Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

337 lines
9.8 KiB

/*
* Copyright (c) 2021 Eug Krashtan
* Copyright (c) 2022 Wouter Cappelle
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/device.h>
#include <zephyr/devicetree.h>
#include <zephyr/drivers/sensor.h>
#include <zephyr/drivers/adc.h>
#include <zephyr/logging/log.h>
#include <zephyr/pm/device_runtime.h>
#include <stm32_ll_adc.h>
#if defined(CONFIG_SOC_SERIES_STM32H5X)
#include <stm32_ll_icache.h>
#endif /* CONFIG_SOC_SERIES_STM32H5X */
LOG_MODULE_REGISTER(stm32_temp, CONFIG_SENSOR_LOG_LEVEL);
#define CAL_RES 12
#define MAX_CALIB_POINTS 2
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_temp)
#define DT_DRV_COMPAT st_stm32_temp
#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32_temp_cal)
#define DT_DRV_COMPAT st_stm32_temp_cal
#define HAS_DUAL_CALIBRATION 1
#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32c0_temp_cal)
#define DT_DRV_COMPAT st_stm32c0_temp_cal
#define HAS_SINGLE_CALIBRATION 1
#else
#error "No compatible devicetree node found"
#endif
#if defined(HAS_SINGLE_CALIBRATION) || defined(HAS_DUAL_CALIBRATION)
#define HAS_CALIBRATION 1
#endif
struct stm32_temp_data {
const struct device *adc;
const struct adc_channel_cfg adc_cfg;
ADC_TypeDef *adc_base;
struct adc_sequence adc_seq;
struct k_mutex mutex;
int16_t sample_buffer;
int16_t raw; /* raw adc Sensor value */
};
struct stm32_temp_config {
#if !defined(HAS_CALIBRATION)
float average_slope; /** Unit: mV/°C */
int v25; /** Unit: mV */
#else /* HAS_CALIBRATION */
unsigned int calib_vrefanalog; /** Unit: mV */
unsigned int calib_data_shift;
const void *ts_cal1_addr;
int ts_cal1_temp; /** Unit: °C */
#if defined(HAS_SINGLE_CALIBRATION)
float average_slope; /** Unit: mV/°C */
#else /* HAS_DUAL_CALIBRATION */
const void *ts_cal2_addr;
int ts_cal2_temp; /** Unit: °C */
#endif
#endif /* HAS_CALIBRATION */
bool is_ntc;
};
static inline void adc_enable_tempsensor_channel(ADC_TypeDef *adc)
{
const uint32_t path = LL_ADC_GetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(adc));
LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(adc),
path | LL_ADC_PATH_INTERNAL_TEMPSENSOR);
k_usleep(LL_ADC_DELAY_TEMPSENSOR_STAB_US);
}
static inline void adc_disable_tempsensor_channel(ADC_TypeDef *adc)
{
const uint32_t path = LL_ADC_GetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(adc));
LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(adc),
path & ~LL_ADC_PATH_INTERNAL_TEMPSENSOR);
}
#if defined(HAS_CALIBRATION)
static uint32_t fetch_mfg_data(const void *addr)
{
/* On all STM32 series, the calibration data is stored
* as 16-bit data in the manufacturing flash region
*/
return sys_read16((mem_addr_t)addr);
}
/**
* @returns TS_CAL1 in calib_data[0]
* TS_CAL2 in calib_data[1] if applicable
*/
static void read_calibration_data(const struct stm32_temp_config *cfg,
uint32_t calib_data[MAX_CALIB_POINTS])
{
#if defined(CONFIG_SOC_SERIES_STM32H5X)
/* Disable the ICACHE to ensure all memory accesses are non-cacheable.
* This is required on STM32H5, where the manufacturing flash must be
* accessed in non-cacheable mode - otherwise, a bus error occurs.
*/
LL_ICACHE_Disable();
#endif /* CONFIG_SOC_SERIES_STM32H5X */
calib_data[0] = fetch_mfg_data(cfg->ts_cal1_addr);
#if defined(HAS_DUAL_CALIBRATION)
calib_data[1] = fetch_mfg_data(cfg->ts_cal2_addr);
#endif
#if defined(CONFIG_SOC_SERIES_STM32H5X)
/* Re-enable the ICACHE (unconditonally - it should always be turned on) */
LL_ICACHE_Enable();
#endif /* CONFIG_SOC_SERIES_STM32H5X */
}
#endif /* HAS_CALIBRATION */
static float convert_adc_sample_to_temperature(const struct device *dev)
{
struct stm32_temp_data *data = dev->data;
const struct stm32_temp_config *cfg = dev->config;
const uint16_t vdda_mv = adc_ref_internal(data->adc);
float temperature;
#if !defined(HAS_CALIBRATION)
/**
* Series without calibration (STM32F1/F2):
* Tjunction = ((Dividend) / Avg_Slope) + 25
*
* where Dividend is:
* - (V25 - Vsense) on STM32F1 series ("ntc")
* - (Vsense - V25) on STM32F2 series
* and Vsense = (ADC raw data) / ADC_MAX_VALUE * Vdda
* and ADC_MAX_VALUE = 4095 (12-bit ADC resolution)
*
* References:
* - RM0008 §11.10 "Temperature sensor" (STM32F100)
* - RM0041 §10.9 "Temperature sensor" (STM32F101/F102/F103/F105/F107)
* - RM0033 §10.10 "Temperature sensor" (STM32F2)
*/
/* Perform multiplication first for higher accuracy */
const int vsense = ((int)data->raw * vdda_mv) / 4095;
if (cfg->is_ntc) {
temperature = (float)(cfg->v25 - vsense);
} else {
temperature = (float)(vsense - cfg->v25);
}
temperature /= cfg->average_slope;
temperature += 25.0f;
#else /* HAS_CALIBRATION */
uint32_t calib[MAX_CALIB_POINTS];
read_calibration_data(cfg, calib);
const float sense_data = ((float)vdda_mv / cfg->calib_vrefanalog) * data->raw;
#if defined(HAS_SINGLE_CALIBRATION)
/**
* Series with one calibration point (STM32C0,STM32F030/F070):
* Tjunction = ((Dividend) / Avg_Slope_Code) + TS_CAL1_TEMP
*
* where Dividend is:
* - (TS_CAL1 - Sense_Data) on STM32F030/STM32F070 ("ntc")
* - (Sense_Data - TS_CAL1) on STM32C0 series
*
* and Avg_SlopeCode = (Avg_Slope * 4096 / calibration Vdda)
*
* References:
* - RM0360 §12.8 "Temperature sensor" (STM32F030/STM32F070)
* - RM0490 §14.10 "Temperature sensor and internal reference voltage" (STM32C0)
*/
const float avg_slope_code =
(cfg->average_slope / cfg->calib_vrefanalog) * 4096.f;
float dividend;
if (cfg->is_ntc) {
dividend = ((float)(calib[0] >> cfg->calib_data_shift) - sense_data);
} else {
dividend = (sense_data - (calib[0] >> cfg->calib_data_shift));
}
temperature = (dividend / avg_slope_code) + cfg->ts_cal1_temp;
#else /* HAS_DUAL_CALIBRATION */
/**
* Series with two calibration points:
* Tjunction = (Slope * (Sense_Data - TS_CAL1)) + TS_CAL1_TEMP
*
* (TS_CAL2_TEMP - TS_CAL1_TEMP)
* where Slope = -----------------------------
* (TS_CAL2 - TS_CAL1)
*/
const float slope = ((float)(cfg->ts_cal2_temp - cfg->ts_cal1_temp))
/ ((calib[1] - calib[0]) >> cfg->calib_data_shift);
temperature = (slope * (sense_data - (calib[0] >> cfg->calib_data_shift)))
+ cfg->ts_cal1_temp;
#endif /* HAS_SINGLE_CALIBRATION */
#endif /* HAS_CALIBRATION */
return temperature;
}
static int stm32_temp_sample_fetch(const struct device *dev, enum sensor_channel chan)
{
struct stm32_temp_data *data = dev->data;
struct adc_sequence *sp = &data->adc_seq;
int rc;
if (chan != SENSOR_CHAN_ALL && chan != SENSOR_CHAN_DIE_TEMP) {
return -ENOTSUP;
}
k_mutex_lock(&data->mutex, K_FOREVER);
pm_device_runtime_get(data->adc);
rc = adc_channel_setup(data->adc, &data->adc_cfg);
if (rc) {
LOG_DBG("Setup AIN%u got %d", data->adc_cfg.channel_id, rc);
goto unlock;
}
adc_enable_tempsensor_channel(data->adc_base);
rc = adc_read(data->adc, sp);
if (rc == 0) {
data->raw = data->sample_buffer;
}
adc_disable_tempsensor_channel(data->adc_base);
unlock:
pm_device_runtime_put(data->adc);
k_mutex_unlock(&data->mutex);
return rc;
}
static int stm32_temp_channel_get(const struct device *dev, enum sensor_channel chan,
struct sensor_value *val)
{
if (chan != SENSOR_CHAN_DIE_TEMP) {
return -ENOTSUP;
}
const float temp = convert_adc_sample_to_temperature(dev);
return sensor_value_from_float(val, temp);
}
static const struct sensor_driver_api stm32_temp_driver_api = {
.sample_fetch = stm32_temp_sample_fetch,
.channel_get = stm32_temp_channel_get,
};
static int stm32_temp_init(const struct device *dev)
{
struct stm32_temp_data *data = dev->data;
struct adc_sequence *asp = &data->adc_seq;
k_mutex_init(&data->mutex);
if (!device_is_ready(data->adc)) {
LOG_ERR("Device %s is not ready", data->adc->name);
return -ENODEV;
}
*asp = (struct adc_sequence){
.channels = BIT(data->adc_cfg.channel_id),
.buffer = &data->sample_buffer,
.buffer_size = sizeof(data->sample_buffer),
.resolution = 12U,
};
return 0;
}
/**
* Verify that the ADC instance which this driver uses to measure temperature
* is enabled. On STM32 MCUs with more than one ADC, it is possible to compile
* this driver even if the ADC used for measurement is disabled. In such cases,
* fail build with an explicit error message.
*/
#if !DT_NODE_HAS_STATUS_OKAY(DT_INST_IO_CHANNELS_CTLR(0))
/* Use BUILD_ASSERT to get preprocessing on the message */
BUILD_ASSERT(0, "ADC '" DT_NODE_FULL_NAME(DT_INST_IO_CHANNELS_CTLR(0)) "' needed by "
"temperature sensor '" DT_NODE_FULL_NAME(DT_DRV_INST(0)) "' is not enabled");
/* To reduce noise in the compiler error log, do not attempt
* to instantiate device if the sensor's ADC is not enabled.
*/
#else
static struct stm32_temp_data stm32_temp_dev_data = {
.adc = DEVICE_DT_GET(DT_INST_IO_CHANNELS_CTLR(0)),
.adc_base = (ADC_TypeDef *)DT_REG_ADDR(DT_INST_IO_CHANNELS_CTLR(0)),
.adc_cfg = {
.gain = ADC_GAIN_1,
.reference = ADC_REF_INTERNAL,
.acquisition_time = ADC_ACQ_TIME_MAX,
.channel_id = DT_INST_IO_CHANNELS_INPUT(0),
.differential = 0
},
};
static const struct stm32_temp_config stm32_temp_dev_config = {
#if defined(HAS_CALIBRATION)
.ts_cal1_addr = (const void *)DT_INST_PROP(0, ts_cal1_addr),
.ts_cal1_temp = DT_INST_PROP(0, ts_cal1_temp),
#if defined(HAS_SINGLE_CALIBRATION)
.average_slope = ((float)DT_INST_STRING_UNQUOTED(0, avgslope)),
#else /* HAS_DUAL_CALIBRATION */
.ts_cal2_addr = (const void *)DT_INST_PROP(0, ts_cal2_addr),
.ts_cal2_temp = DT_INST_PROP(0, ts_cal2_temp),
#endif
.calib_data_shift = (DT_INST_PROP(0, ts_cal_resolution) - CAL_RES),
.calib_vrefanalog = DT_INST_PROP(0, ts_cal_vrefanalog),
#else
.average_slope = ((float)DT_INST_STRING_UNQUOTED(0, avgslope)),
.v25 = DT_INST_PROP(0, v25),
#endif
.is_ntc = DT_INST_PROP_OR(0, ntc, false)
};
SENSOR_DEVICE_DT_INST_DEFINE(0, stm32_temp_init, NULL,
&stm32_temp_dev_data, &stm32_temp_dev_config,
POST_KERNEL, CONFIG_SENSOR_INIT_PRIORITY,
&stm32_temp_driver_api);
#endif /* !DT_NODE_HAS_STATUS_OKAY(DT_INST_IO_CHANNELS_CTLR(0)) */