Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

129 lines
3.6 KiB

/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT espressif_esp32_trng
#include <string.h>
#include <soc/rtc.h>
#include <soc/wdev_reg.h>
#include <esp_system.h>
#include <soc.h>
#include <esp_cpu.h>
#include <zephyr/logging/log.h>
#include <zephyr/drivers/entropy.h>
#if defined(SOC_RNG_CLOCK_IS_INDEPENDENT)
#include <zephyr/drivers/clock_control.h>
#endif
LOG_MODULE_REGISTER(entropy, CONFIG_ENTROPY_LOG_LEVEL);
#if SOC_LP_TIMER_SUPPORTED
#include "hal/lp_timer_hal.h"
#endif
#if defined CONFIG_SOC_SERIES_ESP32S3
/* If APB clock is 80 MHz, the maximum sampling frequency is around 45 KHz */
/* 45 KHz reading frequency is the maximum we have tested so far on S3 */
#define APB_CYCLE_WAIT_NUM (1778)
#elif defined CONFIG_SOC_SERIES_ESP32C6
/* On ESP32C6, we only read one byte at a time, then XOR the value with
* an asynchronous timer (see code below).
* The current value translates to a sampling frequency of around 62.5 KHz
* for reading 8 bit samples, which is the rate at which the RNG was tested,
* plus additional overhead for the calculation, making it slower.
*/
#define APB_CYCLE_WAIT_NUM (160 * 16)
#else
#define APB_CYCLE_WAIT_NUM (16)
#endif
static inline uint32_t entropy_esp32_get_u32(void)
{
/* The PRNG which implements WDEV_RANDOM register gets 2 bits
* of extra entropy from a hardware randomness source every APB clock cycle
* (provided WiFi or BT are enabled). To make sure entropy is not drained
* faster than it is added, this function needs to wait for at least 16 APB
* clock cycles after reading previous word. This implementation may actually
* wait a bit longer due to extra time spent in arithmetic and branch statements.
*/
uint32_t cpu_to_apb_freq_ratio = esp_clk_cpu_freq() / esp_clk_apb_freq();
static uint32_t last_ccount;
uint32_t ccount;
uint32_t result = 0;
#if SOC_LP_TIMER_SUPPORTED
for (size_t i = 0; i < sizeof(result); i++) {
do {
ccount = esp_cpu_get_cycle_count();
result ^= REG_READ(WDEV_RND_REG);
} while (ccount - last_ccount < cpu_to_apb_freq_ratio * APB_CYCLE_WAIT_NUM);
uint32_t current_rtc_timer_counter = (lp_timer_hal_get_cycle_count() & 0xFF);
result ^= ((result ^ current_rtc_timer_counter) & 0xFF) << (i * 8);
}
#else
do {
ccount = esp_cpu_get_cycle_count();
result ^= REG_READ(WDEV_RND_REG);
} while (ccount - last_ccount < cpu_to_apb_freq_ratio * APB_CYCLE_WAIT_NUM);
#endif
last_ccount = ccount;
return result ^ REG_READ(WDEV_RND_REG);
}
static int entropy_esp32_get_entropy(const struct device *dev, uint8_t *buf,
uint16_t len)
{
assert(buf != NULL);
uint8_t *buf_bytes = buf;
while (len > 0) {
uint32_t word = entropy_esp32_get_u32();
uint32_t to_copy = MIN(sizeof(word), len);
memcpy(buf_bytes, &word, to_copy);
buf_bytes += to_copy;
len -= to_copy;
}
return 0;
}
static int entropy_esp32_init(const struct device *dev)
{
int ret = 0;
#if defined(SOC_RNG_CLOCK_IS_INDEPENDENT)
const struct device *clock_dev =
DEVICE_DT_GET(DT_CLOCKS_CTLR(DT_NODELABEL(trng0)));
clock_control_subsys_t clock_subsys =
(clock_control_subsys_t)DT_CLOCKS_CELL(DT_NODELABEL(trng0), offset);
if (!device_is_ready(clock_dev)) {
return -ENODEV;
}
ret = clock_control_on(clock_dev, clock_subsys);
if (ret != 0) {
LOG_ERR("Error enabling TRNG clock");
}
#else
/* clock initialization handled by clock manager */
#endif
return ret;
}
static DEVICE_API(entropy, entropy_esp32_api_funcs) = {
.get_entropy = entropy_esp32_get_entropy
};
DEVICE_DT_INST_DEFINE(0,
entropy_esp32_init, NULL, NULL, NULL,
PRE_KERNEL_1, CONFIG_ENTROPY_INIT_PRIORITY,
&entropy_esp32_api_funcs);