Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

406 lines
9.3 KiB

/*
* Copyright (c) 2019 Nordic Semiconductor ASA
* Copyright 2025 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/init.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/bluetooth/bluetooth.h>
#include <zephyr/bluetooth/hci.h>
#include <zephyr/bluetooth/hci_types.h>
#include <zephyr/drivers/bluetooth.h>
#include <zephyr/device.h>
#include <zephyr/ipc/ipc_service.h>
#define LOG_LEVEL CONFIG_BT_HCI_DRIVER_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(bt_hci_driver);
BUILD_ASSERT(!IS_ENABLED(CONFIG_BT_CONN) || IS_ENABLED(CONFIG_BT_HCI_ACL_FLOW_CONTROL),
"HCI IPC driver can drop ACL data without Controller-to-Host ACL flow control");
#define DT_DRV_COMPAT zephyr_bt_hci_ipc
#define IPC_BOUND_TIMEOUT_IN_MS K_MSEC(CONFIG_BT_HCI_IPC_ENDPOINT_BOUND_TIMEOUT_MS)
/* The retry of ipc_service_send function requires a small (tens of us) delay.
* In order to ensure proper delay k_usleep is used when the system clock is
* precise enough and available (CONFIG_SYS_CLOCK_TICKS_PER_SEC different than 0).
*/
#define USE_SLEEP_BETWEEN_IPC_RETRIES COND_CODE_0(CONFIG_SYS_CLOCK_TICKS_PER_SEC, \
(false), \
((USEC_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC) > CONFIG_BT_HCI_IPC_SEND_RETRY_DELAY_US))
struct ipc_data {
bt_hci_recv_t recv;
struct ipc_ept hci_ept;
struct ipc_ept_cfg hci_ept_cfg;
struct k_sem bound_sem;
const struct device *ipc;
};
static bool is_hci_event_discardable(const uint8_t *evt_data)
{
uint8_t evt_type = evt_data[0];
switch (evt_type) {
#if defined(CONFIG_BT_CLASSIC)
case BT_HCI_EVT_INQUIRY_RESULT_WITH_RSSI:
case BT_HCI_EVT_EXTENDED_INQUIRY_RESULT:
return true;
#endif
case BT_HCI_EVT_LE_META_EVENT: {
uint8_t subevt_type = evt_data[sizeof(struct bt_hci_evt_hdr)];
switch (subevt_type) {
case BT_HCI_EVT_LE_ADVERTISING_REPORT:
return true;
#if defined(CONFIG_BT_EXT_ADV)
case BT_HCI_EVT_LE_EXT_ADVERTISING_REPORT:
{
const struct bt_hci_evt_le_ext_advertising_report *ext_adv =
(void *)&evt_data[3];
return (ext_adv->num_reports == 1) &&
((ext_adv->adv_info[0].evt_type &
BT_HCI_LE_ADV_EVT_TYPE_LEGACY) != 0);
}
#endif
default:
return false;
}
}
default:
return false;
}
}
static struct net_buf *bt_ipc_evt_recv(const uint8_t *data, size_t remaining)
{
bool discardable;
struct bt_hci_evt_hdr hdr;
struct net_buf *buf;
size_t buf_tailroom;
if (remaining < sizeof(hdr)) {
LOG_ERR("Not enough data (%u) for event header (%zu)", remaining, sizeof(hdr));
return NULL;
}
discardable = is_hci_event_discardable(data);
memcpy((void *)&hdr, data, sizeof(hdr));
data += sizeof(hdr);
remaining -= sizeof(hdr);
if (remaining != hdr.len) {
LOG_ERR("Event payload length is not correct (%u != %u)", remaining, hdr.len);
return NULL;
}
LOG_DBG("len %u", hdr.len);
do {
buf = bt_buf_get_evt(hdr.evt, discardable, discardable ? K_NO_WAIT : K_SECONDS(10));
if (!buf) {
if (discardable) {
LOG_DBG("Discardable buffer pool full, ignoring event");
return buf;
}
LOG_WRN("Couldn't allocate a buffer after waiting 10 seconds.");
}
} while (!buf);
net_buf_add_mem(buf, &hdr, sizeof(hdr));
buf_tailroom = net_buf_tailroom(buf);
if (buf_tailroom < remaining) {
LOG_ERR("Not enough space in buffer %zu/%zu", remaining, buf_tailroom);
net_buf_unref(buf);
return NULL;
}
net_buf_add_mem(buf, data, remaining);
return buf;
}
static struct net_buf *bt_ipc_acl_recv(const uint8_t *data, size_t remaining)
{
struct bt_hci_acl_hdr hdr;
struct net_buf *buf;
size_t buf_tailroom;
if (remaining < sizeof(hdr)) {
LOG_ERR("Not enough data (%u) for ACL header (%zu)", remaining, sizeof(hdr));
return NULL;
}
buf = bt_buf_get_rx(BT_BUF_ACL_IN, K_NO_WAIT);
if (buf) {
memcpy((void *)&hdr, data, sizeof(hdr));
data += sizeof(hdr);
remaining -= sizeof(hdr);
net_buf_add_mem(buf, &hdr, sizeof(hdr));
} else {
LOG_ERR("No available ACL buffers!");
return NULL;
}
if (remaining != sys_le16_to_cpu(hdr.len)) {
LOG_ERR("ACL payload length is not correct (%u != %u)", remaining,
sys_le16_to_cpu(hdr.len));
net_buf_unref(buf);
return NULL;
}
buf_tailroom = net_buf_tailroom(buf);
if (buf_tailroom < remaining) {
LOG_ERR("Not enough space in buffer %zu/%zu", remaining, buf_tailroom);
net_buf_unref(buf);
return NULL;
}
LOG_DBG("len %u", remaining);
net_buf_add_mem(buf, data, remaining);
return buf;
}
static struct net_buf *bt_ipc_iso_recv(const uint8_t *data, size_t remaining)
{
struct bt_hci_iso_hdr hdr;
static size_t fail_cnt;
struct net_buf *buf;
size_t buf_tailroom;
if (remaining < sizeof(hdr)) {
LOG_ERR("Not enough data (%u) for ISO header (%zu)", remaining, sizeof(hdr));
return NULL;
}
buf = bt_buf_get_rx(BT_BUF_ISO_IN, K_NO_WAIT);
if (buf) {
memcpy((void *)&hdr, data, sizeof(hdr));
data += sizeof(hdr);
remaining -= sizeof(hdr);
net_buf_add_mem(buf, &hdr, sizeof(hdr));
fail_cnt = 0U;
} else {
if ((fail_cnt % 100U) == 0U) {
LOG_ERR("No available ISO buffers (%zu)!", fail_cnt);
}
fail_cnt++;
return NULL;
}
if (remaining != bt_iso_hdr_len(sys_le16_to_cpu(hdr.len))) {
LOG_ERR("ISO payload length is not correct (%u != %lu)", remaining,
bt_iso_hdr_len(sys_le16_to_cpu(hdr.len)));
net_buf_unref(buf);
return NULL;
}
buf_tailroom = net_buf_tailroom(buf);
if (buf_tailroom < remaining) {
LOG_ERR("Not enough space in buffer %zu/%zu", remaining, buf_tailroom);
net_buf_unref(buf);
return NULL;
}
LOG_DBG("len %zu", remaining);
net_buf_add_mem(buf, data, remaining);
return buf;
}
static void bt_ipc_rx(const struct device *dev, const uint8_t *data, size_t len)
{
struct ipc_data *ipc = dev->data;
uint8_t pkt_indicator;
struct net_buf *buf = NULL;
size_t remaining = len;
LOG_HEXDUMP_DBG(data, len, "ipc data:");
pkt_indicator = *data++;
remaining -= sizeof(pkt_indicator);
switch (pkt_indicator) {
case BT_HCI_H4_EVT:
buf = bt_ipc_evt_recv(data, remaining);
break;
case BT_HCI_H4_ACL:
buf = bt_ipc_acl_recv(data, remaining);
break;
case BT_HCI_H4_ISO:
buf = bt_ipc_iso_recv(data, remaining);
break;
default:
LOG_ERR("Unknown HCI type %u", pkt_indicator);
return;
}
if (buf) {
LOG_DBG("Calling bt_recv(%p)", buf);
ipc->recv(dev, buf);
LOG_HEXDUMP_DBG(buf->data, buf->len, "RX buf payload:");
}
}
static int bt_ipc_send(const struct device *dev, struct net_buf *buf)
{
struct ipc_data *data = dev->data;
int err;
LOG_DBG("buf %p type %u len %u", buf, buf->data[0], buf->len);
for (int retries = 0; retries < CONFIG_BT_HCI_IPC_SEND_RETRY_COUNT + 1; retries++) {
err = ipc_service_send(&data->hci_ept, buf->data, buf->len);
if ((err >= 0) || (err != -ENOMEM)) {
break;
}
if (USE_SLEEP_BETWEEN_IPC_RETRIES) {
k_usleep(CONFIG_BT_HCI_IPC_SEND_RETRY_DELAY_US);
} else {
k_busy_wait(CONFIG_BT_HCI_IPC_SEND_RETRY_DELAY_US);
}
}
if (err < 0) {
LOG_ERR("Failed to send (err %d)", err);
} else {
err = 0;
}
net_buf_unref(buf);
return err;
}
static void hci_ept_bound(void *priv)
{
const struct device *dev = priv;
struct ipc_data *ipc = dev->data;
k_sem_give(&ipc->bound_sem);
}
static void hci_ept_recv(const void *data, size_t len, void *priv)
{
const struct device *dev = priv;
bt_ipc_rx(dev, data, len);
}
int __weak bt_hci_transport_setup(const struct device *dev)
{
ARG_UNUSED(dev);
return 0;
}
int __weak bt_hci_transport_teardown(const struct device *dev)
{
ARG_UNUSED(dev);
return 0;
}
static int bt_ipc_open(const struct device *dev, bt_hci_recv_t recv)
{
struct ipc_data *ipc = dev->data;
int err;
err = bt_hci_transport_setup(NULL);
if (err) {
LOG_ERR("HCI transport setup failed with: %d\n", err);
return err;
}
LOG_DBG("");
err = ipc_service_open_instance(ipc->ipc);
if (err && (err != -EALREADY)) {
LOG_ERR("IPC service instance initialization failed: %d\n", err);
return err;
}
err = ipc_service_register_endpoint(ipc->ipc, &ipc->hci_ept, &ipc->hci_ept_cfg);
if (err) {
LOG_ERR("Registering endpoint failed with %d", err);
return err;
}
err = k_sem_take(&ipc->bound_sem, IPC_BOUND_TIMEOUT_IN_MS);
if (err) {
LOG_ERR("Endpoint binding failed with %d", err);
return err;
}
ipc->recv = recv;
return 0;
}
static int bt_ipc_close(const struct device *dev)
{
struct ipc_data *ipc = dev->data;
int err;
err = ipc_service_deregister_endpoint(&ipc->hci_ept);
if (err) {
LOG_ERR("Deregistering HCI endpoint failed with: %d", err);
return err;
}
err = ipc_service_close_instance(ipc->ipc);
if (err) {
LOG_ERR("Closing IPC service failed with: %d", err);
return err;
}
err = bt_hci_transport_teardown(NULL);
if (err) {
LOG_ERR("HCI transport teardown failed with: %d", err);
return err;
}
ipc->recv = NULL;
return 0;
}
static DEVICE_API(bt_hci, drv) = {
.open = bt_ipc_open,
.close = bt_ipc_close,
.send = bt_ipc_send,
};
#define IPC_DEVICE_INIT(inst) \
static struct ipc_data ipc_data_##inst = { \
.bound_sem = Z_SEM_INITIALIZER(ipc_data_##inst.bound_sem, 0, 1), \
.hci_ept_cfg = { \
.name = DT_INST_PROP(inst, bt_hci_ipc_name), \
.cb = { \
.bound = hci_ept_bound, \
.received = hci_ept_recv, \
}, \
.priv = (void *)DEVICE_DT_INST_GET(inst), \
}, \
.ipc = DEVICE_DT_GET(DT_INST_PARENT(inst)), \
}; \
DEVICE_DT_INST_DEFINE(inst, NULL, NULL, &ipc_data_##inst, NULL, \
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &drv)
DT_INST_FOREACH_STATUS_OKAY(IPC_DEVICE_INIT)