Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

664 lines
24 KiB

/*
* Copyright (c) 2024 Renesas Electronics Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/irq.h>
#include <zephyr/drivers/pwm.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/dt-bindings/pwm/renesas_rz_pwm.h>
#include "r_gpt.h"
#include "r_gpt_cfg.h"
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(pwm_renesas_rz_gpt, CONFIG_PWM_LOG_LEVEL);
#define DT_DRV_COMPAT renesas_rz_gpt_pwm
#define GPT_PRV_GTIO_HIGH_COMPARE_MATCH_LOW_CYCLE_END 0x6U
#define GPT_PRV_GTIO_LOW_COMPARE_MATCH_HIGH_CYCLE_END 0x9U
#define GPT_PRV_GTIOR_INITIAL_LEVEL_BIT 4
#define CAPTURE_BOTH_MODE_FIRST_EVENT_IS_CAPTURE_PULSE 1
#define CAPTURE_BOTH_MODE_SECOND_EVENT_IS_CAPTURE_PERIOD 2
struct pwm_rz_gpt_capture_data {
pwm_capture_callback_handler_t callback;
void *user_data;
uint64_t period;
uint64_t pulse;
uint16_t capture_type_flag;
uint32_t capture_both_event_count;
bool is_busy;
uint32_t overflows;
bool continuous;
uint32_t capture_channel;
};
struct pwm_rz_gpt_data {
timer_cfg_t *fsp_cfg;
gpt_instance_ctrl_t *fsp_ctrl;
#ifdef CONFIG_PWM_CAPTURE
struct pwm_rz_gpt_capture_data capture;
#endif /* CONFIG_PWM_CAPTURE */
};
struct pwm_rz_gpt_config {
const struct pinctrl_dev_config *pincfg;
const timer_api_t *fsp_api;
};
static uint32_t pwm_rz_gpt_gtior_calculate(gpt_pin_level_t const stop_level)
{
/* The stop level is used as both the initial level and the stop level. */
uint32_t gtior = R_GPT0_GTIOR_OAE_Msk | ((uint32_t)stop_level << R_GPT0_GTIOR_OADFLT_Pos) |
((uint32_t)stop_level << GPT_PRV_GTIOR_INITIAL_LEVEL_BIT);
uint32_t gtion = GPT_PRV_GTIO_LOW_COMPARE_MATCH_HIGH_CYCLE_END;
/* Calculate the gtior value for PWM mode only */
gtior |= gtion;
return gtior;
}
static int pwm_rz_gpt_apply_gtior_config(gpt_instance_ctrl_t *const p_ctrl,
timer_cfg_t const *const p_cfg)
{
gpt_extended_cfg_t *p_extend = (gpt_extended_cfg_t *)p_cfg->p_extend;
uint32_t gtior = p_extend->gtior_setting.gtior;
#if GPT_CFG_OUTPUT_SUPPORT_ENABLE
/* Check if custom GTIOR settings are provided. */
if (p_extend->gtior_setting.gtior == 0) {
/* If custom GTIOR settings are not provided, calculate GTIOR. */
if (p_extend->gtioca.output_enabled) {
uint32_t gtioca_gtior =
pwm_rz_gpt_gtior_calculate(p_extend->gtioca.stop_level);
gtior |= gtioca_gtior << R_GPT0_GTIOR_GTIOA_Pos;
}
if (p_extend->gtiocb.output_enabled) {
uint32_t gtiocb_gtior =
pwm_rz_gpt_gtior_calculate(p_extend->gtiocb.stop_level);
gtior |= gtiocb_gtior << R_GPT0_GTIOR_GTIOB_Pos;
}
}
#endif
/* Check if custom GTIOR settings are provided. */
if (p_extend->gtior_setting.gtior == 0) {
/*
* If custom GTIOR settings are not provided, configure the noise filter for
* the GTIOC pins.
*/
gtior |= (uint32_t)(p_extend->capture_filter_gtioca << R_GPT0_GTIOR_NFAEN_Pos);
gtior |= (uint32_t)(p_extend->capture_filter_gtiocb << R_GPT0_GTIOR_NFBEN_Pos);
}
/* Set the I/O control register. */
p_ctrl->p_reg->GTIOR = gtior;
return 0;
}
static int pwm_rz_gpt_set_cycles(const struct device *dev, uint32_t channel, uint32_t period_cycles,
uint32_t pulse_cycles, pwm_flags_t flags)
{
const struct pwm_rz_gpt_config *cfg = dev->config;
struct pwm_rz_gpt_data *data = dev->data;
gpt_extended_cfg_t *fsp_cfg_extend = (gpt_extended_cfg_t *)data->fsp_cfg->p_extend;
uint32_t pulse;
fsp_err_t err;
uint32_t pin;
/* gtioca and gtiocb setting */
if (channel == RZ_PWM_GPT_IO_A) {
pin = GPT_IO_PIN_GTIOCA;
fsp_cfg_extend->gtioca.output_enabled = true;
} else if (channel == RZ_PWM_GPT_IO_B) {
pin = GPT_IO_PIN_GTIOCB;
fsp_cfg_extend->gtiocb.output_enabled = true;
} else {
LOG_ERR("Valid only for RZ_PWM_GPT_IO_A and RZ_PWM_GPT_IO_B pins");
return -EINVAL;
}
if ((data->fsp_ctrl->variant == TIMER_VARIANT_16_BIT && period_cycles > UINT16_MAX) ||
(data->fsp_ctrl->variant == TIMER_VARIANT_32_BIT && period_cycles > UINT32_MAX)) {
LOG_ERR("Out of range period cycles are not valid");
return -EINVAL;
}
pulse = (flags & PWM_POLARITY_INVERTED) ? period_cycles - pulse_cycles : pulse_cycles;
/* Apply gtio output setting */
pwm_rz_gpt_apply_gtior_config(data->fsp_ctrl, data->fsp_cfg);
/* Stop timer */
err = cfg->fsp_api->stop(data->fsp_ctrl);
if (err != FSP_SUCCESS) {
return -EIO;
}
/* Update period cycles, reflected at an overflow */
err = cfg->fsp_api->periodSet(data->fsp_ctrl, period_cycles);
if (err != FSP_SUCCESS) {
return -EIO;
}
/* Update pulse cycles, reflected at an overflow */
err = cfg->fsp_api->dutyCycleSet(data->fsp_ctrl, pulse, pin);
if (err != FSP_SUCCESS) {
return -EIO;
}
/* Start timer */
err = cfg->fsp_api->start(data->fsp_ctrl);
if (err != FSP_SUCCESS) {
return -EIO;
}
return 0;
};
static int pwm_rz_gpt_get_cycles_per_sec(const struct device *dev, uint32_t channel,
uint64_t *cycles)
{
const struct pwm_rz_gpt_config *cfg = dev->config;
struct pwm_rz_gpt_data *data = dev->data;
timer_info_t info;
fsp_err_t err;
if (!(channel == RZ_PWM_GPT_IO_A || channel == RZ_PWM_GPT_IO_B)) {
LOG_ERR("Valid only for RZ_PWM_GPT_IO_A and RZ_PWM_GPT_IO_B pins");
return -EINVAL;
}
err = cfg->fsp_api->infoGet(data->fsp_ctrl, &info);
if (err != FSP_SUCCESS) {
return -EIO;
}
*cycles = (uint64_t)info.clock_frequency;
return 0;
};
extern void gpt_capture_a_isr(void);
extern void gpt_capture_b_isr(void);
extern void gpt_counter_overflow_isr(void);
#ifdef CONFIG_PWM_CAPTURE
static int pwm_rz_gpt_configure_capture(const struct device *dev, uint32_t channel,
pwm_flags_t flags, pwm_capture_callback_handler_t cb,
void *user_data)
{
struct pwm_rz_gpt_data *data = dev->data;
gpt_extended_cfg_t *fsp_cfg_extend = (gpt_extended_cfg_t *)data->fsp_cfg->p_extend;
if (!(flags & PWM_CAPTURE_TYPE_MASK)) {
LOG_ERR("No PWWM capture type specified");
return -EINVAL;
}
data->capture.capture_type_flag = flags & PWM_CAPTURE_TYPE_MASK;
data->capture.capture_channel = channel;
if (data->capture.is_busy) {
LOG_ERR("Capture already active on this pin");
return -EBUSY;
}
if (channel == RZ_PWM_GPT_IO_A) {
if (data->capture.capture_type_flag == PWM_CAPTURE_TYPE_BOTH) {
data->capture.capture_both_event_count = 0;
if (flags & PWM_POLARITY_INVERTED) {
fsp_cfg_extend->start_source =
(gpt_source_t)(GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_LOW |
GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_HIGH |
GPT_SOURCE_NONE);
} else {
fsp_cfg_extend->start_source =
(gpt_source_t)(GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_LOW |
GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_HIGH |
GPT_SOURCE_NONE);
}
fsp_cfg_extend->capture_a_source =
(gpt_source_t)(GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_LOW |
GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_HIGH |
GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_LOW |
GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_HIGH |
GPT_SOURCE_NONE);
} else if (data->capture.capture_type_flag == PWM_CAPTURE_TYPE_PERIOD) {
if (flags & PWM_POLARITY_INVERTED) {
fsp_cfg_extend->start_source =
(gpt_source_t)(GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_LOW |
GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_HIGH |
GPT_SOURCE_NONE);
fsp_cfg_extend->capture_a_source = fsp_cfg_extend->start_source;
} else {
fsp_cfg_extend->start_source =
(gpt_source_t)(GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_LOW |
GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_HIGH |
GPT_SOURCE_NONE);
fsp_cfg_extend->capture_a_source = fsp_cfg_extend->start_source;
}
} else {
if (flags & PWM_POLARITY_INVERTED) {
fsp_cfg_extend->start_source =
(gpt_source_t)(GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_LOW |
GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_HIGH |
GPT_SOURCE_NONE);
fsp_cfg_extend->capture_a_source =
(gpt_source_t)(GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_LOW |
GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_HIGH |
GPT_SOURCE_NONE);
} else {
fsp_cfg_extend->start_source =
(gpt_source_t)(GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_LOW |
GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_HIGH |
GPT_SOURCE_NONE);
fsp_cfg_extend->capture_a_source =
(gpt_source_t)(GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_LOW |
GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_HIGH |
GPT_SOURCE_NONE);
}
}
} else if (channel == RZ_PWM_GPT_IO_B) {
if (data->capture.capture_type_flag == PWM_CAPTURE_TYPE_BOTH) {
data->capture.capture_both_event_count = 0;
if (flags & PWM_POLARITY_INVERTED) {
fsp_cfg_extend->start_source =
(gpt_source_t)(GPT_SOURCE_GTIOCB_FALLING_WHILE_GTIOCA_LOW |
GPT_SOURCE_GTIOCB_FALLING_WHILE_GTIOCA_HIGH |
GPT_SOURCE_NONE);
} else {
fsp_cfg_extend->start_source =
(gpt_source_t)(GPT_SOURCE_GTIOCB_RISING_WHILE_GTIOCA_LOW |
GPT_SOURCE_GTIOCB_RISING_WHILE_GTIOCA_HIGH |
GPT_SOURCE_NONE);
}
fsp_cfg_extend->capture_b_source =
(gpt_source_t)(GPT_SOURCE_GTIOCB_RISING_WHILE_GTIOCA_LOW |
GPT_SOURCE_GTIOCB_RISING_WHILE_GTIOCA_HIGH |
GPT_SOURCE_GTIOCB_FALLING_WHILE_GTIOCA_LOW |
GPT_SOURCE_GTIOCB_FALLING_WHILE_GTIOCA_HIGH |
GPT_SOURCE_NONE);
} else if (data->capture.capture_type_flag == PWM_CAPTURE_TYPE_PERIOD) {
if (flags & PWM_POLARITY_INVERTED) {
fsp_cfg_extend->start_source =
(gpt_source_t)(GPT_SOURCE_GTIOCB_FALLING_WHILE_GTIOCA_LOW |
GPT_SOURCE_GTIOCB_FALLING_WHILE_GTIOCA_HIGH |
GPT_SOURCE_NONE);
fsp_cfg_extend->capture_b_source = fsp_cfg_extend->start_source;
} else {
fsp_cfg_extend->start_source =
(gpt_source_t)(GPT_SOURCE_GTIOCB_RISING_WHILE_GTIOCA_LOW |
GPT_SOURCE_GTIOCB_RISING_WHILE_GTIOCA_HIGH |
GPT_SOURCE_NONE);
fsp_cfg_extend->capture_b_source = fsp_cfg_extend->start_source;
}
} else {
if (flags & PWM_POLARITY_INVERTED) {
fsp_cfg_extend->start_source =
(gpt_source_t)(GPT_SOURCE_GTIOCB_FALLING_WHILE_GTIOCA_LOW |
GPT_SOURCE_GTIOCB_FALLING_WHILE_GTIOCA_HIGH |
GPT_SOURCE_NONE);
fsp_cfg_extend->capture_b_source =
(gpt_source_t)(GPT_SOURCE_GTIOCB_RISING_WHILE_GTIOCA_LOW |
GPT_SOURCE_GTIOCB_RISING_WHILE_GTIOCA_HIGH |
GPT_SOURCE_NONE);
} else {
fsp_cfg_extend->start_source =
(gpt_source_t)(GPT_SOURCE_GTIOCB_RISING_WHILE_GTIOCA_LOW |
GPT_SOURCE_GTIOCB_RISING_WHILE_GTIOCA_HIGH |
GPT_SOURCE_NONE);
fsp_cfg_extend->capture_b_source =
(gpt_source_t)(GPT_SOURCE_GTIOCB_FALLING_WHILE_GTIOCA_LOW |
GPT_SOURCE_GTIOCB_FALLING_WHILE_GTIOCA_HIGH |
GPT_SOURCE_NONE);
}
}
}
data->capture.callback = cb;
data->capture.user_data = user_data;
data->capture.continuous = flags & PWM_CAPTURE_MODE_CONTINUOUS;
if (data->capture.continuous) {
if (channel == RZ_PWM_GPT_IO_A) {
fsp_cfg_extend->stop_source = fsp_cfg_extend->capture_a_source;
} else if (channel == RZ_PWM_GPT_IO_B) {
fsp_cfg_extend->stop_source = fsp_cfg_extend->capture_b_source;
}
fsp_cfg_extend->clear_source = fsp_cfg_extend->start_source;
}
else {
fsp_cfg_extend->stop_source = (gpt_source_t)(GPT_SOURCE_NONE);
fsp_cfg_extend->clear_source = (gpt_source_t)(GPT_SOURCE_NONE);
}
return 0;
}
static int pwm_rz_gpt_enable_capture(const struct device *dev, uint32_t channel)
{
const struct pwm_rz_gpt_config *cfg = dev->config;
struct pwm_rz_gpt_data *data = dev->data;
gpt_extended_cfg_t *fsp_cfg_extend = (gpt_extended_cfg_t *)data->fsp_cfg->p_extend;
fsp_err_t err;
data->capture.capture_channel = channel;
if (data->capture.is_busy) {
LOG_ERR("Capture already active on this pin");
return -EBUSY;
}
if (!data->capture.callback) {
LOG_ERR("PWM capture not configured");
return -EINVAL;
}
data->capture.is_busy = true;
/* Enable capture source */
err = cfg->fsp_api->enable(data->fsp_ctrl);
if (err != FSP_SUCCESS) {
return -EIO;
}
/* Enable interruption */
irq_enable(data->fsp_cfg->cycle_end_irq);
if (channel == RZ_PWM_GPT_IO_A) {
irq_enable(fsp_cfg_extend->capture_a_irq);
} else if (channel == RZ_PWM_GPT_IO_B) {
irq_enable(fsp_cfg_extend->capture_b_irq);
}
return 0;
}
static int pwm_rz_gpt_disable_capture(const struct device *dev, uint32_t channel)
{
const struct pwm_rz_gpt_config *cfg = dev->config;
struct pwm_rz_gpt_data *data = dev->data;
fsp_err_t err;
gpt_extended_cfg_t *fsp_cfg_extend = (gpt_extended_cfg_t *)data->fsp_cfg->p_extend;
data->capture.capture_channel = channel;
data->capture.is_busy = false;
/* Disable interruption */
irq_disable(data->fsp_cfg->cycle_end_irq);
if (channel == RZ_PWM_GPT_IO_A) {
irq_disable(fsp_cfg_extend->capture_a_irq);
} else if (channel == RZ_PWM_GPT_IO_B) {
irq_disable(fsp_cfg_extend->capture_b_irq);
}
/* Disable capture source */
err = cfg->fsp_api->disable(data->fsp_ctrl);
if (err != FSP_SUCCESS) {
return -EIO;
}
/* Stop timer */
err = cfg->fsp_api->stop(data->fsp_ctrl);
if (err != FSP_SUCCESS) {
return -EIO;
}
/* Clear timer */
err = cfg->fsp_api->reset(data->fsp_ctrl);
if (err != FSP_SUCCESS) {
return -EIO;
}
return 0;
}
static void fsp_callback(timer_callback_args_t *p_args)
{
const struct device *dev = p_args->p_context;
const struct pwm_rz_gpt_config *cfg = dev->config;
struct pwm_rz_gpt_data *data = dev->data;
timer_info_t info;
(void)cfg->fsp_api->infoGet(data->fsp_ctrl, &info);
uint64_t period = info.period_counts;
/* The maximum period is one more than the maximum 16,32-bit number, but will be reflected
* as 0
*/
if (period == 0U) {
if (data->fsp_ctrl->variant == TIMER_VARIANT_16_BIT) {
period = UINT16_MAX + 1U;
} else {
period = UINT32_MAX + 1U;
}
}
/* Capture event */
if (p_args->event == TIMER_EVENT_CAPTURE_A) {
if (p_args->capture != 0U) {
bool check_disable_capture = false;
if (data->capture.capture_type_flag == PWM_CAPTURE_TYPE_BOTH) {
data->capture.capture_both_event_count++;
if (data->capture.capture_both_event_count ==
CAPTURE_BOTH_MODE_FIRST_EVENT_IS_CAPTURE_PULSE) {
data->capture.pulse = (data->capture.overflows * period) +
p_args->capture;
}
if (data->capture.capture_both_event_count ==
CAPTURE_BOTH_MODE_SECOND_EVENT_IS_CAPTURE_PERIOD) {
data->capture.capture_both_event_count = 0;
data->capture.period = (data->capture.overflows * period) +
p_args->capture;
data->capture.callback(
dev, GPT_IO_PIN_GTIOCA, data->capture.period,
data->capture.pulse, 0, data->capture.user_data);
check_disable_capture = true;
}
} else if (data->capture.capture_type_flag == PWM_CAPTURE_TYPE_PULSE) {
data->capture.pulse =
(data->capture.overflows * period) + p_args->capture;
data->capture.callback(dev, GPT_IO_PIN_GTIOCA, 0,
data->capture.pulse, 0,
data->capture.user_data);
check_disable_capture = true;
} else {
data->capture.period =
(data->capture.overflows * period) + p_args->capture;
data->capture.callback(dev, GPT_IO_PIN_GTIOCA, data->capture.period,
0, 0, data->capture.user_data);
check_disable_capture = true;
}
if (check_disable_capture) {
data->capture.overflows = 0U;
/* Disable capture in single mode */
if (data->capture.continuous == false) {
pwm_rz_gpt_disable_capture(dev, GPT_IO_PIN_GTIOCA);
}
}
}
} else if (p_args->event == TIMER_EVENT_CAPTURE_B) {
if (p_args->capture != 0U) {
bool check_disable_capture = false;
if (data->capture.capture_type_flag == PWM_CAPTURE_TYPE_BOTH) {
data->capture.capture_both_event_count++;
if (data->capture.capture_both_event_count ==
CAPTURE_BOTH_MODE_FIRST_EVENT_IS_CAPTURE_PULSE) {
data->capture.pulse = (data->capture.overflows * period) +
p_args->capture;
}
if (data->capture.capture_both_event_count ==
CAPTURE_BOTH_MODE_SECOND_EVENT_IS_CAPTURE_PERIOD) {
data->capture.capture_both_event_count = 0;
data->capture.period = (data->capture.overflows * period) +
p_args->capture;
data->capture.callback(
dev, GPT_IO_PIN_GTIOCB, data->capture.period,
data->capture.pulse, 0, data->capture.user_data);
check_disable_capture = true;
}
} else if (data->capture.capture_type_flag == PWM_CAPTURE_TYPE_PULSE) {
data->capture.pulse =
(data->capture.overflows * period) + p_args->capture;
data->capture.callback(dev, GPT_IO_PIN_GTIOCB, 0,
data->capture.pulse, 0,
data->capture.user_data);
check_disable_capture = true;
} else {
data->capture.period =
(data->capture.overflows * period) + p_args->capture;
data->capture.callback(dev, GPT_IO_PIN_GTIOCB, data->capture.period,
0, 0, data->capture.user_data);
check_disable_capture = true;
}
if (check_disable_capture) {
data->capture.overflows = 0U;
/* Disable capture in single mode */
if (data->capture.continuous == false) {
pwm_rz_gpt_disable_capture(dev, GPT_IO_PIN_GTIOCB);
}
}
}
} else if (p_args->event == TIMER_EVENT_CYCLE_END) {
data->capture.overflows++;
} else {
if (data->capture.capture_channel == RZ_PWM_GPT_IO_A) {
data->capture.callback(dev, GPT_IO_PIN_GTIOCA, 0, 0, -ECANCELED,
data->capture.user_data);
} else if (data->capture.capture_channel == RZ_PWM_GPT_IO_B) {
data->capture.callback(dev, GPT_IO_PIN_GTIOCB, 0, 0, -ECANCELED,
data->capture.user_data);
}
}
}
#endif /* CONFIG_PWM_CAPTURE */
static DEVICE_API(pwm, pwm_rz_gpt_driver_api) = {
.get_cycles_per_sec = pwm_rz_gpt_get_cycles_per_sec,
.set_cycles = pwm_rz_gpt_set_cycles,
#ifdef CONFIG_PWM_CAPTURE
.configure_capture = pwm_rz_gpt_configure_capture,
.enable_capture = pwm_rz_gpt_enable_capture,
.disable_capture = pwm_rz_gpt_disable_capture,
#endif /* CONFIG_PWM_CAPTURE */
};
static int pwm_rz_gpt_init(const struct device *dev)
{
const struct pwm_rz_gpt_config *cfg = dev->config;
struct pwm_rz_gpt_data *data = dev->data;
gpt_extended_cfg_t *fsp_cfg_extend = (gpt_extended_cfg_t *)data->fsp_cfg->p_extend;
int err;
err = pinctrl_apply_state(cfg->pincfg, PINCTRL_STATE_DEFAULT);
if (err) {
LOG_ERR("Failed to configure pins for PWM (%d)", err);
return err;
}
#if defined(CONFIG_PWM_CAPTURE)
data->fsp_cfg->p_callback = fsp_callback;
data->fsp_cfg->p_context = dev;
#endif /* defined(CONFIG_PWM_CAPTURE) */
err = cfg->fsp_api->open(data->fsp_ctrl, data->fsp_cfg);
if (err != FSP_SUCCESS) {
return -EIO;
}
irq_disable(data->fsp_cfg->cycle_end_irq);
irq_disable(fsp_cfg_extend->capture_a_irq);
irq_disable(fsp_cfg_extend->capture_b_irq);
return 0;
}
#define GPT(idx) DT_INST_PARENT(idx)
#define PWM_RZ_IRQ_CONFIG_INIT(inst) \
do { \
IRQ_CONNECT(DT_IRQ_BY_NAME(GPT(inst), ccmpa, irq), \
DT_IRQ_BY_NAME(GPT(inst), ccmpa, priority), gpt_capture_a_isr, NULL, \
0); \
IRQ_CONNECT(DT_IRQ_BY_NAME(GPT(inst), ccmpb, irq), \
DT_IRQ_BY_NAME(GPT(inst), ccmpb, priority), gpt_capture_b_isr, NULL, \
0); \
IRQ_CONNECT(DT_IRQ_BY_NAME(GPT(inst), ovf, irq), \
DT_IRQ_BY_NAME(GPT(inst), ovf, priority), gpt_counter_overflow_isr, \
NULL, 0); \
} while (0)
#define PWM_RZG_INIT(inst) \
PINCTRL_DT_INST_DEFINE(inst); \
static gpt_instance_ctrl_t g_timer##inst##_ctrl; \
static gpt_extended_cfg_t g_timer##inst##_extend = { \
.gtioca = \
{ \
.output_enabled = false, \
.stop_level = GPT_PIN_LEVEL_LOW, \
}, \
.gtiocb = \
{ \
.output_enabled = false, \
.stop_level = GPT_PIN_LEVEL_LOW, \
}, \
.start_source = (gpt_source_t)(GPT_SOURCE_NONE), \
.stop_source = (gpt_source_t)(GPT_SOURCE_NONE), \
.clear_source = (gpt_source_t)(GPT_SOURCE_NONE), \
.count_up_source = (gpt_source_t)(GPT_SOURCE_NONE), \
.count_down_source = (gpt_source_t)(GPT_SOURCE_NONE), \
.capture_a_source = (gpt_source_t)(GPT_SOURCE_NONE), \
.capture_b_source = (gpt_source_t)(GPT_SOURCE_NONE), \
.capture_a_ipl = DT_IRQ_BY_NAME(GPT(inst), ccmpa, priority), \
.capture_b_ipl = DT_IRQ_BY_NAME(GPT(inst), ccmpb, priority), \
.capture_a_irq = DT_IRQ_BY_NAME(GPT(inst), ccmpa, irq), \
.capture_b_irq = DT_IRQ_BY_NAME(GPT(inst), ccmpb, irq), \
.capture_filter_gtioca = GPT_CAPTURE_FILTER_NONE, \
.capture_filter_gtiocb = GPT_CAPTURE_FILTER_NONE, \
.p_pwm_cfg = NULL, \
.gtior_setting.gtior = (0x0U), \
}; \
static timer_cfg_t g_timer##inst##_cfg = { \
.mode = TIMER_MODE_PWM, \
.channel = DT_PROP(GPT(inst), channel), \
.source_div = DT_ENUM_IDX(GPT(inst), prescaler), \
.cycle_end_ipl = DT_IRQ_BY_NAME(GPT(inst), ovf, priority), \
.cycle_end_irq = DT_IRQ_BY_NAME(GPT(inst), ovf, irq), \
.p_extend = &g_timer##inst##_extend, \
}; \
static const struct pwm_rz_gpt_config pwm_rz_gpt_config_##inst = { \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(inst), \
.fsp_api = &g_timer_on_gpt, \
}; \
static struct pwm_rz_gpt_data pwm_rz_gpt_data_##inst = { \
.fsp_cfg = &g_timer##inst##_cfg, .fsp_ctrl = &g_timer##inst##_ctrl}; \
static int pwm_rz_gpt_init_##inst(const struct device *dev) \
{ \
PWM_RZ_IRQ_CONFIG_INIT(inst); \
int err = pwm_rz_gpt_init(dev); \
if (err != 0) { \
return err; \
} \
return 0; \
} \
DEVICE_DT_INST_DEFINE(inst, pwm_rz_gpt_init_##inst, NULL, &pwm_rz_gpt_data_##inst, \
&pwm_rz_gpt_config_##inst, POST_KERNEL, CONFIG_PWM_INIT_PRIORITY, \
&pwm_rz_gpt_driver_api);
DT_INST_FOREACH_STATUS_OKAY(PWM_RZG_INIT);