You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1068 lines
30 KiB
1068 lines
30 KiB
/* |
|
* Copyright (c) 2019 Mohamed ElShahawi (extremegtx@hotmail.com) |
|
* Copyright (c) 2023-2025 Espressif Systems (Shanghai) Co., Ltd. |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
#define DT_DRV_COMPAT espressif_esp32_uart |
|
|
|
/* Include esp-idf headers first to avoid redefining BIT() macro */ |
|
/* TODO: include w/o prefix */ |
|
#ifdef CONFIG_SOC_SERIES_ESP32 |
|
#include <esp32/rom/ets_sys.h> |
|
#include <esp32/rom/gpio.h> |
|
#include <soc/dport_reg.h> |
|
#elif defined(CONFIG_SOC_SERIES_ESP32S2) |
|
#include <esp32s2/rom/ets_sys.h> |
|
#include <esp32s2/rom/gpio.h> |
|
#include <soc/dport_reg.h> |
|
#elif defined(CONFIG_SOC_SERIES_ESP32S3) |
|
#include <esp32s3/rom/ets_sys.h> |
|
#include <esp32s3/rom/gpio.h> |
|
#include <zephyr/dt-bindings/clock/esp32s3_clock.h> |
|
#elif defined(CONFIG_SOC_SERIES_ESP32C2) |
|
#include <esp32c2/rom/ets_sys.h> |
|
#include <esp32c2/rom/gpio.h> |
|
#include <zephyr/dt-bindings/clock/esp32c2_clock.h> |
|
#elif defined(CONFIG_SOC_SERIES_ESP32C3) |
|
#include <esp32c3/rom/ets_sys.h> |
|
#include <esp32c3/rom/gpio.h> |
|
#include <zephyr/dt-bindings/clock/esp32c3_clock.h> |
|
#elif defined(CONFIG_SOC_SERIES_ESP32C6) |
|
#include <esp32c6/rom/ets_sys.h> |
|
#include <esp32c6/rom/gpio.h> |
|
#include <zephyr/dt-bindings/clock/esp32c6_clock.h> |
|
#endif |
|
#ifdef CONFIG_UART_ASYNC_API |
|
#include <zephyr/drivers/dma.h> |
|
#include <zephyr/drivers/dma/dma_esp32.h> |
|
#include <hal/uhci_ll.h> |
|
#endif |
|
#include <soc/uart_struct.h> |
|
#include <hal/uart_ll.h> |
|
#include <hal/uart_hal.h> |
|
#include <hal/uart_types.h> |
|
#include <esp_clk_tree.h> |
|
#include <zephyr/drivers/pinctrl.h> |
|
|
|
#include <soc/uart_reg.h> |
|
#include <zephyr/device.h> |
|
#include <soc.h> |
|
#include <zephyr/drivers/uart.h> |
|
|
|
#include <zephyr/drivers/interrupt_controller/intc_esp32.h> |
|
|
|
#include <zephyr/drivers/clock_control.h> |
|
#include <errno.h> |
|
#include <zephyr/sys/util.h> |
|
#include <esp_attr.h> |
|
#include <zephyr/logging/log.h> |
|
|
|
LOG_MODULE_REGISTER(uart_esp32, CONFIG_UART_LOG_LEVEL); |
|
|
|
struct uart_esp32_config { |
|
const struct device *clock_dev; |
|
const struct pinctrl_dev_config *pcfg; |
|
const clock_control_subsys_t clock_subsys; |
|
int irq_source; |
|
int irq_priority; |
|
int irq_flags; |
|
bool tx_invert; |
|
bool rx_invert; |
|
#if CONFIG_UART_ASYNC_API |
|
const struct device *dma_dev; |
|
uint8_t tx_dma_channel; |
|
uint8_t rx_dma_channel; |
|
#endif |
|
}; |
|
|
|
#if CONFIG_UART_ASYNC_API |
|
struct uart_esp32_async_data { |
|
struct k_work_delayable tx_timeout_work; |
|
const uint8_t *tx_buf; |
|
size_t tx_len; |
|
struct k_work_delayable rx_timeout_work; |
|
uint8_t *rx_buf; |
|
uint8_t *rx_next_buf; |
|
size_t rx_len; |
|
size_t rx_next_len; |
|
size_t rx_timeout; |
|
volatile size_t rx_counter; |
|
size_t rx_offset; |
|
uart_callback_t cb; |
|
void *user_data; |
|
}; |
|
#endif |
|
|
|
/* driver data */ |
|
struct uart_esp32_data { |
|
struct uart_config uart_config; |
|
uart_hal_context_t hal; |
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN |
|
uart_irq_callback_user_data_t irq_cb; |
|
void *irq_cb_data; |
|
#endif |
|
#if CONFIG_UART_ASYNC_API |
|
struct uart_esp32_async_data async; |
|
uhci_dev_t *uhci_dev; |
|
const struct device *uart_dev; |
|
#endif |
|
}; |
|
|
|
#define UART_FIFO_LIMIT (UART_LL_FIFO_DEF_LEN) |
|
#define UART_TX_FIFO_THRESH (CONFIG_UART_ESP32_TX_FIFO_THRESH) |
|
#define UART_RX_FIFO_THRESH (CONFIG_UART_ESP32_RX_FIFO_THRESH) |
|
|
|
#if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API |
|
static void uart_esp32_isr(void *arg); |
|
#endif |
|
|
|
static int uart_esp32_poll_in(const struct device *dev, unsigned char *p_char) |
|
{ |
|
struct uart_esp32_data *data = dev->data; |
|
int inout_rd_len = 1; |
|
|
|
if (uart_hal_get_rxfifo_len(&data->hal) == 0) { |
|
return -1; |
|
} |
|
|
|
uart_hal_read_rxfifo(&data->hal, p_char, &inout_rd_len); |
|
|
|
return 0; |
|
} |
|
|
|
static void uart_esp32_poll_out(const struct device *dev, unsigned char c) |
|
{ |
|
struct uart_esp32_data *data = dev->data; |
|
uint32_t written; |
|
|
|
/* Wait for space in FIFO */ |
|
while (uart_hal_get_txfifo_len(&data->hal) == 0) { |
|
; /* Wait */ |
|
} |
|
|
|
/* Send a character */ |
|
uart_hal_write_txfifo(&data->hal, &c, 1, &written); |
|
} |
|
|
|
static int uart_esp32_err_check(const struct device *dev) |
|
{ |
|
struct uart_esp32_data *data = dev->data; |
|
uint32_t mask = uart_hal_get_intsts_mask(&data->hal); |
|
uint32_t err = mask & (UART_INTR_PARITY_ERR | UART_INTR_FRAM_ERR); |
|
|
|
return err; |
|
} |
|
|
|
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE |
|
|
|
static uint32_t uart_esp32_get_standard_baud(uint32_t calc_baud) |
|
{ |
|
const uint32_t standard_bauds[] = {9600, 14400, 19200, 38400, 57600, |
|
74880, 115200, 230400, 460800, 921600}; |
|
int num_bauds = ARRAY_SIZE(standard_bauds); |
|
uint32_t baud = calc_baud; |
|
|
|
/* Find the standard baudrate within 0.1% range. If no close |
|
* value is found, input is returned. |
|
*/ |
|
for (int i = 0; i < num_bauds; i++) { |
|
float range = (float)abs(calc_baud - standard_bauds[i]) / standard_bauds[i]; |
|
|
|
if (range < 0.001f) { |
|
baud = standard_bauds[i]; |
|
break; |
|
} |
|
} |
|
|
|
return baud; |
|
} |
|
|
|
static int uart_esp32_config_get(const struct device *dev, struct uart_config *cfg) |
|
{ |
|
struct uart_esp32_data *data = dev->data; |
|
uart_parity_t parity; |
|
uart_stop_bits_t stop_bit; |
|
uart_word_length_t data_bit; |
|
uart_hw_flowcontrol_t hw_flow; |
|
uart_sclk_t src_clk; |
|
uint32_t sclk_freq; |
|
uint32_t calc_baud; |
|
|
|
uart_hal_get_sclk(&data->hal, &src_clk); |
|
esp_clk_tree_src_get_freq_hz((soc_module_clk_t)src_clk, |
|
ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &sclk_freq); |
|
|
|
uart_hal_get_baudrate(&data->hal, &calc_baud, sclk_freq); |
|
cfg->baudrate = uart_esp32_get_standard_baud(calc_baud); |
|
|
|
uart_hal_get_parity(&data->hal, &parity); |
|
switch (parity) { |
|
case UART_PARITY_DISABLE: |
|
cfg->parity = UART_CFG_PARITY_NONE; |
|
break; |
|
case UART_PARITY_EVEN: |
|
cfg->parity = UART_CFG_PARITY_EVEN; |
|
break; |
|
case UART_PARITY_ODD: |
|
cfg->parity = UART_CFG_PARITY_ODD; |
|
break; |
|
default: |
|
return -ENOTSUP; |
|
} |
|
|
|
uart_hal_get_stop_bits(&data->hal, &stop_bit); |
|
switch (stop_bit) { |
|
case UART_STOP_BITS_1: |
|
cfg->stop_bits = UART_CFG_STOP_BITS_1; |
|
break; |
|
case UART_STOP_BITS_1_5: |
|
cfg->stop_bits = UART_CFG_STOP_BITS_1_5; |
|
break; |
|
case UART_STOP_BITS_2: |
|
cfg->stop_bits = UART_CFG_STOP_BITS_2; |
|
break; |
|
default: |
|
return -ENOTSUP; |
|
} |
|
|
|
uart_hal_get_data_bit_num(&data->hal, &data_bit); |
|
switch (data_bit) { |
|
case UART_DATA_5_BITS: |
|
cfg->data_bits = UART_CFG_DATA_BITS_5; |
|
break; |
|
case UART_DATA_6_BITS: |
|
cfg->data_bits = UART_CFG_DATA_BITS_6; |
|
break; |
|
case UART_DATA_7_BITS: |
|
cfg->data_bits = UART_CFG_DATA_BITS_7; |
|
break; |
|
case UART_DATA_8_BITS: |
|
cfg->data_bits = UART_CFG_DATA_BITS_8; |
|
break; |
|
default: |
|
return -ENOTSUP; |
|
} |
|
|
|
uart_hal_get_hw_flow_ctrl(&data->hal, &hw_flow); |
|
switch (hw_flow) { |
|
case UART_HW_FLOWCTRL_DISABLE: |
|
cfg->flow_ctrl = UART_CFG_FLOW_CTRL_NONE; |
|
break; |
|
case UART_HW_FLOWCTRL_CTS_RTS: |
|
cfg->flow_ctrl = UART_CFG_FLOW_CTRL_RTS_CTS; |
|
break; |
|
default: |
|
return -ENOTSUP; |
|
} |
|
|
|
if (uart_hal_is_mode_rs485_half_duplex(&data->hal)) { |
|
cfg->flow_ctrl = UART_CFG_FLOW_CTRL_RS485; |
|
} |
|
|
|
return 0; |
|
} |
|
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */ |
|
|
|
static int uart_esp32_configure(const struct device *dev, const struct uart_config *cfg) |
|
{ |
|
const struct uart_esp32_config *config = dev->config; |
|
struct uart_esp32_data *data = dev->data; |
|
uart_sclk_t src_clk; |
|
uint32_t sclk_freq; |
|
uint32_t inv_mask = 0; |
|
|
|
int ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); |
|
|
|
if (ret < 0) { |
|
return ret; |
|
} |
|
|
|
if (!device_is_ready(config->clock_dev)) { |
|
return -ENODEV; |
|
} |
|
|
|
clock_control_on(config->clock_dev, config->clock_subsys); |
|
|
|
uart_hal_set_sclk(&data->hal, UART_SCLK_DEFAULT); |
|
uart_hal_set_rxfifo_full_thr(&data->hal, UART_RX_FIFO_THRESH); |
|
uart_hal_set_txfifo_empty_thr(&data->hal, UART_TX_FIFO_THRESH); |
|
uart_hal_rxfifo_rst(&data->hal); |
|
uart_hal_txfifo_rst(&data->hal); |
|
|
|
switch (cfg->parity) { |
|
case UART_CFG_PARITY_NONE: |
|
uart_hal_set_parity(&data->hal, UART_PARITY_DISABLE); |
|
break; |
|
case UART_CFG_PARITY_EVEN: |
|
uart_hal_set_parity(&data->hal, UART_PARITY_EVEN); |
|
break; |
|
case UART_CFG_PARITY_ODD: |
|
uart_hal_set_parity(&data->hal, UART_PARITY_ODD); |
|
break; |
|
default: |
|
return -ENOTSUP; |
|
} |
|
|
|
switch (cfg->stop_bits) { |
|
case UART_CFG_STOP_BITS_1: |
|
uart_hal_set_stop_bits(&data->hal, UART_STOP_BITS_1); |
|
break; |
|
case UART_CFG_STOP_BITS_1_5: |
|
uart_hal_set_stop_bits(&data->hal, UART_STOP_BITS_1_5); |
|
break; |
|
case UART_CFG_STOP_BITS_2: |
|
uart_hal_set_stop_bits(&data->hal, UART_STOP_BITS_2); |
|
break; |
|
default: |
|
return -ENOTSUP; |
|
} |
|
|
|
switch (cfg->data_bits) { |
|
case UART_CFG_DATA_BITS_5: |
|
uart_hal_set_data_bit_num(&data->hal, UART_DATA_5_BITS); |
|
break; |
|
case UART_CFG_DATA_BITS_6: |
|
uart_hal_set_data_bit_num(&data->hal, UART_DATA_6_BITS); |
|
break; |
|
case UART_CFG_DATA_BITS_7: |
|
uart_hal_set_data_bit_num(&data->hal, UART_DATA_7_BITS); |
|
break; |
|
case UART_CFG_DATA_BITS_8: |
|
uart_hal_set_data_bit_num(&data->hal, UART_DATA_8_BITS); |
|
break; |
|
default: |
|
return -ENOTSUP; |
|
} |
|
|
|
uart_hal_set_mode(&data->hal, UART_MODE_UART); |
|
|
|
switch (cfg->flow_ctrl) { |
|
case UART_CFG_FLOW_CTRL_NONE: |
|
uart_hal_set_hw_flow_ctrl(&data->hal, UART_HW_FLOWCTRL_DISABLE, 0); |
|
break; |
|
case UART_CFG_FLOW_CTRL_RTS_CTS: |
|
uart_hal_set_hw_flow_ctrl(&data->hal, UART_HW_FLOWCTRL_CTS_RTS, 10); |
|
break; |
|
case UART_CFG_FLOW_CTRL_RS485: |
|
uart_hal_set_mode(&data->hal, UART_MODE_RS485_HALF_DUPLEX); |
|
break; |
|
default: |
|
return -ENOTSUP; |
|
} |
|
|
|
uart_hal_get_sclk(&data->hal, &src_clk); |
|
esp_clk_tree_src_get_freq_hz((soc_module_clk_t)src_clk, |
|
ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &sclk_freq); |
|
uart_hal_set_baudrate(&data->hal, cfg->baudrate, sclk_freq); |
|
|
|
uart_hal_set_rx_timeout(&data->hal, 0x16); |
|
|
|
if (config->tx_invert) { |
|
inv_mask |= UART_SIGNAL_TXD_INV; |
|
} |
|
if (config->rx_invert) { |
|
inv_mask |= UART_SIGNAL_RXD_INV; |
|
} |
|
|
|
if (inv_mask) { |
|
uart_hal_inverse_signal(&data->hal, inv_mask); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN |
|
|
|
static int uart_esp32_fifo_fill(const struct device *dev, const uint8_t *tx_data, int len) |
|
{ |
|
struct uart_esp32_data *data = dev->data; |
|
uint32_t written = 0; |
|
|
|
if (len < 0) { |
|
return 0; |
|
} |
|
|
|
uart_hal_write_txfifo(&data->hal, tx_data, len, &written); |
|
return written; |
|
} |
|
|
|
static int uart_esp32_fifo_read(const struct device *dev, uint8_t *rx_data, const int len) |
|
{ |
|
struct uart_esp32_data *data = dev->data; |
|
const int num_rx = uart_hal_get_rxfifo_len(&data->hal); |
|
int read = MIN(len, num_rx); |
|
|
|
if (!read) { |
|
return 0; |
|
} |
|
|
|
uart_hal_read_rxfifo(&data->hal, rx_data, &read); |
|
return read; |
|
} |
|
|
|
static void uart_esp32_irq_tx_enable(const struct device *dev) |
|
{ |
|
struct uart_esp32_data *data = dev->data; |
|
|
|
uart_hal_clr_intsts_mask(&data->hal, UART_INTR_TXFIFO_EMPTY); |
|
uart_hal_ena_intr_mask(&data->hal, UART_INTR_TXFIFO_EMPTY); |
|
} |
|
|
|
static void uart_esp32_irq_tx_disable(const struct device *dev) |
|
{ |
|
struct uart_esp32_data *data = dev->data; |
|
|
|
uart_hal_disable_intr_mask(&data->hal, UART_INTR_TXFIFO_EMPTY); |
|
} |
|
|
|
static int uart_esp32_irq_tx_ready(const struct device *dev) |
|
{ |
|
struct uart_esp32_data *data = dev->data; |
|
|
|
return (uart_hal_get_txfifo_len(&data->hal) > 0 && |
|
uart_hal_get_intr_ena_status(&data->hal) & UART_INTR_TXFIFO_EMPTY); |
|
} |
|
|
|
static void uart_esp32_irq_rx_disable(const struct device *dev) |
|
{ |
|
struct uart_esp32_data *data = dev->data; |
|
|
|
uart_hal_disable_intr_mask(&data->hal, UART_INTR_RXFIFO_FULL); |
|
uart_hal_disable_intr_mask(&data->hal, UART_INTR_RXFIFO_TOUT); |
|
} |
|
|
|
static int uart_esp32_irq_tx_complete(const struct device *dev) |
|
{ |
|
struct uart_esp32_data *data = dev->data; |
|
|
|
return uart_hal_is_tx_idle(&data->hal); |
|
} |
|
|
|
static int uart_esp32_irq_rx_ready(const struct device *dev) |
|
{ |
|
struct uart_esp32_data *data = dev->data; |
|
|
|
return (uart_hal_get_rxfifo_len(&data->hal) > 0); |
|
} |
|
|
|
static void uart_esp32_irq_err_enable(const struct device *dev) |
|
{ |
|
struct uart_esp32_data *data = dev->data; |
|
|
|
/* enable framing, parity */ |
|
uart_hal_ena_intr_mask(&data->hal, UART_INTR_FRAM_ERR); |
|
uart_hal_ena_intr_mask(&data->hal, UART_INTR_PARITY_ERR); |
|
} |
|
|
|
static void uart_esp32_irq_err_disable(const struct device *dev) |
|
{ |
|
struct uart_esp32_data *data = dev->data; |
|
|
|
uart_hal_disable_intr_mask(&data->hal, UART_INTR_FRAM_ERR); |
|
uart_hal_disable_intr_mask(&data->hal, UART_INTR_PARITY_ERR); |
|
} |
|
|
|
static int uart_esp32_irq_is_pending(const struct device *dev) |
|
{ |
|
return uart_esp32_irq_rx_ready(dev) || uart_esp32_irq_tx_ready(dev); |
|
} |
|
|
|
static int uart_esp32_irq_update(const struct device *dev) |
|
{ |
|
struct uart_esp32_data *data = dev->data; |
|
|
|
uart_hal_clr_intsts_mask(&data->hal, UART_INTR_RXFIFO_FULL); |
|
uart_hal_clr_intsts_mask(&data->hal, UART_INTR_RXFIFO_TOUT); |
|
uart_hal_clr_intsts_mask(&data->hal, UART_INTR_TXFIFO_EMPTY); |
|
|
|
return 1; |
|
} |
|
|
|
static void uart_esp32_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb, |
|
void *cb_data) |
|
{ |
|
struct uart_esp32_data *data = dev->data; |
|
|
|
data->irq_cb = cb; |
|
data->irq_cb_data = cb_data; |
|
|
|
#if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS) |
|
data->async.cb = NULL; |
|
data->async.user_data = NULL; |
|
#endif |
|
} |
|
|
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */ |
|
|
|
#ifdef CONFIG_UART_ASYNC_API |
|
|
|
static inline void uart_esp32_async_timer_start(struct k_work_delayable *work, size_t timeout) |
|
{ |
|
if ((timeout != SYS_FOREVER_US) && (timeout != 0)) { |
|
LOG_DBG("Async timer started for %d us", timeout); |
|
k_work_reschedule(work, K_USEC(timeout)); |
|
} |
|
} |
|
|
|
#endif |
|
#if CONFIG_UART_ASYNC_API || CONFIG_UART_INTERRUPT_DRIVEN |
|
|
|
static void uart_esp32_irq_rx_enable(const struct device *dev) |
|
{ |
|
struct uart_esp32_data *data = dev->data; |
|
|
|
uart_hal_clr_intsts_mask(&data->hal, UART_INTR_RXFIFO_FULL); |
|
uart_hal_clr_intsts_mask(&data->hal, UART_INTR_RXFIFO_TOUT); |
|
uart_hal_ena_intr_mask(&data->hal, UART_INTR_RXFIFO_FULL); |
|
uart_hal_ena_intr_mask(&data->hal, UART_INTR_RXFIFO_TOUT); |
|
} |
|
|
|
static void uart_esp32_isr(void *arg) |
|
{ |
|
const struct device *dev = (const struct device *)arg; |
|
struct uart_esp32_data *data = dev->data; |
|
uint32_t uart_intr_status = uart_hal_get_intsts_mask(&data->hal); |
|
|
|
if (uart_intr_status == 0) { |
|
return; |
|
} |
|
uart_hal_clr_intsts_mask(&data->hal, uart_intr_status); |
|
|
|
#if CONFIG_UART_INTERRUPT_DRIVEN |
|
/* Verify if the callback has been registered */ |
|
if (data->irq_cb) { |
|
data->irq_cb(dev, data->irq_cb_data); |
|
} |
|
#endif |
|
|
|
#if CONFIG_UART_ASYNC_API |
|
if (uart_intr_status & UART_INTR_RXFIFO_FULL) { |
|
data->async.rx_counter++; |
|
uart_esp32_async_timer_start(&data->async.rx_timeout_work, data->async.rx_timeout); |
|
} |
|
#endif |
|
} |
|
|
|
#endif |
|
|
|
#if CONFIG_UART_ASYNC_API |
|
static void IRAM_ATTR uart_esp32_dma_rx_done(const struct device *dma_dev, void *user_data, |
|
uint32_t channel, int status) |
|
{ |
|
const struct device *uart_dev = user_data; |
|
const struct uart_esp32_config *config = uart_dev->config; |
|
struct uart_esp32_data *data = uart_dev->data; |
|
struct uart_event evt = {0}; |
|
unsigned int key = irq_lock(); |
|
|
|
/* If the receive buffer is not complete we reload the DMA at current buffer position and |
|
* let the timeout callback handle the notifications |
|
*/ |
|
if (data->async.rx_counter != data->async.rx_len) { |
|
dma_reload(config->dma_dev, config->rx_dma_channel, 0, |
|
(uint32_t)data->async.rx_buf + data->async.rx_counter, |
|
data->async.rx_len - data->async.rx_counter); |
|
dma_start(config->dma_dev, config->rx_dma_channel); |
|
data->uhci_dev->pkt_thres.thrs = data->async.rx_len - data->async.rx_counter; |
|
irq_unlock(key); |
|
return; |
|
} |
|
|
|
/*Notify RX_RDY*/ |
|
evt.type = UART_RX_RDY; |
|
evt.data.rx.buf = data->async.rx_buf; |
|
evt.data.rx.len = data->async.rx_counter - data->async.rx_offset; |
|
evt.data.rx.offset = data->async.rx_offset; |
|
|
|
if (data->async.cb && evt.data.rx.len) { |
|
data->async.cb(data->uart_dev, &evt, data->async.user_data); |
|
} |
|
|
|
data->async.rx_offset = 0; |
|
data->async.rx_counter = 0; |
|
|
|
/*Release current buffer*/ |
|
evt.type = UART_RX_BUF_RELEASED; |
|
evt.data.rx_buf.buf = data->async.rx_buf; |
|
if (data->async.cb) { |
|
data->async.cb(uart_dev, &evt, data->async.user_data); |
|
} |
|
|
|
/*Load next buffer and request another*/ |
|
data->async.rx_buf = data->async.rx_next_buf; |
|
data->async.rx_len = data->async.rx_next_len; |
|
data->async.rx_next_buf = NULL; |
|
data->async.rx_next_len = 0U; |
|
evt.type = UART_RX_BUF_REQUEST; |
|
if (data->async.cb) { |
|
data->async.cb(uart_dev, &evt, data->async.user_data); |
|
} |
|
|
|
/*Notify RX_DISABLED when there is no buffer*/ |
|
if (!data->async.rx_buf) { |
|
evt.type = UART_RX_DISABLED; |
|
if (data->async.cb) { |
|
data->async.cb(uart_dev, &evt, data->async.user_data); |
|
} |
|
} else { |
|
/*Reload DMA with new buffer*/ |
|
dma_reload(config->dma_dev, config->rx_dma_channel, 0, (uint32_t)data->async.rx_buf, |
|
data->async.rx_len); |
|
dma_start(config->dma_dev, config->rx_dma_channel); |
|
data->uhci_dev->pkt_thres.thrs = data->async.rx_len; |
|
} |
|
|
|
irq_unlock(key); |
|
} |
|
|
|
static void IRAM_ATTR uart_esp32_dma_tx_done(const struct device *dma_dev, void *user_data, |
|
uint32_t channel, int status) |
|
{ |
|
const struct device *uart_dev = user_data; |
|
struct uart_esp32_data *data = uart_dev->data; |
|
struct uart_event evt = {0}; |
|
unsigned int key = irq_lock(); |
|
|
|
k_work_cancel_delayable(&data->async.tx_timeout_work); |
|
|
|
evt.type = UART_TX_DONE; |
|
evt.data.tx.buf = data->async.tx_buf; |
|
evt.data.tx.len = data->async.tx_len; |
|
if (data->async.cb) { |
|
data->async.cb(uart_dev, &evt, data->async.user_data); |
|
} |
|
|
|
/* Reset TX Buffer */ |
|
data->async.tx_buf = NULL; |
|
data->async.tx_len = 0U; |
|
irq_unlock(key); |
|
} |
|
|
|
static int uart_esp32_async_tx_abort(const struct device *dev) |
|
{ |
|
const struct uart_esp32_config *config = dev->config; |
|
struct uart_esp32_data *data = dev->data; |
|
struct uart_event evt = {0}; |
|
int err = 0; |
|
unsigned int key = irq_lock(); |
|
|
|
k_work_cancel_delayable(&data->async.tx_timeout_work); |
|
|
|
err = dma_stop(config->dma_dev, config->tx_dma_channel); |
|
if (err) { |
|
LOG_ERR("Error stopping Tx DMA (%d)", err); |
|
goto unlock; |
|
} |
|
|
|
evt.type = UART_TX_ABORTED; |
|
evt.data.tx.buf = data->async.tx_buf; |
|
evt.data.tx.len = data->async.tx_len; |
|
|
|
if (data->async.cb) { |
|
data->async.cb(dev, &evt, data->async.user_data); |
|
} |
|
|
|
unlock: |
|
irq_unlock(key); |
|
return err; |
|
} |
|
|
|
static void uart_esp32_async_tx_timeout(struct k_work *work) |
|
{ |
|
struct k_work_delayable *dwork = k_work_delayable_from_work(work); |
|
struct uart_esp32_async_data *async = |
|
CONTAINER_OF(dwork, struct uart_esp32_async_data, tx_timeout_work); |
|
struct uart_esp32_data *data = CONTAINER_OF(async, struct uart_esp32_data, async); |
|
|
|
uart_esp32_async_tx_abort(data->uart_dev); |
|
} |
|
|
|
static void uart_esp32_async_rx_timeout(struct k_work *work) |
|
{ |
|
struct k_work_delayable *dwork = k_work_delayable_from_work(work); |
|
struct uart_esp32_async_data *async = |
|
CONTAINER_OF(dwork, struct uart_esp32_async_data, rx_timeout_work); |
|
struct uart_esp32_data *data = CONTAINER_OF(async, struct uart_esp32_data, async); |
|
struct uart_event evt = {0}; |
|
unsigned int key = irq_lock(); |
|
|
|
evt.type = UART_RX_RDY; |
|
evt.data.rx.buf = data->async.rx_buf; |
|
evt.data.rx.len = data->async.rx_counter - data->async.rx_offset; |
|
evt.data.rx.offset = data->async.rx_offset; |
|
|
|
if (data->async.cb && evt.data.rx.len) { |
|
data->async.cb(data->uart_dev, &evt, data->async.user_data); |
|
} |
|
|
|
data->async.rx_offset = data->async.rx_counter; |
|
k_work_cancel_delayable(&data->async.rx_timeout_work); |
|
irq_unlock(key); |
|
} |
|
|
|
static int uart_esp32_async_callback_set(const struct device *dev, uart_callback_t callback, |
|
void *user_data) |
|
{ |
|
struct uart_esp32_data *data = dev->data; |
|
|
|
if (!callback) { |
|
return -EINVAL; |
|
} |
|
|
|
data->async.cb = callback; |
|
data->async.user_data = user_data; |
|
|
|
#if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS) |
|
data->irq_cb = NULL; |
|
data->irq_cb_data = NULL; |
|
#endif |
|
|
|
return 0; |
|
} |
|
|
|
static int uart_esp32_async_tx(const struct device *dev, const uint8_t *buf, size_t len, |
|
int32_t timeout) |
|
{ |
|
const struct uart_esp32_config *config = dev->config; |
|
struct uart_esp32_data *data = dev->data; |
|
struct dma_config dma_cfg = {0}; |
|
struct dma_block_config dma_blk = {0}; |
|
struct dma_status dma_status = {0}; |
|
int err = 0; |
|
unsigned int key = irq_lock(); |
|
|
|
if (config->tx_dma_channel == 0xFF) { |
|
LOG_ERR("Tx DMA channel is not configured"); |
|
err = -ENOTSUP; |
|
goto unlock; |
|
} |
|
|
|
err = dma_get_status(config->dma_dev, config->tx_dma_channel, &dma_status); |
|
if (err) { |
|
LOG_ERR("Unable to get Tx status (%d)", err); |
|
goto unlock; |
|
} |
|
|
|
if (dma_status.busy) { |
|
LOG_ERR("Tx DMA Channel is busy"); |
|
err = -EBUSY; |
|
goto unlock; |
|
} |
|
|
|
data->async.tx_buf = buf; |
|
data->async.tx_len = len; |
|
|
|
dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL; |
|
dma_cfg.dma_callback = uart_esp32_dma_tx_done; |
|
dma_cfg.user_data = (void *)dev; |
|
dma_cfg.dma_slot = ESP_GDMA_TRIG_PERIPH_UHCI0; |
|
dma_cfg.block_count = 1; |
|
dma_cfg.head_block = &dma_blk; |
|
dma_blk.block_size = len; |
|
dma_blk.source_address = (uint32_t)buf; |
|
|
|
err = dma_config(config->dma_dev, config->tx_dma_channel, &dma_cfg); |
|
if (err) { |
|
LOG_ERR("Error configuring Tx DMA (%d)", err); |
|
goto unlock; |
|
} |
|
|
|
uart_esp32_async_timer_start(&data->async.tx_timeout_work, timeout); |
|
|
|
err = dma_start(config->dma_dev, config->tx_dma_channel); |
|
if (err) { |
|
LOG_ERR("Error starting Tx DMA (%d)", err); |
|
goto unlock; |
|
} |
|
|
|
unlock: |
|
irq_unlock(key); |
|
return err; |
|
} |
|
|
|
static int uart_esp32_async_rx_enable(const struct device *dev, uint8_t *buf, size_t len, |
|
int32_t timeout) |
|
{ |
|
const struct uart_esp32_config *config = dev->config; |
|
struct uart_esp32_data *data = dev->data; |
|
struct dma_config dma_cfg = {0}; |
|
struct dma_block_config dma_blk = {0}; |
|
struct dma_status dma_status = {0}; |
|
int err = 0; |
|
struct uart_event evt = {0}; |
|
|
|
if (config->rx_dma_channel == 0xFF) { |
|
LOG_ERR("Rx DMA channel is not configured"); |
|
return -ENOTSUP; |
|
} |
|
|
|
err = dma_get_status(config->dma_dev, config->rx_dma_channel, &dma_status); |
|
if (err) { |
|
LOG_ERR("Unable to get Rx status (%d)", err); |
|
return err; |
|
} |
|
|
|
if (dma_status.busy) { |
|
LOG_ERR("Rx DMA Channel is busy"); |
|
return -EBUSY; |
|
} |
|
|
|
unsigned int key = irq_lock(); |
|
|
|
data->async.rx_buf = buf; |
|
data->async.rx_len = len; |
|
data->async.rx_timeout = timeout; |
|
|
|
dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY; |
|
dma_cfg.dma_callback = uart_esp32_dma_rx_done; |
|
dma_cfg.user_data = (void *)dev; |
|
dma_cfg.dma_slot = ESP_GDMA_TRIG_PERIPH_UHCI0; |
|
dma_cfg.block_count = 1; |
|
dma_cfg.head_block = &dma_blk; |
|
dma_blk.block_size = len; |
|
dma_blk.dest_address = (uint32_t)data->async.rx_buf; |
|
|
|
err = dma_config(config->dma_dev, config->rx_dma_channel, &dma_cfg); |
|
if (err) { |
|
LOG_ERR("Error configuring Rx DMA (%d)", err); |
|
goto unlock; |
|
} |
|
|
|
/* |
|
* Enable interrupt on first receive byte so we can start async timer |
|
*/ |
|
uart_hal_set_rxfifo_full_thr(&data->hal, 1); |
|
uart_esp32_irq_rx_enable(dev); |
|
|
|
err = dma_start(config->dma_dev, config->rx_dma_channel); |
|
if (err) { |
|
LOG_ERR("Error starting Rx DMA (%d)", err); |
|
goto unlock; |
|
} |
|
|
|
data->uhci_dev->pkt_thres.thrs = len; |
|
|
|
/** |
|
* Request next buffer |
|
*/ |
|
evt.type = UART_RX_BUF_REQUEST; |
|
if (data->async.cb) { |
|
data->async.cb(dev, &evt, data->async.user_data); |
|
} |
|
|
|
unlock: |
|
irq_unlock(key); |
|
return err; |
|
} |
|
|
|
static int uart_esp32_async_rx_buf_rsp(const struct device *dev, uint8_t *buf, size_t len) |
|
{ |
|
struct uart_esp32_data *data = dev->data; |
|
|
|
data->async.rx_next_buf = buf; |
|
data->async.rx_next_len = len; |
|
|
|
return 0; |
|
} |
|
|
|
static int uart_esp32_async_rx_disable(const struct device *dev) |
|
{ |
|
const struct uart_esp32_config *config = dev->config; |
|
struct uart_esp32_data *data = dev->data; |
|
unsigned int key = irq_lock(); |
|
int err = 0; |
|
struct uart_event evt = {0}; |
|
|
|
k_work_cancel_delayable(&data->async.rx_timeout_work); |
|
|
|
if (!data->async.rx_len) { |
|
err = -EINVAL; |
|
goto unlock; |
|
} |
|
|
|
err = dma_stop(config->dma_dev, config->rx_dma_channel); |
|
if (err) { |
|
LOG_ERR("Error stopping Rx DMA (%d)", err); |
|
goto unlock; |
|
} |
|
|
|
/*If any bytes have been received notify RX_RDY*/ |
|
evt.type = UART_RX_RDY; |
|
evt.data.rx.buf = data->async.rx_buf; |
|
evt.data.rx.len = data->async.rx_counter - data->async.rx_offset; |
|
evt.data.rx.offset = data->async.rx_offset; |
|
|
|
if (data->async.cb && evt.data.rx.len) { |
|
data->async.cb(data->uart_dev, &evt, data->async.user_data); |
|
} |
|
|
|
data->async.rx_offset = 0; |
|
data->async.rx_counter = 0; |
|
|
|
/* Release current buffer*/ |
|
evt.type = UART_RX_BUF_RELEASED; |
|
evt.data.rx_buf.buf = data->async.rx_buf; |
|
|
|
if (data->async.cb) { |
|
data->async.cb(dev, &evt, data->async.user_data); |
|
} |
|
|
|
data->async.rx_len = 0; |
|
data->async.rx_buf = NULL; |
|
|
|
/*Release next buffer*/ |
|
if (data->async.rx_next_len) { |
|
evt.type = UART_RX_BUF_RELEASED; |
|
evt.data.rx_buf.buf = data->async.rx_next_buf; |
|
if (data->async.cb) { |
|
data->async.cb(dev, &evt, data->async.user_data); |
|
} |
|
|
|
data->async.rx_next_len = 0; |
|
data->async.rx_next_buf = NULL; |
|
} |
|
|
|
/*Notify UART_RX_DISABLED*/ |
|
evt.type = UART_RX_DISABLED; |
|
if (data->async.cb) { |
|
data->async.cb(dev, &evt, data->async.user_data); |
|
} |
|
|
|
unlock: |
|
irq_unlock(key); |
|
return err; |
|
} |
|
|
|
#endif /* CONFIG_UART_ASYNC_API */ |
|
|
|
static int uart_esp32_init(const struct device *dev) |
|
{ |
|
struct uart_esp32_data *data = dev->data; |
|
int ret = uart_esp32_configure(dev, &data->uart_config); |
|
|
|
if (ret < 0) { |
|
LOG_ERR("Error configuring UART (%d)", ret); |
|
return ret; |
|
} |
|
|
|
#if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API |
|
const struct uart_esp32_config *config = dev->config; |
|
|
|
ret = esp_intr_alloc(config->irq_source, |
|
ESP_PRIO_TO_FLAGS(config->irq_priority) | |
|
ESP_INT_FLAGS_CHECK(config->irq_flags), |
|
(intr_handler_t)uart_esp32_isr, |
|
(void *)dev, |
|
NULL); |
|
if (ret < 0) { |
|
LOG_ERR("Error allocating UART interrupt (%d)", ret); |
|
return ret; |
|
} |
|
#endif |
|
#if CONFIG_UART_ASYNC_API |
|
if (config->dma_dev) { |
|
if (!device_is_ready(config->dma_dev)) { |
|
LOG_ERR("DMA device is not ready"); |
|
return -ENODEV; |
|
} |
|
|
|
clock_control_on(config->clock_dev, (clock_control_subsys_t)ESP32_UHCI0_MODULE); |
|
uhci_ll_init(data->uhci_dev); |
|
uhci_ll_set_eof_mode(data->uhci_dev, UHCI_RX_IDLE_EOF | UHCI_RX_LEN_EOF); |
|
uhci_ll_attach_uart_port(data->uhci_dev, uart_hal_get_port_num(&data->hal)); |
|
data->uart_dev = dev; |
|
|
|
k_work_init_delayable(&data->async.tx_timeout_work, uart_esp32_async_tx_timeout); |
|
k_work_init_delayable(&data->async.rx_timeout_work, uart_esp32_async_rx_timeout); |
|
} |
|
#endif |
|
return 0; |
|
} |
|
|
|
static DEVICE_API(uart, uart_esp32_api) = { |
|
.poll_in = uart_esp32_poll_in, |
|
.poll_out = uart_esp32_poll_out, |
|
.err_check = uart_esp32_err_check, |
|
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE |
|
.configure = uart_esp32_configure, |
|
.config_get = uart_esp32_config_get, |
|
#endif |
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN |
|
.fifo_fill = uart_esp32_fifo_fill, |
|
.fifo_read = uart_esp32_fifo_read, |
|
.irq_tx_enable = uart_esp32_irq_tx_enable, |
|
.irq_tx_disable = uart_esp32_irq_tx_disable, |
|
.irq_tx_ready = uart_esp32_irq_tx_ready, |
|
.irq_rx_enable = uart_esp32_irq_rx_enable, |
|
.irq_rx_disable = uart_esp32_irq_rx_disable, |
|
.irq_tx_complete = uart_esp32_irq_tx_complete, |
|
.irq_rx_ready = uart_esp32_irq_rx_ready, |
|
.irq_err_enable = uart_esp32_irq_err_enable, |
|
.irq_err_disable = uart_esp32_irq_err_disable, |
|
.irq_is_pending = uart_esp32_irq_is_pending, |
|
.irq_update = uart_esp32_irq_update, |
|
.irq_callback_set = uart_esp32_irq_callback_set, |
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */ |
|
#if CONFIG_UART_ASYNC_API |
|
.callback_set = uart_esp32_async_callback_set, |
|
.tx = uart_esp32_async_tx, |
|
.tx_abort = uart_esp32_async_tx_abort, |
|
.rx_enable = uart_esp32_async_rx_enable, |
|
.rx_buf_rsp = uart_esp32_async_rx_buf_rsp, |
|
.rx_disable = uart_esp32_async_rx_disable, |
|
#endif /*CONFIG_UART_ASYNC_API*/ |
|
}; |
|
|
|
#if CONFIG_UART_ASYNC_API |
|
#define ESP_UART_DMA_INIT(n) \ |
|
.dma_dev = ESP32_DT_INST_DMA_CTLR(n, tx), \ |
|
.tx_dma_channel = ESP32_DT_INST_DMA_CELL(n, tx, channel), \ |
|
.rx_dma_channel = ESP32_DT_INST_DMA_CELL(n, rx, channel) |
|
|
|
#define ESP_UART_UHCI_INIT(n) \ |
|
.uhci_dev = COND_CODE_1(DT_INST_NODE_HAS_PROP(n, dmas), (&UHCI0), (NULL)) |
|
|
|
#else |
|
#define ESP_UART_DMA_INIT(n) |
|
#define ESP_UART_UHCI_INIT(n) |
|
#endif |
|
|
|
#define ESP32_UART_INIT(idx) \ |
|
\ |
|
PINCTRL_DT_INST_DEFINE(idx); \ |
|
\ |
|
static const DRAM_ATTR struct uart_esp32_config uart_esp32_cfg_port_##idx = { \ |
|
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(idx)), \ |
|
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx), \ |
|
.clock_subsys = (clock_control_subsys_t)DT_INST_CLOCKS_CELL(idx, offset), \ |
|
.irq_source = DT_INST_IRQ_BY_IDX(idx, 0, irq), \ |
|
.irq_priority = DT_INST_IRQ_BY_IDX(idx, 0, priority), \ |
|
.irq_flags = DT_INST_IRQ_BY_IDX(idx, 0, flags), \ |
|
.tx_invert = DT_INST_PROP_OR(idx, tx_invert, false), \ |
|
.rx_invert = DT_INST_PROP_OR(idx, rx_invert, false), \ |
|
ESP_UART_DMA_INIT(idx)}; \ |
|
\ |
|
static struct uart_esp32_data uart_esp32_data_##idx = { \ |
|
.uart_config = {.baudrate = DT_INST_PROP(idx, current_speed), \ |
|
.parity = DT_INST_ENUM_IDX(idx, parity), \ |
|
.stop_bits = DT_INST_ENUM_IDX(idx, stop_bits), \ |
|
.data_bits = DT_INST_ENUM_IDX(idx, data_bits), \ |
|
.flow_ctrl = MAX(COND_CODE_1(DT_INST_PROP(idx, hw_rs485_hd_mode), \ |
|
(UART_CFG_FLOW_CTRL_RS485), \ |
|
(UART_CFG_FLOW_CTRL_NONE)), \ |
|
COND_CODE_1(DT_INST_PROP(idx, hw_flow_control), \ |
|
(UART_CFG_FLOW_CTRL_RTS_CTS), \ |
|
(UART_CFG_FLOW_CTRL_NONE)))}, \ |
|
.hal = \ |
|
{ \ |
|
.dev = (uart_dev_t *)DT_INST_REG_ADDR(idx), \ |
|
}, \ |
|
ESP_UART_UHCI_INIT(idx)}; \ |
|
\ |
|
DEVICE_DT_INST_DEFINE(idx, uart_esp32_init, NULL, &uart_esp32_data_##idx, \ |
|
&uart_esp32_cfg_port_##idx, PRE_KERNEL_1, \ |
|
CONFIG_SERIAL_INIT_PRIORITY, &uart_esp32_api); |
|
|
|
DT_INST_FOREACH_STATUS_OKAY(ESP32_UART_INIT);
|
|
|