You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1545 lines
47 KiB
1545 lines
47 KiB
/* |
|
* Copyright 2020,2023 NXP |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
#define DT_DRV_COMPAT nxp_imx_flexspi_nor |
|
|
|
#include <zephyr/kernel.h> |
|
#include <zephyr/drivers/flash.h> |
|
#include <zephyr/irq.h> |
|
#include <zephyr/logging/log.h> |
|
#include <zephyr/sys/util.h> |
|
#include "spi_nor.h" |
|
#include "jesd216.h" |
|
#include "memc_mcux_flexspi.h" |
|
|
|
#ifdef CONFIG_HAS_MCUX_CACHE |
|
#include <fsl_cache.h> |
|
#endif |
|
|
|
#define NOR_WRITE_SIZE 1 |
|
#define NOR_ERASE_VALUE 0xff |
|
|
|
#ifdef CONFIG_FLASH_MCUX_FLEXSPI_NOR_WRITE_BUFFER |
|
static uint8_t nor_write_buf[SPI_NOR_PAGE_SIZE]; |
|
#endif |
|
|
|
/* |
|
* NOTE: If CONFIG_FLASH_MCUX_FLEXSPI_XIP is selected, Any external functions |
|
* called while interacting with the flexspi MUST be relocated to SRAM or ITCM |
|
* at runtime, so that the chip does not access the flexspi to read program |
|
* instructions while it is being written to |
|
* |
|
* Additionally, no data used by this driver should be stored in flash. |
|
*/ |
|
#if defined(CONFIG_FLASH_MCUX_FLEXSPI_XIP) && (CONFIG_FLASH_LOG_LEVEL > 0) |
|
#warning "Enabling flash driver logging and XIP mode simultaneously can cause \ |
|
read-while-write hazards. This configuration is not recommended." |
|
#endif |
|
|
|
LOG_MODULE_REGISTER(flash_flexspi_nor, CONFIG_FLASH_LOG_LEVEL); |
|
|
|
enum { |
|
READ, |
|
PAGE_PROGRAM, |
|
READ_STATUS, |
|
WRITE_ENABLE, |
|
ERASE_SECTOR, |
|
ERASE_BLOCK, |
|
READ_ID, |
|
READ_STATUS_REG, |
|
WRITE_REG, |
|
ERASE_CHIP, |
|
READ_JESD216, |
|
/* Entries after this should be for scratch commands */ |
|
FLEXSPI_INSTR_PROG_END, |
|
/* Used for temporary commands during initialization */ |
|
SCRATCH_CMD = FLEXSPI_INSTR_PROG_END, |
|
SCRATCH_CMD2, |
|
/* Must be last entry */ |
|
FLEXSPI_INSTR_END, |
|
}; |
|
|
|
struct flash_flexspi_nor_config { |
|
/* Note: don't use this controller reference in code. It is |
|
* only used during init to copy the device structure from ROM |
|
* into a RAM structure |
|
*/ |
|
const struct device *controller; |
|
}; |
|
|
|
/* Device variables used in critical sections should be in this structure */ |
|
struct flash_flexspi_nor_data { |
|
struct device controller; |
|
flexspi_device_config_t config; |
|
flexspi_port_t port; |
|
bool legacy_poll; |
|
uint64_t size; |
|
struct flash_pages_layout layout; |
|
struct flash_parameters flash_parameters; |
|
}; |
|
|
|
/* |
|
* FLEXSPI LUT buffer used during configuration. Stored in .data to avoid |
|
* using too much stack |
|
*/ |
|
static uint32_t flexspi_probe_lut[FLEXSPI_INSTR_END][MEMC_FLEXSPI_CMD_PER_SEQ] = {0}; |
|
|
|
/* Initial LUT table */ |
|
static const uint32_t flash_flexspi_nor_base_lut[][MEMC_FLEXSPI_CMD_PER_SEQ] = { |
|
/* 1S-1S-1S flash read command, should be compatible with all SPI nor flashes */ |
|
[READ] = { |
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_READ, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 24), |
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1, |
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0), |
|
}, |
|
[READ_JESD216] = { |
|
/* Install read SFDP command */ |
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, JESD216_CMD_READ_SFDP, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 24), |
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_1PAD, 8, |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x4), |
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0, |
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0), |
|
}, |
|
/* Standard 1S-1S-1S flash write command, can be switched to 1S-1S-4S when QE is set */ |
|
[PAGE_PROGRAM] = { |
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_PP, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18), |
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x04, |
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0), |
|
}, |
|
|
|
[WRITE_ENABLE] = { |
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WREN, |
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0), |
|
}, |
|
|
|
[ERASE_SECTOR] = { |
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_SE, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18), |
|
}, |
|
|
|
[ERASE_BLOCK] = { |
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_BE, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18), |
|
}, |
|
|
|
[ERASE_CHIP] = { |
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_CE, |
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0), |
|
}, |
|
|
|
[READ_ID] = { |
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDID, |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01), |
|
}, |
|
|
|
[READ_STATUS_REG] = { |
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR, |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01), |
|
}, |
|
}; |
|
|
|
static ALWAYS_INLINE bool area_is_subregion(const struct device *dev, off_t offset, size_t size) |
|
{ |
|
struct flash_flexspi_nor_data *data = dev->data; |
|
|
|
return ((offset >= 0) && (offset < data->size) && |
|
((data->size - offset) >= size)); |
|
} |
|
|
|
/* Helper so we can read flash ID without flash access for XIP */ |
|
static int flash_flexspi_nor_read_id_helper(struct flash_flexspi_nor_data *data, |
|
uint8_t *vendor_id) |
|
{ |
|
uint32_t buffer = 0; |
|
int ret; |
|
|
|
flexspi_transfer_t transfer = { |
|
.deviceAddress = 0, |
|
.port = data->port, |
|
.cmdType = kFLEXSPI_Read, |
|
.SeqNumber = 1, |
|
.seqIndex = READ_ID, |
|
.data = &buffer, |
|
.dataSize = 3, |
|
}; |
|
|
|
LOG_DBG("Reading id"); |
|
|
|
ret = memc_flexspi_transfer(&data->controller, &transfer); |
|
if (ret < 0) { |
|
return ret; |
|
} |
|
|
|
memcpy(vendor_id, &buffer, 3); |
|
|
|
return ret; |
|
} |
|
|
|
static int flash_flexspi_nor_read_id(const struct device *dev, uint8_t *vendor_id) |
|
{ |
|
struct flash_flexspi_nor_data *data = dev->data; |
|
|
|
return flash_flexspi_nor_read_id_helper(data, vendor_id); |
|
} |
|
|
|
static int flash_flexspi_nor_read_status(struct flash_flexspi_nor_data *data, |
|
uint32_t *status) |
|
{ |
|
flexspi_transfer_t transfer = { |
|
.deviceAddress = 0, |
|
.port = data->port, |
|
.cmdType = kFLEXSPI_Read, |
|
.SeqNumber = 1, |
|
.seqIndex = READ_STATUS_REG, |
|
.data = status, |
|
.dataSize = 1, |
|
}; |
|
|
|
LOG_DBG("Reading status register"); |
|
|
|
return memc_flexspi_transfer(&data->controller, &transfer); |
|
} |
|
|
|
static int flash_flexspi_nor_write_enable(struct flash_flexspi_nor_data *data) |
|
{ |
|
flexspi_transfer_t transfer = { |
|
.deviceAddress = 0, |
|
.port = data->port, |
|
.cmdType = kFLEXSPI_Command, |
|
.SeqNumber = 1, |
|
.seqIndex = WRITE_ENABLE, |
|
.data = NULL, |
|
.dataSize = 0, |
|
}; |
|
|
|
LOG_DBG("Enabling write"); |
|
|
|
return memc_flexspi_transfer(&data->controller, &transfer); |
|
} |
|
|
|
static int flash_flexspi_nor_erase_sector(struct flash_flexspi_nor_data *data, |
|
off_t offset) |
|
{ |
|
flexspi_transfer_t transfer = { |
|
.deviceAddress = offset, |
|
.port = data->port, |
|
.cmdType = kFLEXSPI_Command, |
|
.SeqNumber = 1, |
|
.seqIndex = ERASE_SECTOR, |
|
.data = NULL, |
|
.dataSize = 0, |
|
}; |
|
|
|
LOG_DBG("Erasing sector at 0x%08zx", (ssize_t) offset); |
|
|
|
return memc_flexspi_transfer(&data->controller, &transfer); |
|
} |
|
|
|
static int flash_flexspi_nor_erase_block(struct flash_flexspi_nor_data *data, |
|
off_t offset) |
|
{ |
|
flexspi_transfer_t transfer = { |
|
.deviceAddress = offset, |
|
.port = data->port, |
|
.cmdType = kFLEXSPI_Command, |
|
.SeqNumber = 1, |
|
.seqIndex = ERASE_BLOCK, |
|
.data = NULL, |
|
.dataSize = 0, |
|
}; |
|
|
|
LOG_DBG("Erasing block at 0x%08zx", (ssize_t) offset); |
|
|
|
return memc_flexspi_transfer(&data->controller, &transfer); |
|
} |
|
|
|
static int flash_flexspi_nor_erase_chip(struct flash_flexspi_nor_data *data) |
|
{ |
|
flexspi_transfer_t transfer = { |
|
.deviceAddress = 0, |
|
.port = data->port, |
|
.cmdType = kFLEXSPI_Command, |
|
.SeqNumber = 1, |
|
.seqIndex = ERASE_CHIP, |
|
.data = NULL, |
|
.dataSize = 0, |
|
}; |
|
|
|
LOG_DBG("Erasing chip"); |
|
|
|
return memc_flexspi_transfer(&data->controller, &transfer); |
|
} |
|
|
|
static int flash_flexspi_nor_page_program(struct flash_flexspi_nor_data *data, |
|
off_t offset, const void *buffer, size_t len) |
|
{ |
|
flexspi_transfer_t transfer = { |
|
.deviceAddress = offset, |
|
.port = data->port, |
|
.cmdType = kFLEXSPI_Write, |
|
.SeqNumber = 1, |
|
.seqIndex = PAGE_PROGRAM, |
|
.data = (uint32_t *) buffer, |
|
.dataSize = len, |
|
}; |
|
|
|
LOG_DBG("Page programming %d bytes to 0x%08zx", len, (ssize_t) offset); |
|
|
|
return memc_flexspi_transfer(&data->controller, &transfer); |
|
} |
|
|
|
static int flash_flexspi_nor_wait_bus_busy(struct flash_flexspi_nor_data *data) |
|
{ |
|
uint32_t status = 0; |
|
int ret; |
|
|
|
while (1) { |
|
ret = flash_flexspi_nor_read_status(data, &status); |
|
LOG_DBG("status: 0x%x", status); |
|
if (ret) { |
|
LOG_ERR("Could not read status"); |
|
return ret; |
|
} |
|
|
|
if (data->legacy_poll) { |
|
if ((status & BIT(0)) == 0) { |
|
break; |
|
} |
|
} else { |
|
if (status & BIT(7)) { |
|
break; |
|
} |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int flash_flexspi_nor_read(const struct device *dev, off_t offset, |
|
void *buffer, size_t len) |
|
{ |
|
struct flash_flexspi_nor_data *data = dev->data; |
|
|
|
if (len == 0) { |
|
return 0; |
|
} |
|
|
|
if (!buffer) { |
|
return -EINVAL; |
|
} |
|
|
|
if (!area_is_subregion(dev, offset, len)) { |
|
return -EINVAL; |
|
} |
|
|
|
uint8_t *src = memc_flexspi_get_ahb_address(&data->controller, |
|
data->port, |
|
offset); |
|
|
|
memcpy(buffer, src, len); |
|
|
|
return 0; |
|
} |
|
|
|
static int flash_flexspi_nor_write(const struct device *dev, off_t offset, |
|
const void *buffer, size_t len) |
|
{ |
|
struct flash_flexspi_nor_data *data = dev->data; |
|
|
|
if (!buffer) { |
|
return -EINVAL; |
|
} |
|
|
|
if (!area_is_subregion(dev, offset, len)) { |
|
return -EINVAL; |
|
} |
|
|
|
size_t size = len; |
|
uint8_t *src = (uint8_t *) buffer; |
|
int i; |
|
unsigned int key = 0; |
|
|
|
uint8_t *dst = memc_flexspi_get_ahb_address(&data->controller, |
|
data->port, |
|
offset); |
|
|
|
if (memc_flexspi_is_running_xip(&data->controller)) { |
|
/* |
|
* ==== ENTER CRITICAL SECTION ==== |
|
* No flash access should be performed in critical section. All |
|
* code and data accessed must reside in ram. |
|
*/ |
|
key = irq_lock(); |
|
memc_flexspi_wait_bus_idle(&data->controller); |
|
} |
|
|
|
while (len) { |
|
/* If the offset isn't a multiple of the NOR page size, we first need |
|
* to write the remaining part that fits, otherwise the write could |
|
* be wrapped around within the same page |
|
*/ |
|
i = MIN(SPI_NOR_PAGE_SIZE - (offset % SPI_NOR_PAGE_SIZE), len); |
|
#ifdef CONFIG_FLASH_MCUX_FLEXSPI_NOR_WRITE_BUFFER |
|
memcpy(nor_write_buf, src, i); |
|
|
|
/* As memcpy could cause an XIP access, |
|
* we need to wait for XIP prefetch to be finished again |
|
*/ |
|
if (memc_flexspi_is_running_xip(&data->controller)) { |
|
memc_flexspi_wait_bus_idle(&data->controller); |
|
} |
|
#endif |
|
flash_flexspi_nor_write_enable(data); |
|
#ifdef CONFIG_FLASH_MCUX_FLEXSPI_NOR_WRITE_BUFFER |
|
flash_flexspi_nor_page_program(data, offset, nor_write_buf, i); |
|
#else |
|
flash_flexspi_nor_page_program(data, offset, src, i); |
|
#endif |
|
flash_flexspi_nor_wait_bus_busy(data); |
|
memc_flexspi_reset(&data->controller); |
|
src += i; |
|
offset += i; |
|
len -= i; |
|
} |
|
|
|
if (memc_flexspi_is_running_xip(&data->controller)) { |
|
/* ==== EXIT CRITICAL SECTION ==== */ |
|
irq_unlock(key); |
|
} |
|
|
|
#ifdef CONFIG_HAS_MCUX_CACHE |
|
DCACHE_InvalidateByRange((uint32_t) dst, size); |
|
#endif |
|
|
|
return 0; |
|
} |
|
|
|
static int flash_flexspi_nor_erase(const struct device *dev, off_t offset, |
|
size_t size) |
|
{ |
|
struct flash_flexspi_nor_data *data = dev->data; |
|
|
|
if (!area_is_subregion(dev, offset, size)) { |
|
return -EINVAL; |
|
} |
|
|
|
const size_t num_sectors = size / SPI_NOR_SECTOR_SIZE; |
|
const size_t num_blocks = size / SPI_NOR_BLOCK_SIZE; |
|
|
|
int i; |
|
unsigned int key = 0; |
|
|
|
uint8_t *dst = memc_flexspi_get_ahb_address(&data->controller, |
|
data->port, |
|
offset); |
|
|
|
if (offset % SPI_NOR_SECTOR_SIZE) { |
|
LOG_ERR("Invalid offset"); |
|
return -EINVAL; |
|
} |
|
|
|
if (size % SPI_NOR_SECTOR_SIZE) { |
|
LOG_ERR("Invalid size"); |
|
return -EINVAL; |
|
} |
|
|
|
if (memc_flexspi_is_running_xip(&data->controller)) { |
|
/* |
|
* ==== ENTER CRITICAL SECTION ==== |
|
* No flash access should be performed in critical section. All |
|
* code and data accessed must reside in ram. |
|
*/ |
|
key = irq_lock(); |
|
memc_flexspi_wait_bus_idle(&data->controller); |
|
} |
|
|
|
if ((offset == 0) && (size == data->config.flashSize * KB(1))) { |
|
flash_flexspi_nor_write_enable(data); |
|
flash_flexspi_nor_erase_chip(data); |
|
flash_flexspi_nor_wait_bus_busy(data); |
|
memc_flexspi_reset(&data->controller); |
|
} else if ((0 == (offset % SPI_NOR_BLOCK_SIZE)) && (0 == (size % SPI_NOR_BLOCK_SIZE))) { |
|
for (i = 0; i < num_blocks; i++) { |
|
flash_flexspi_nor_write_enable(data); |
|
flash_flexspi_nor_erase_block(data, offset); |
|
flash_flexspi_nor_wait_bus_busy(data); |
|
memc_flexspi_reset(&data->controller); |
|
offset += SPI_NOR_BLOCK_SIZE; |
|
} |
|
} else { |
|
for (i = 0; i < num_sectors; i++) { |
|
flash_flexspi_nor_write_enable(data); |
|
flash_flexspi_nor_erase_sector(data, offset); |
|
flash_flexspi_nor_wait_bus_busy(data); |
|
memc_flexspi_reset(&data->controller); |
|
offset += SPI_NOR_SECTOR_SIZE; |
|
} |
|
} |
|
|
|
if (memc_flexspi_is_running_xip(&data->controller)) { |
|
/* ==== EXIT CRITICAL SECTION ==== */ |
|
irq_unlock(key); |
|
} |
|
|
|
#ifdef CONFIG_HAS_MCUX_CACHE |
|
DCACHE_InvalidateByRange((uint32_t) dst, size); |
|
#endif |
|
|
|
return 0; |
|
} |
|
|
|
static const struct flash_parameters *flash_flexspi_nor_get_parameters( |
|
const struct device *dev) |
|
{ |
|
struct flash_flexspi_nor_data *data = dev->data; |
|
|
|
return &data->flash_parameters; |
|
} |
|
|
|
static int flash_flexspi_nor_get_size(const struct device *dev, uint64_t *size) |
|
{ |
|
struct flash_flexspi_nor_data *data = dev->data; |
|
|
|
*size = (uint64_t)data->size; |
|
|
|
return 0; |
|
} |
|
|
|
#if defined(CONFIG_FLASH_PAGE_LAYOUT) |
|
static void flash_flexspi_nor_pages_layout(const struct device *dev, |
|
const struct flash_pages_layout **layout, size_t *layout_size) |
|
{ |
|
struct flash_flexspi_nor_data *data = dev->data; |
|
|
|
*layout = &data->layout; |
|
*layout_size = 1; |
|
} |
|
#endif /* CONFIG_FLASH_PAGE_LAYOUT */ |
|
|
|
|
|
/* |
|
* This function enables quad mode, when supported. Otherwise it |
|
* returns an error. |
|
* @param dev: Flexspi device |
|
* @param flexspi_lut: flexspi lut table, useful if instruction writes are needed |
|
* @param qer: DW15 quad enable parameter |
|
* @return 0 if quad mode was entered, or -ENOTSUP if quad mode is not supported |
|
*/ |
|
static int flash_flexspi_nor_quad_enable(struct flash_flexspi_nor_data *data, |
|
uint32_t (*flexspi_lut)[MEMC_FLEXSPI_CMD_PER_SEQ], |
|
uint8_t qer) |
|
{ |
|
int ret; |
|
uint32_t buffer = 0; |
|
uint16_t bit = 0; |
|
uint8_t rd_size, wr_size; |
|
flexspi_transfer_t transfer = { |
|
.deviceAddress = 0, |
|
.port = data->port, |
|
.SeqNumber = 1, |
|
.data = &buffer, |
|
}; |
|
flexspi_device_config_t config = { |
|
.flexspiRootClk = MHZ(50), |
|
.flashSize = FLEXSPI_FLSHCR0_FLSHSZ_MASK, /* Max flash size */ |
|
.ARDSeqNumber = 1, |
|
.ARDSeqIndex = READ, |
|
}; |
|
|
|
switch (qer) { |
|
case JESD216_DW15_QER_VAL_NONE: |
|
/* No init needed */ |
|
return 0; |
|
case JESD216_DW15_QER_VAL_S2B1v1: |
|
case JESD216_DW15_QER_VAL_S2B1v4: |
|
/* Install read and write status command */ |
|
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR, |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1); |
|
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WRSR, |
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1); |
|
|
|
/* Set bit 1 of status register 2 */ |
|
bit = BIT(9); |
|
rd_size = 2; |
|
wr_size = 2; |
|
break; |
|
case JESD216_DW15_QER_VAL_S1B6: |
|
/* Install read and write status command */ |
|
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR, |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1); |
|
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WRSR, |
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1); |
|
|
|
/* Set bit 6 of status register 1 */ |
|
bit = BIT(6); |
|
rd_size = 1; |
|
wr_size = 1; |
|
break; |
|
case JESD216_DW15_QER_VAL_S2B7: |
|
/* Install read and write status command */ |
|
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x3F, |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1); |
|
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x3E, |
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1); |
|
|
|
/* Set bit 7 of status register 2 */ |
|
bit = BIT(7); |
|
rd_size = 1; |
|
wr_size = 1; |
|
break; |
|
case JESD216_DW15_QER_VAL_S2B1v5: |
|
/* Install read and write status command */ |
|
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR2, |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1); |
|
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WRSR, |
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1); |
|
|
|
/* Set bit 1 of status register 2 */ |
|
bit = BIT(9); |
|
rd_size = 1; |
|
wr_size = 2; |
|
break; |
|
case JESD216_DW15_QER_VAL_S2B1v6: |
|
/* Install read and write status command */ |
|
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR2, |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1); |
|
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WRSR2, |
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1); |
|
|
|
/* Set bit 7 of status register 2 */ |
|
bit = BIT(7); |
|
rd_size = 1; |
|
wr_size = 1; |
|
break; |
|
default: |
|
return -ENOTSUP; |
|
} |
|
ret = memc_flexspi_set_device_config(&data->controller, |
|
&config, |
|
(uint32_t *)flexspi_lut, |
|
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ, |
|
data->port); |
|
if (ret < 0) { |
|
return ret; |
|
} |
|
transfer.dataSize = rd_size; |
|
transfer.seqIndex = SCRATCH_CMD; |
|
transfer.cmdType = kFLEXSPI_Read; |
|
/* Read status register */ |
|
ret = memc_flexspi_transfer(&data->controller, &transfer); |
|
if (ret < 0) { |
|
return ret; |
|
} |
|
/* Enable write */ |
|
ret = flash_flexspi_nor_write_enable(data); |
|
if (ret < 0) { |
|
return ret; |
|
} |
|
if (qer == JESD216_DW15_QER_VAL_S2B1v5) { |
|
/* Left shift buffer by a byte */ |
|
buffer = buffer << 8; |
|
} |
|
buffer |= bit; |
|
transfer.dataSize = wr_size; |
|
transfer.seqIndex = SCRATCH_CMD2; |
|
transfer.cmdType = kFLEXSPI_Write; |
|
ret = memc_flexspi_transfer(&data->controller, &transfer); |
|
if (ret < 0) { |
|
return ret; |
|
} |
|
|
|
/* Wait for QE bit to complete programming */ |
|
return flash_flexspi_nor_wait_bus_busy(data); |
|
} |
|
|
|
/* |
|
* This function enables octal mode, when supported. Otherwise it |
|
* returns an error. |
|
* @param dev: Flexspi device |
|
* @param flexspi_lut: flexspi lut table, useful if instruction writes are needed |
|
* @return 0 if octal mode was entered, or -ENOTSUP if octal mode is not supported |
|
*/ |
|
static int flash_flexspi_nor_octal_enable(struct flash_flexspi_nor_data *data, |
|
uint32_t (*flexspi_lut)[MEMC_FLEXSPI_CMD_PER_SEQ]) |
|
{ |
|
int ret; |
|
uint32_t buffer = 0; |
|
|
|
flexspi_transfer_t transfer = { |
|
.deviceAddress = 0, |
|
.port = data->port, |
|
.SeqNumber = 1, |
|
.data = &buffer, |
|
}; |
|
flexspi_device_config_t config = { |
|
.flexspiRootClk = MHZ(50), |
|
.flashSize = FLEXSPI_FLSHCR0_FLSHSZ_MASK, /* Max flash size */ |
|
.ARDSeqNumber = 1, |
|
.ARDSeqIndex = READ, |
|
}; |
|
|
|
ret = memc_flexspi_set_device_config(&data->controller, |
|
&config, |
|
(uint32_t *)flexspi_lut, |
|
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ, |
|
data->port); |
|
if (ret < 0) { |
|
return ret; |
|
} |
|
|
|
/* Enable write */ |
|
ret = flash_flexspi_nor_write_enable(data); |
|
if (ret < 0) { |
|
return ret; |
|
} |
|
|
|
/* Enable octal DDR mode */ |
|
buffer = 0xE7; |
|
transfer.dataSize = 1; |
|
transfer.seqIndex = WRITE_REG; |
|
transfer.cmdType = kFLEXSPI_Write; |
|
ret = memc_flexspi_transfer(&data->controller, &transfer); |
|
if (ret < 0) { |
|
return ret; |
|
} |
|
|
|
/* Wait for QE bit to complete programming */ |
|
return flash_flexspi_nor_wait_bus_busy(data); |
|
} |
|
/* |
|
* This function enables 4 byte addressing, when supported. Otherwise it |
|
* returns an error. |
|
* @param dev: Flexspi device |
|
* @param flexspi_lut: flexspi lut table, useful if instruction writes are needed |
|
* @param en4b: DW16 enable 4 byte mode parameter |
|
* @return 0 if 4 byte mode was entered, or -ENOTSUP if 4 byte mode was not supported |
|
*/ |
|
static int flash_flexspi_nor_4byte_enable(struct flash_flexspi_nor_data *data, |
|
uint32_t (*flexspi_lut)[MEMC_FLEXSPI_CMD_PER_SEQ], |
|
uint32_t en4b) |
|
{ |
|
int ret; |
|
uint32_t buffer = 0; |
|
flexspi_transfer_t transfer = { |
|
.deviceAddress = 0, |
|
.port = data->port, |
|
.SeqNumber = 1, |
|
.data = &buffer, |
|
}; |
|
flexspi_device_config_t config = { |
|
.flexspiRootClk = MHZ(50), |
|
.flashSize = FLEXSPI_FLSHCR0_FLSHSZ_MASK, /* Max flash size */ |
|
.ARDSeqNumber = 1, |
|
.ARDSeqIndex = READ, |
|
}; |
|
if (en4b & BIT(6)) { |
|
/* Flash is always in 4 byte mode. We just need to configure LUT */ |
|
return 0; |
|
} else if (en4b & BIT(5)) { |
|
/* Dedicated vendor instruction set, which we don't support. Exit here */ |
|
return -ENOTSUP; |
|
} else if (en4b & BIT(4)) { |
|
/* Set bit 0 of 16 bit configuration register */ |
|
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xB5, |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1); |
|
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xB1, |
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1); |
|
ret = memc_flexspi_set_device_config(&data->controller, |
|
&config, |
|
(uint32_t *)flexspi_lut, |
|
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ, |
|
data->port); |
|
if (ret < 0) { |
|
return ret; |
|
} |
|
transfer.dataSize = 2; |
|
transfer.seqIndex = SCRATCH_CMD; |
|
transfer.cmdType = kFLEXSPI_Read; |
|
/* Read config register */ |
|
ret = memc_flexspi_transfer(&data->controller, &transfer); |
|
if (ret < 0) { |
|
return ret; |
|
} |
|
buffer |= BIT(0); |
|
/* Set config register */ |
|
transfer.seqIndex = SCRATCH_CMD2; |
|
transfer.cmdType = kFLEXSPI_Read; |
|
return memc_flexspi_transfer(&data->controller, &transfer); |
|
} else if (en4b & BIT(1)) { |
|
/* Issue write enable, then instruction 0xB7 */ |
|
flash_flexspi_nor_write_enable(data); |
|
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xB7, |
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0); |
|
ret = memc_flexspi_set_device_config(&data->controller, |
|
&config, |
|
(uint32_t *)flexspi_lut, |
|
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ, |
|
data->port); |
|
if (ret < 0) { |
|
return ret; |
|
} |
|
transfer.dataSize = 0; |
|
transfer.seqIndex = SCRATCH_CMD; |
|
transfer.cmdType = kFLEXSPI_Command; |
|
return memc_flexspi_transfer(&data->controller, &transfer); |
|
} else if (en4b & BIT(0)) { |
|
/* Issue instruction 0xB7 */ |
|
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xB7, |
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0); |
|
ret = memc_flexspi_set_device_config(&data->controller, |
|
&config, |
|
(uint32_t *)flexspi_lut, |
|
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ, |
|
data->port); |
|
if (ret < 0) { |
|
return ret; |
|
} |
|
transfer.dataSize = 0; |
|
transfer.seqIndex = SCRATCH_CMD; |
|
transfer.cmdType = kFLEXSPI_Command; |
|
return memc_flexspi_transfer(&data->controller, &transfer); |
|
} |
|
/* Other methods not supported */ |
|
return -ENOTSUP; |
|
} |
|
|
|
/* |
|
* This function configures the FlexSPI to manage the flash device |
|
* based on values in SFDP header |
|
* @param data: Flexspi device data |
|
* @param header: SFDP header for flash |
|
* @param bfp: basic flash parameters for flash |
|
* @param flexspi_lut: LUT table, filled with READ LUT command |
|
* @return 0 on success, or negative value on error |
|
*/ |
|
static int flash_flexspi_nor_config_flash(struct flash_flexspi_nor_data *data, |
|
struct jesd216_sfdp_header *header, |
|
struct jesd216_bfp *bfp, |
|
uint32_t (*flexspi_lut)[MEMC_FLEXSPI_CMD_PER_SEQ]) |
|
{ |
|
struct jesd216_instr instr; |
|
struct jesd216_bfp_dw16 dw16; |
|
struct jesd216_bfp_dw15 dw15; |
|
struct jesd216_bfp_dw14 dw14; |
|
uint8_t addr_width; |
|
uint8_t mode_cmd; |
|
int ret; |
|
|
|
/* Read DW14 to determine the polling method we should use while programming */ |
|
ret = jesd216_bfp_decode_dw14(&header->phdr[0], bfp, &dw14); |
|
if (ret < 0) { |
|
/* Default to legacy polling mode */ |
|
dw14.poll_options = 0x0; |
|
} |
|
if (dw14.poll_options & BIT(1)) { |
|
/* Read instruction used for polling is 0x70 */ |
|
data->legacy_poll = false; |
|
flexspi_lut[READ_STATUS_REG][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x70, |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01); |
|
} else { |
|
/* Read instruction used for polling is 0x05 */ |
|
data->legacy_poll = true; |
|
flexspi_lut[READ_STATUS_REG][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR, |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01); |
|
} |
|
|
|
addr_width = jesd216_bfp_addrbytes(bfp) == |
|
JESD216_SFDP_BFP_DW1_ADDRBYTES_VAL_4B ? 32 : 24; |
|
|
|
/* Check to see if we can enable 4 byte addressing */ |
|
ret = jesd216_bfp_decode_dw16(&header->phdr[0], bfp, &dw16); |
|
if (ret == 0) { |
|
/* Attempt to enable 4 byte addressing */ |
|
ret = flash_flexspi_nor_4byte_enable(data, flexspi_lut, |
|
dw16.enter_4ba); |
|
if (ret == 0) { |
|
/* Use 4 byte address width */ |
|
addr_width = 32; |
|
/* Update LUT for ERASE_SECTOR and ERASE_BLOCK to use 32 bit addr */ |
|
flexspi_lut[ERASE_SECTOR][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, |
|
SPI_NOR_CMD_SE, kFLEXSPI_Command_RADDR_SDR, |
|
kFLEXSPI_1PAD, addr_width); |
|
flexspi_lut[ERASE_BLOCK][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, |
|
SPI_NOR_CMD_BE, kFLEXSPI_Command_RADDR_SDR, |
|
kFLEXSPI_1PAD, addr_width); |
|
} |
|
} |
|
/* Extract the read command. |
|
* Note- enhanced XIP not currently supported, nor is 4-4-4 mode. |
|
*/ |
|
if (jesd216_bfp_read_support(&header->phdr[0], bfp, |
|
JESD216_MODE_144, &instr) > 0) { |
|
LOG_DBG("Enable 144 mode"); |
|
/* Configure for 144 QUAD read mode */ |
|
if (instr.mode_clocks == 2) { |
|
mode_cmd = kFLEXSPI_Command_MODE8_SDR; |
|
} else if (instr.mode_clocks == 1) { |
|
mode_cmd = kFLEXSPI_Command_MODE4_SDR; |
|
} else if (instr.mode_clocks == 0) { |
|
/* Just send dummy cycles during mode clock period */ |
|
mode_cmd = kFLEXSPI_Command_DUMMY_SDR; |
|
} else { |
|
return -ENOTSUP; |
|
} |
|
flexspi_lut[READ][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, instr.instr, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_4PAD, addr_width); |
|
/* Note- we always set mode bits to 0x0 */ |
|
flexspi_lut[READ][1] = FLEXSPI_LUT_SEQ( |
|
mode_cmd, kFLEXSPI_4PAD, 0x00, |
|
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_4PAD, instr.wait_states); |
|
flexspi_lut[READ][2] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_4PAD, 0x04, |
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0); |
|
/* Read 1S-4S-4S enable method */ |
|
ret = jesd216_bfp_decode_dw15(&header->phdr[0], bfp, &dw15); |
|
if (ret == 0) { |
|
ret = flash_flexspi_nor_quad_enable(data, flexspi_lut, |
|
dw15.qer); |
|
if (ret == 0) { |
|
/* Now, install 1S-1S-4S page program command */ |
|
flexspi_lut[PAGE_PROGRAM][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, |
|
SPI_NOR_CMD_PP_1_1_4, kFLEXSPI_Command_RADDR_SDR, |
|
kFLEXSPI_1PAD, addr_width); |
|
flexspi_lut[PAGE_PROGRAM][1] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_4PAD, |
|
0x4, kFLEXSPI_Command_STOP, |
|
kFLEXSPI_1PAD, 0x0); |
|
} |
|
} |
|
|
|
} else if (jesd216_bfp_read_support(&header->phdr[0], bfp, |
|
JESD216_MODE_122, &instr) > 0) { |
|
LOG_DBG("Enable 122 mode"); |
|
if (instr.mode_clocks == 4) { |
|
mode_cmd = kFLEXSPI_Command_MODE8_SDR; |
|
} else if (instr.mode_clocks == 2) { |
|
mode_cmd = kFLEXSPI_Command_MODE4_SDR; |
|
} else if (instr.mode_clocks == 1) { |
|
mode_cmd = kFLEXSPI_Command_MODE2_SDR; |
|
} else if (instr.mode_clocks == 0) { |
|
/* Just send dummy cycles during mode clock period */ |
|
mode_cmd = kFLEXSPI_Command_DUMMY_SDR; |
|
} else { |
|
return -ENOTSUP; |
|
} |
|
flexspi_lut[READ][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, instr.instr, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_2PAD, addr_width); |
|
/* Note- we always set mode bits to 0x0 */ |
|
flexspi_lut[READ][1] = FLEXSPI_LUT_SEQ( |
|
mode_cmd, kFLEXSPI_2PAD, 0x0, |
|
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_2PAD, instr.wait_states); |
|
flexspi_lut[READ][2] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_2PAD, 0x02, |
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0); |
|
/* Now, install 1S-1S-2S page program command */ |
|
flexspi_lut[PAGE_PROGRAM][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_PP_1_1_2, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, addr_width); |
|
flexspi_lut[PAGE_PROGRAM][1] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_2PAD, 0x4, |
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0); |
|
} |
|
/* Default to 111 mode if no support exists, leave READ/WRITE untouched */ |
|
|
|
return 0; |
|
} |
|
|
|
/* Helper so we can avoid flash access while performing SFDP probe */ |
|
static int flash_flexspi_nor_sfdp_read_helper(struct flash_flexspi_nor_data *dev_data, |
|
off_t offset, void *data, size_t len) |
|
{ |
|
flexspi_transfer_t transfer = { |
|
.deviceAddress = offset, |
|
.port = dev_data->port, |
|
.cmdType = kFLEXSPI_Read, |
|
.seqIndex = READ_JESD216, |
|
.SeqNumber = 1, |
|
.data = (uint32_t *)data, |
|
.dataSize = len, |
|
}; |
|
|
|
/* Get SFDP data */ |
|
return memc_flexspi_transfer(&dev_data->controller, &transfer); |
|
} |
|
|
|
|
|
#if defined(CONFIG_FLASH_JESD216_API) |
|
|
|
static int flash_flexspi_nor_sfdp_read(const struct device *dev, |
|
off_t offset, void *data, size_t len) |
|
{ |
|
struct flash_flexspi_nor_data *dev_data = dev->data; |
|
|
|
return flash_flexspi_nor_sfdp_read_helper(dev_data, offset, data, len); |
|
} |
|
|
|
#endif |
|
|
|
/* Helper to configure IS25 flash */ |
|
static int |
|
flash_flexspi_nor_is25_clear_dummy_cycles(struct flash_flexspi_nor_data *data, |
|
uint32_t (*flexspi_lut)[MEMC_FLEXSPI_CMD_PER_SEQ]) |
|
{ |
|
int ret; |
|
|
|
const flexspi_device_config_t config = { |
|
.flexspiRootClk = MHZ(50), |
|
.flashSize = FLEXSPI_FLSHCR0_FLSHSZ_MASK, /* Max flash size */ |
|
.ARDSeqNumber = 1, |
|
.ARDSeqIndex = READ, |
|
}; |
|
|
|
flexspi_transfer_t transfer = { |
|
.deviceAddress = 0, |
|
.port = data->port, |
|
.seqIndex = SCRATCH_CMD, |
|
.SeqNumber = 1, |
|
.dataSize = 1, |
|
}; |
|
|
|
/* |
|
* Read AutoBoot Register command (RDABR, 14h) |
|
* |
|
* This is done to distinguish between an IS25LPXXX and IS25LPXXXD since |
|
* the former uses the read parameters (SRPV) to set drive strength and |
|
* dummy cycles, while IS25LPXXXD uses extended read parameters (SERPV) |
|
* for drive strength and read parameters (SRPV) for dummy cycles. |
|
*/ |
|
uint32_t resp_data = 0; |
|
|
|
transfer.data = &resp_data; |
|
transfer.cmdType = kFLEXSPI_Read; |
|
|
|
flexspi_lut[SCRATCH_CMD][0] = |
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x14, |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1); |
|
ret = memc_flexspi_set_device_config(&data->controller, &config, (uint32_t *)flexspi_lut, |
|
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ, |
|
data->port); |
|
|
|
if (ret < 0) { |
|
return ret; |
|
} |
|
|
|
ret = memc_flexspi_transfer(&data->controller, &transfer); |
|
|
|
/* |
|
* IS25LPXXX -> 0xff |
|
* IS25WPXXX -> 0 |
|
* IS25LPXXXD -> 0 |
|
* IS25WPXXXD -> 0 |
|
*/ |
|
uint32_t read_params = resp_data == 0xff ? 0xE0U : 0; |
|
|
|
/* Switch over to writing read_params (SRPV, C0h) */ |
|
transfer.cmdType = kFLEXSPI_Write; |
|
transfer.data = &read_params; |
|
|
|
flexspi_lut[SCRATCH_CMD][0] = |
|
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xC0, |
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1); |
|
ret = memc_flexspi_set_device_config(&data->controller, &config, (uint32_t *)flexspi_lut, |
|
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ, |
|
data->port); |
|
if (ret < 0) { |
|
return ret; |
|
} |
|
return memc_flexspi_transfer(&data->controller, &transfer); |
|
} |
|
|
|
/* Checks JEDEC ID of flash. If supported, installs custom LUT table */ |
|
static int flash_flexspi_nor_check_jedec(struct flash_flexspi_nor_data *data, |
|
uint32_t (*flexspi_lut)[MEMC_FLEXSPI_CMD_PER_SEQ]) |
|
{ |
|
int ret; |
|
uint32_t vendor_id; |
|
|
|
ret = flash_flexspi_nor_read_id_helper(data, (uint8_t *)&vendor_id); |
|
if (ret < 0) { |
|
return ret; |
|
} |
|
|
|
/* Switch on manufacturer and vendor ID */ |
|
switch (vendor_id & 0xFFFFFF) { |
|
case 0x16609d: /* IS25LP032 */ |
|
case 0x17609d: /* IS25LP064 */ |
|
case 0x18609d: /* IS25LP128 */ |
|
case 0x16709d: /* IS25WP032 */ |
|
case 0x17709d: /* IS25WP064 */ |
|
case 0x18709d: /* IS25WP128 */ |
|
/* |
|
* We can support this flash with the JEDEC probe, but we need to |
|
* ensure Dummy Cycles are at the default value |
|
*/ |
|
ret = flash_flexspi_nor_is25_clear_dummy_cycles(data, flexspi_lut); |
|
if (ret < 0) { |
|
while (1) { |
|
/* |
|
* Spin here, this flash won't configure correctly. |
|
* We can't print a warning, as we are unlikely to |
|
* be able to XIP at this point. |
|
*/ |
|
} |
|
} |
|
/* Still return an error- we want the JEDEC configuration to run */ |
|
return -ENOTSUP; |
|
case 0x2040ef: |
|
/* W25Q512JV-IQ/IN flash, use 4 byte read/write */ |
|
flexspi_lut[READ][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_4READ_4B, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_4PAD, 32); |
|
/* Flash needs 6 dummy cycles (at 104MHz) */ |
|
flexspi_lut[READ][1] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_4PAD, 6, |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_4PAD, 0x04); |
|
/* Only 1S-1S-4S page program supported */ |
|
flexspi_lut[PAGE_PROGRAM][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_PP_1_1_4_4B, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 32); |
|
flexspi_lut[PAGE_PROGRAM][1] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_4PAD, 0x4, |
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0); |
|
/* Update ERASE commands for 4 byte mode */ |
|
flexspi_lut[ERASE_SECTOR][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_SE_4B, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 32); |
|
flexspi_lut[ERASE_BLOCK][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_BE_4B, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 32), |
|
/* Read instruction used for polling is 0x05 */ |
|
data->legacy_poll = true; |
|
flexspi_lut[READ_STATUS_REG][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR, |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01); |
|
/* Device uses bit 1 of status reg 2 for QE */ |
|
return flash_flexspi_nor_quad_enable(data, flexspi_lut, |
|
JESD216_DW15_QER_VAL_S2B1v5); |
|
case 0x2060ef: |
|
/* W25Q512NW-IQ/IN flash, use 4 byte read/write */ |
|
flexspi_lut[READ][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_4READ_4B, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_4PAD, 32); |
|
/* Flash needs 8 dummy cycles (at 133MHz) */ |
|
flexspi_lut[READ][1] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_4PAD, 8, |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_4PAD, 0x04); |
|
/* Only 1S-1S-4S page program supported */ |
|
flexspi_lut[PAGE_PROGRAM][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_PP_1_1_4_4B, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 32); |
|
flexspi_lut[PAGE_PROGRAM][1] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_4PAD, 0x4, |
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0); |
|
/* Update ERASE commands for 4 byte mode */ |
|
flexspi_lut[ERASE_SECTOR][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_SE_4B, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 32); |
|
flexspi_lut[ERASE_BLOCK][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_BE_4B, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 32), |
|
/* Read instruction used for polling is 0x05 */ |
|
data->legacy_poll = true; |
|
flexspi_lut[READ_STATUS_REG][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR, |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01); |
|
/* Device uses bit 1 of status reg 2 for QE */ |
|
return flash_flexspi_nor_quad_enable(data, flexspi_lut, |
|
JESD216_DW15_QER_VAL_S2B1v5); |
|
case 0x3A25C2: |
|
/* MX25U51245G flash, use 4 byte read/write */ |
|
flexspi_lut[READ][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_4READ_4B, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_4PAD, 32); |
|
/* Flash needs 10 dummy cycles */ |
|
flexspi_lut[READ][1] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_4PAD, 10, |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_4PAD, 0x04); |
|
/* Only 1S-4S-4S page program supported */ |
|
flexspi_lut[PAGE_PROGRAM][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_PP_1_4_4_4B, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_4PAD, 32); |
|
flexspi_lut[PAGE_PROGRAM][1] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_4PAD, 0x4, |
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0); |
|
/* Update ERASE commands for 4 byte mode */ |
|
flexspi_lut[ERASE_SECTOR][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_SE_4B, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 32); |
|
flexspi_lut[ERASE_BLOCK][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_BE_4B, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 32), |
|
/* Read instruction used for polling is 0x05 */ |
|
data->legacy_poll = true; |
|
flexspi_lut[READ_STATUS_REG][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR, |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01); |
|
/* Device uses bit 6 of status reg 1 for QE */ |
|
return flash_flexspi_nor_quad_enable(data, flexspi_lut, JESD216_DW15_QER_VAL_S1B6); |
|
case 0x19ba20: /* MT25QL256 */ |
|
case 0x20ba20: /* MT25QL512 */ |
|
case 0x21ba20: /* MT25QL01G */ |
|
case 0x22ba20: /* MT25QL02G */ |
|
case 0x19bb20: /* MT25QU256 */ |
|
case 0x20bb20: /* MT25QU512 */ |
|
case 0x21bb20: /* MT25QU01G */ |
|
case 0x22bb20: /* MT25QU02G */ |
|
/* MT25Q flash with more than 32MB, use 4 byte read/write */ |
|
flexspi_lut[READ][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_4READ_4B, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_4PAD, 32); |
|
/* Flash needs 10 dummy cycles */ |
|
flexspi_lut[READ][1] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_4PAD, 10, |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_4PAD, 0x04); |
|
/* Update PROGRAM commands for 4 byte 1S-4S-4S mode */ |
|
flexspi_lut[PAGE_PROGRAM][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_PP_1_4_4_4B, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_4PAD, 32); |
|
flexspi_lut[PAGE_PROGRAM][1] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_4PAD, 0x4, |
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0); |
|
/* Update ERASE commands for 4 byte mode */ |
|
flexspi_lut[ERASE_SECTOR][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_SE_4B, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 32); |
|
flexspi_lut[ERASE_BLOCK][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_BE_4B, |
|
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 32), |
|
/* Read instruction used for polling is 0x05 */ |
|
data->legacy_poll = true; |
|
flexspi_lut[READ_STATUS_REG][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR, |
|
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01); |
|
/* Device has no QE bit, 1-4-4 and 1-1-4 is always enabled */ |
|
return 0; |
|
case 0x195b2c: /* MT35XU256 */ |
|
case 0x1a5b2c: /* MT35XU512 */ |
|
case 0x1b5b2c: /* MT35XU01G */ |
|
case 0x1c5b2c: /* MT35XU02G */ |
|
case 0x195a2c: /* MT35XL256 */ |
|
case 0x1a5a2c: /* MT35XL512 */ |
|
case 0x1b5a2c: /* MT35XL01G */ |
|
case 0x1c5a2c: /* MT35XL02G */ |
|
/* MT35X flash with more than 32MB, use 8 byte read/write */ |
|
flexspi_lut[READ][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, SPI_NOR_OCMD_READ, |
|
kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x20); |
|
/* Flash needs 16 dummy cycles */ |
|
flexspi_lut[READ][1] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_DUMMY_DDR, kFLEXSPI_8PAD, 0x20, |
|
kFLEXSPI_Command_READ_DDR, kFLEXSPI_8PAD, 0x04); |
|
/* Update PROGRAM commands for 8 byte mode */ |
|
flexspi_lut[PAGE_PROGRAM][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, SPI_NOR_CMD_PP_4B, |
|
kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x20); |
|
flexspi_lut[PAGE_PROGRAM][1] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_WRITE_DDR, kFLEXSPI_8PAD, 0x4, |
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0); |
|
/* Update ERASE commands for 4 byte mode */ |
|
flexspi_lut[ERASE_SECTOR][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, SPI_NOR_CMD_SE_4B, |
|
kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x20); |
|
flexspi_lut[ERASE_BLOCK][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, SPI_NOR_CMD_BE_4B, |
|
kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x20), |
|
/* Read instruction used for polling is 0x05 */ |
|
data->legacy_poll = true; |
|
flexspi_lut[READ_STATUS_REG][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, SPI_NOR_CMD_RDSR, |
|
kFLEXSPI_Command_DUMMY_DDR, kFLEXSPI_8PAD, 0x10); |
|
flexspi_lut[READ_STATUS_REG][1] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_READ_DDR, kFLEXSPI_8PAD, 0x01, |
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x00); |
|
/* Write volatile register for 1 byte mode, used to enter OPI mode */ |
|
flexspi_lut[WRITE_REG][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WR_VCFGREG, |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x00); |
|
flexspi_lut[WRITE_REG][1] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x00, |
|
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x00); |
|
flexspi_lut[WRITE_REG][2] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x01, |
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x00); |
|
/* enable octal mode */ |
|
flash_flexspi_nor_octal_enable(data, flexspi_lut); |
|
flexspi_lut[WRITE_ENABLE][0] = FLEXSPI_LUT_SEQ( |
|
kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, SPI_NOR_CMD_WREN, |
|
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0); |
|
return 0; |
|
|
|
default: |
|
return -ENOTSUP; |
|
} |
|
} |
|
|
|
/* Probe parameters from flash SFDP header, and use them to configure the FlexSPI */ |
|
static int flash_flexspi_nor_probe(struct flash_flexspi_nor_data *data) |
|
{ |
|
/* JESD216B defines up to 23 basic flash parameters */ |
|
uint32_t param_buf[23]; |
|
/* Space to store SFDP header and first parameter header */ |
|
uint8_t sfdp_buf[JESD216_SFDP_SIZE(1)] __aligned(4); |
|
struct jesd216_bfp *bfp = (struct jesd216_bfp *)param_buf; |
|
struct jesd216_sfdp_header *header = (struct jesd216_sfdp_header *)sfdp_buf; |
|
int ret; |
|
unsigned int key = 0U; |
|
|
|
flexspi_device_config_t config = { |
|
.flexspiRootClk = MHZ(50), |
|
.flashSize = FLEXSPI_FLSHCR0_FLSHSZ_MASK, /* Max flash size */ |
|
.ARDSeqNumber = 1, |
|
.ARDSeqIndex = READ, |
|
}; |
|
|
|
if (memc_flexspi_is_running_xip(&data->controller)) { |
|
/* |
|
* ==== ENTER CRITICAL SECTION ==== |
|
* No flash access should be performed in critical section. All |
|
* code and data accessed must reside in ram. |
|
*/ |
|
key = irq_lock(); |
|
memc_flexspi_wait_bus_idle(&data->controller); |
|
} |
|
|
|
/* SFDP spec requires that we downclock the FlexSPI to 50MHz or less */ |
|
ret = memc_flexspi_update_clock(&data->controller, &config, |
|
data->port, MHZ(50)); |
|
if (ret < 0) { |
|
goto _exit; |
|
} |
|
|
|
/* Setup initial LUT table and FlexSPI configuration */ |
|
memcpy(flexspi_probe_lut, flash_flexspi_nor_base_lut, |
|
sizeof(flash_flexspi_nor_base_lut)); |
|
|
|
ret = memc_flexspi_set_device_config(&data->controller, &config, |
|
(uint32_t *)flexspi_probe_lut, |
|
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ, |
|
data->port); |
|
if (ret < 0) { |
|
goto _exit; |
|
} |
|
|
|
/* First, check if the JEDEC ID of this flash has explicit support |
|
* in this driver |
|
*/ |
|
ret = flash_flexspi_nor_check_jedec(data, flexspi_probe_lut); |
|
if (ret == 0) { |
|
/* Flash was supported, SFDP probe not needed */ |
|
goto _program_lut; |
|
} |
|
|
|
ret = flash_flexspi_nor_sfdp_read_helper(data, 0, sfdp_buf, sizeof(sfdp_buf)); |
|
if (ret < 0) { |
|
goto _exit; |
|
} |
|
|
|
LOG_DBG("SFDP header magic: 0x%x", header->magic); |
|
if (jesd216_sfdp_magic(header) != JESD216_SFDP_MAGIC) { |
|
/* Header was read incorrectly */ |
|
LOG_WRN("Invalid header, using legacy SPI mode"); |
|
data->legacy_poll = true; |
|
goto _program_lut; |
|
} |
|
|
|
if (header->phdr[0].len_dw > ARRAY_SIZE(param_buf)) { |
|
/* Not enough space to read parameter table */ |
|
ret = -ENOBUFS; |
|
goto _exit; |
|
} |
|
|
|
/* Read basic flash parameter table */ |
|
ret = flash_flexspi_nor_sfdp_read_helper(data, |
|
jesd216_param_addr(&header->phdr[0]), |
|
param_buf, |
|
sizeof(uint32_t) * header->phdr[0].len_dw); |
|
if (ret < 0) { |
|
goto _exit; |
|
} |
|
|
|
/* Configure flash */ |
|
ret = flash_flexspi_nor_config_flash(data, header, bfp, |
|
flexspi_probe_lut); |
|
if (ret < 0) { |
|
goto _exit; |
|
} |
|
|
|
_program_lut: |
|
/* |
|
* Update the FlexSPI with the config structure provided |
|
* from devicetree and the configured LUT |
|
*/ |
|
ret = memc_flexspi_set_device_config(&data->controller, &data->config, |
|
(uint32_t *)flexspi_probe_lut, |
|
FLEXSPI_INSTR_PROG_END * MEMC_FLEXSPI_CMD_PER_SEQ, |
|
data->port); |
|
if (ret < 0) { |
|
return ret; |
|
} |
|
|
|
_exit: |
|
memc_flexspi_reset(&data->controller); |
|
|
|
if (memc_flexspi_is_running_xip(&data->controller)) { |
|
/* ==== EXIT CRITICAL SECTION ==== */ |
|
irq_unlock(key); |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
static int flash_flexspi_nor_init(const struct device *dev) |
|
{ |
|
const struct flash_flexspi_nor_config *config = dev->config; |
|
struct flash_flexspi_nor_data *data = dev->data; |
|
uint32_t vendor_id; |
|
|
|
/* First step- use ROM pointer to controller device to create |
|
* a copy of the device structure in RAM we can use while in |
|
* critical sections of code. |
|
*/ |
|
memcpy(&data->controller, config->controller, sizeof(struct device)); |
|
|
|
if (!device_is_ready(&data->controller)) { |
|
LOG_ERR("Controller device is not ready"); |
|
return -ENODEV; |
|
} |
|
|
|
if (flash_flexspi_nor_probe(data)) { |
|
if (memc_flexspi_is_running_xip(&data->controller)) { |
|
/* We can't continue from here- the LUT stored in |
|
* the FlexSPI will be invalid so we cannot XIP. |
|
* Instead, spin here |
|
*/ |
|
while (1) { |
|
/* Spin */ |
|
} |
|
} |
|
LOG_ERR("SFDP probe failed"); |
|
return -EIO; |
|
} |
|
|
|
/* Set the FlexSPI to full clock speed */ |
|
if (memc_flexspi_update_clock(&data->controller, &data->config, |
|
data->port, data->config.flexspiRootClk)) { |
|
LOG_ERR("Could not set flexspi clock speed"); |
|
return -ENOTSUP; |
|
} |
|
|
|
|
|
memc_flexspi_reset(&data->controller); |
|
|
|
if (flash_flexspi_nor_read_id(dev, (uint8_t *)&vendor_id)) { |
|
LOG_ERR("Could not read vendor id"); |
|
return -EIO; |
|
} |
|
LOG_DBG("Vendor id: 0x%0x", vendor_id); |
|
|
|
return 0; |
|
} |
|
|
|
static DEVICE_API(flash, flash_flexspi_nor_api) = { |
|
.erase = flash_flexspi_nor_erase, |
|
.write = flash_flexspi_nor_write, |
|
.read = flash_flexspi_nor_read, |
|
.get_parameters = flash_flexspi_nor_get_parameters, |
|
.get_size = flash_flexspi_nor_get_size, |
|
#if defined(CONFIG_FLASH_PAGE_LAYOUT) |
|
.page_layout = flash_flexspi_nor_pages_layout, |
|
#endif |
|
#if defined(CONFIG_FLASH_JESD216_API) |
|
.sfdp_read = flash_flexspi_nor_sfdp_read, |
|
.read_jedec_id = flash_flexspi_nor_read_id, |
|
#endif |
|
}; |
|
|
|
#define CONCAT3(x, y, z) x ## y ## z |
|
|
|
#define CS_INTERVAL_UNIT(unit) \ |
|
CONCAT3(kFLEXSPI_CsIntervalUnit, unit, SckCycle) |
|
|
|
#define AHB_WRITE_WAIT_UNIT(unit) \ |
|
CONCAT3(kFLEXSPI_AhbWriteWaitUnit, unit, AhbCycle) |
|
|
|
#define FLASH_FLEXSPI_DEVICE_CONFIG(n) \ |
|
{ \ |
|
.flexspiRootClk = DT_INST_PROP(n, spi_max_frequency), \ |
|
.flashSize = DT_INST_PROP(n, size) / 8 / KB(1), \ |
|
.CSIntervalUnit = \ |
|
CS_INTERVAL_UNIT( \ |
|
DT_INST_PROP(n, cs_interval_unit)), \ |
|
.CSInterval = DT_INST_PROP(n, cs_interval), \ |
|
.CSHoldTime = DT_INST_PROP(n, cs_hold_time), \ |
|
.CSSetupTime = DT_INST_PROP(n, cs_setup_time), \ |
|
.dataValidTime = DT_INST_PROP(n, data_valid_time), \ |
|
.columnspace = DT_INST_PROP(n, column_space), \ |
|
.enableWordAddress = DT_INST_PROP(n, word_addressable), \ |
|
.AWRSeqIndex = 0, \ |
|
.AWRSeqNumber = 0, \ |
|
.ARDSeqIndex = READ, \ |
|
.ARDSeqNumber = 1, \ |
|
.AHBWriteWaitUnit = \ |
|
AHB_WRITE_WAIT_UNIT( \ |
|
DT_INST_PROP(n, ahb_write_wait_unit)), \ |
|
.AHBWriteWaitInterval = \ |
|
DT_INST_PROP(n, ahb_write_wait_interval), \ |
|
} \ |
|
|
|
#define FLASH_FLEXSPI_NOR(n) \ |
|
static const struct flash_flexspi_nor_config \ |
|
flash_flexspi_nor_config_##n = { \ |
|
.controller = DEVICE_DT_GET(DT_INST_BUS(n)), \ |
|
}; \ |
|
static struct flash_flexspi_nor_data \ |
|
flash_flexspi_nor_data_##n = { \ |
|
.config = FLASH_FLEXSPI_DEVICE_CONFIG(n), \ |
|
.port = DT_INST_REG_ADDR(n), \ |
|
.size = DT_INST_PROP(n, size) / 8, \ |
|
.layout = { \ |
|
.pages_count = DT_INST_PROP(n, size) / 8 \ |
|
/ SPI_NOR_SECTOR_SIZE, \ |
|
.pages_size = SPI_NOR_SECTOR_SIZE, \ |
|
}, \ |
|
.flash_parameters = { \ |
|
.write_block_size = NOR_WRITE_SIZE, \ |
|
.erase_value = NOR_ERASE_VALUE, \ |
|
}, \ |
|
}; \ |
|
\ |
|
DEVICE_DT_INST_DEFINE(n, \ |
|
flash_flexspi_nor_init, \ |
|
NULL, \ |
|
&flash_flexspi_nor_data_##n, \ |
|
&flash_flexspi_nor_config_##n, \ |
|
POST_KERNEL, \ |
|
CONFIG_FLASH_INIT_PRIORITY, \ |
|
&flash_flexspi_nor_api); |
|
|
|
DT_INST_FOREACH_STATUS_OKAY(FLASH_FLEXSPI_NOR)
|
|
|