_get_cycles_per_sec,
};
#define LETIMER_PWM_INIT(inst) \
PINCTRL_DT_INST_DEFINE(inst); \
PM_DEVICE_DT_INST_DEFINE(inst, silabs_letimer_pwm_pm_action); \
\
static const struct silabs_letimer_pwm_config letimer_pwm_config_##inst = { \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(inst), \
.clock_dev = DEVICE_DT_GET(DT_CLOCKS_CTLR(DT_INST_PARENT(inst))), \
.clock_cfg = SILABS_DT_CLOCK_CFG(DT_INST_PARENT(inst)), \
.base = (LETIMER_TypeDef *)DT_REG_ADDR(DT_INST_PARENT(inst)), \
.run_in_debug = DT_PROP(DT_INST_PARENT(inst), run_in_debug), \
.clock_div = DT_ENUM_IDX(DT_INST_PARENT(inst), clock_div), \
}; \
DEVICE_DT_INST_DEFINE(inst, &silabs_letimer_pwm_init, PM_DEVICE_DT_INST_GET(inst), NULL, \
&letimer_pwm_config_##inst, POST_KERNEL, CONFIG_PWM_INIT_PRIORITY, \
&silabs_letimer_pwm_api);
DT_INST_FOREACH_STATUS_OKAY(LETIMER_PWM_INIT)