Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

343 lines
9.1 KiB

/*
* Copyright (c) 2021 STMicroelectronics
*
* SPDX-License-Identifier: Apache-2.0
*/
#define LOG_DOMAIN flash_stm32l5
#define LOG_LEVEL CONFIG_FLASH_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(LOG_DOMAIN);
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/cache.h>
#include <string.h>
#include <zephyr/drivers/flash.h>
#include <zephyr/init.h>
#include <soc.h>
#include <stm32_ll_icache.h>
#include <stm32_ll_system.h>
#include "flash_stm32.h"
#if defined(CONFIG_SOC_SERIES_STM32H5X) || defined(CONFIG_SOC_SERIES_STM32U5X)
/*
* It is used to handle the 2 banks discontinuity case,
* so define it to flash size to avoid the unexpected check.
*/
#define STM32_SERIES_MAX_FLASH (CONFIG_FLASH_SIZE)
#elif defined(CONFIG_SOC_SERIES_STM32L5X)
#define STM32_SERIES_MAX_FLASH 512
#endif
#define PAGES_PER_BANK ((FLASH_SIZE / FLASH_PAGE_SIZE) / 2)
#define BANK2_OFFSET (KB(STM32_SERIES_MAX_FLASH) / 2)
/* Macro to check if the flash is Dual bank or not */
#if defined(CONFIG_SOC_SERIES_STM32H5X)
#define stm32_flash_has_2_banks(flash_device) true
#else
#define stm32_flash_has_2_banks(flash_device) \
(((FLASH_STM32_REGS(flash_device)->OPTR & FLASH_STM32_DBANK) \
== FLASH_STM32_DBANK) \
? (true) : (false))
#endif /* CONFIG_SOC_SERIES_STM32H5X */
/*
* offset and len must be aligned on write-block-size for write,
* positive and not beyond end of flash
*/
bool flash_stm32_valid_range(const struct device *dev, off_t offset,
uint32_t len,
bool write)
{
if (stm32_flash_has_2_banks(dev) &&
(CONFIG_FLASH_SIZE < STM32_SERIES_MAX_FLASH)) {
/*
* In case of bank1/2 discontinuity, the range should not
* start before bank2 and end beyond bank1 at the same time.
* Locations beyond bank2 are caught by
* flash_stm32_range_exists.
*/
if ((offset < BANK2_OFFSET) &&
(offset + len > FLASH_SIZE / 2)) {
return 0;
}
}
if (write && !flash_stm32_valid_write(offset, len)) {
return false;
}
return flash_stm32_range_exists(dev, offset, len);
}
static int write_nwords(const struct device *dev, off_t offset, const uint32_t *buff, size_t n)
{
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
volatile uint32_t *flash = (uint32_t *)(offset
+ FLASH_STM32_BASE_ADDRESS);
bool full_zero = true;
uint32_t tmp;
int rc;
int i;
/* if the non-secure control register is locked,do not fail silently */
if (regs->NSCR & FLASH_STM32_NSLOCK) {
LOG_ERR("NSCR locked\n");
return -EIO;
}
/* Check that no Flash main memory operation is ongoing */
rc = flash_stm32_wait_flash_idle(dev);
if (rc < 0) {
return rc;
}
/* Check if this double/quad word is erased and value isn't 0.
*
* It is allowed to write only zeros over an already written dword / qword
* See 6.3.7 in STM32L5 reference manual.
* See 7.3.7 in STM32U5 reference manual.
* See 7.3.5 in STM32H5 reference manual.
*/
for (i = 0; i < n; i++) {
if (buff[i] != 0) {
full_zero = false;
break;
}
}
if (!full_zero) {
for (i = 0; i < n; i++) {
if (flash[i] != 0xFFFFFFFFUL) {
LOG_ERR("Word at offs %ld not erased", (long)(offset + i));
return -EIO;
}
}
}
/* Set the NSPG bit */
regs->NSCR |= FLASH_STM32_NSPG;
/* Flush the register write */
tmp = regs->NSCR;
/* Perform the data write operation at the desired memory address */
for (i = 0; i < n; i++) {
flash[i] = buff[i];
}
/* Wait until the NSBSY bit is cleared */
rc = flash_stm32_wait_flash_idle(dev);
/* Clear the NSPG bit */
regs->NSCR &= (~FLASH_STM32_NSPG);
return rc;
}
static int erase_page(const struct device *dev, unsigned int offset)
{
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
uint32_t tmp;
int rc;
int page;
/* if the non-secure control register is locked,do not fail silently */
if (regs->NSCR & FLASH_STM32_NSLOCK) {
LOG_ERR("NSCR locked\n");
return -EIO;
}
/* Check that no Flash memory operation is ongoing */
rc = flash_stm32_wait_flash_idle(dev);
if (rc < 0) {
return rc;
}
if (stm32_flash_has_2_banks(dev)) {
bool bank_swap;
/* Check whether bank1/2 are swapped */
bank_swap =
((regs->OPTR & FLASH_OPTR_SWAP_BANK) == FLASH_OPTR_SWAP_BANK);
if ((offset < (FLASH_SIZE / 2)) && !bank_swap) {
/* The pages to be erased is in bank 1 */
regs->NSCR &= ~FLASH_STM32_NSBKER_MSK;
page = offset / FLASH_PAGE_SIZE;
LOG_DBG("Erase page %d on bank 1", page);
} else if ((offset >= BANK2_OFFSET) && bank_swap) {
/* The pages to be erased is in bank 1 */
regs->NSCR &= ~FLASH_STM32_NSBKER_MSK;
page = (offset - BANK2_OFFSET) / FLASH_PAGE_SIZE;
LOG_DBG("Erase page %d on bank 1", page);
} else if ((offset < (FLASH_SIZE / 2)) && bank_swap) {
/* The pages to be erased is in bank 2 */
regs->NSCR |= FLASH_STM32_NSBKER;
page = offset / FLASH_PAGE_SIZE;
LOG_DBG("Erase page %d on bank 2", page);
} else if ((offset >= BANK2_OFFSET) && !bank_swap) {
/* The pages to be erased is in bank 2 */
regs->NSCR |= FLASH_STM32_NSBKER;
page = (offset - BANK2_OFFSET) / FLASH_PAGE_SIZE;
LOG_DBG("Erase page %d on bank 2", page);
} else {
LOG_ERR("Offset %d does not exist", offset);
return -EINVAL;
}
} else {
page = offset / FLASH_PAGE_SIZE_128_BITS;
LOG_DBG("Erase page %d\n", page);
}
/* Set the NSPER bit and select the page you wish to erase */
regs->NSCR |= FLASH_STM32_NSPER;
regs->NSCR &= ~FLASH_STM32_NSPNB_MSK;
regs->NSCR |= (page << FLASH_STM32_NSPNB_POS);
/* Set the NSSTRT bit */
regs->NSCR |= FLASH_STM32_NSSTRT;
/* flush the register write */
tmp = regs->NSCR;
/* Wait for the NSBSY bit */
rc = flash_stm32_wait_flash_idle(dev);
if (stm32_flash_has_2_banks(dev)) {
regs->NSCR &= ~(FLASH_STM32_NSPER | FLASH_STM32_NSBKER);
} else {
regs->NSCR &= ~(FLASH_STM32_NSPER);
}
return rc;
}
int flash_stm32_block_erase_loop(const struct device *dev,
unsigned int offset,
unsigned int len)
{
unsigned int address = offset;
int rc = 0;
/* Disable icache, this will start the invalidation procedure.
* All changes(erase/write) to flash memory should happen when
* i-cache is disabled. A write to flash performed without
* disabling i-cache will set ERRF error flag in SR register.
*/
bool cache_enabled = LL_ICACHE_IsEnabled();
sys_cache_instr_disable();
for (; address <= offset + len - 1 ; address += FLASH_PAGE_SIZE) {
rc = erase_page(dev, address);
if (rc < 0) {
break;
}
}
if (cache_enabled) {
sys_cache_instr_enable();
}
return rc;
}
int flash_stm32_write_range(const struct device *dev, unsigned int offset,
const void *data, unsigned int len)
{
int i, rc = 0;
/* Disable icache, this will start the invalidation procedure.
* All changes(erase/write) to flash memory should happen when
* i-cache is disabled. A write to flash performed without
* disabling i-cache will set ERRF error flag in SR register.
*/
bool cache_enabled = LL_ICACHE_IsEnabled();
sys_cache_instr_disable();
for (i = 0; i < len; i += FLASH_STM32_WRITE_BLOCK_SIZE) {
rc = write_nwords(dev, offset + i, ((const uint32_t *) data + (i>>2)),
FLASH_STM32_WRITE_BLOCK_SIZE / 4);
if (rc < 0) {
break;
}
}
if (cache_enabled) {
sys_cache_instr_enable();
}
return rc;
}
void flash_stm32_page_layout(const struct device *dev,
const struct flash_pages_layout **layout,
size_t *layout_size)
{
static struct flash_pages_layout stm32_flash_layout[3];
static size_t stm32_flash_layout_size;
*layout = stm32_flash_layout;
if (stm32_flash_layout[0].pages_count != 0) {
/* Short circuit calculation logic if already performed (size is known) */
*layout_size = stm32_flash_layout_size;
return;
}
if (stm32_flash_has_2_banks(dev) &&
(CONFIG_FLASH_SIZE < STM32_SERIES_MAX_FLASH)) {
/*
* For stm32l552xx with 256 kB flash
* which have space between banks 1 and 2.
*/
/* Bank1 */
stm32_flash_layout[0].pages_count = PAGES_PER_BANK;
stm32_flash_layout[0].pages_size = FLASH_PAGE_SIZE;
/* Dummy page corresponding to space between banks 1 and 2 */
stm32_flash_layout[1].pages_count = 1;
stm32_flash_layout[1].pages_size = BANK2_OFFSET
- (PAGES_PER_BANK * FLASH_PAGE_SIZE);
/* Bank2 */
stm32_flash_layout[2].pages_count = PAGES_PER_BANK;
stm32_flash_layout[2].pages_size = FLASH_PAGE_SIZE;
stm32_flash_layout_size = ARRAY_SIZE(stm32_flash_layout);
} else {
/*
* For stm32l562xx & stm32l552xx with 512 flash or stm32u5x,
* which has no space between banks 1 and 2.
*/
if (stm32_flash_has_2_banks(dev)) {
/* L5 flash with dualbank has 2k pages */
/* U5 flash pages are always 8 kB in size */
/* H5 flash pages are always 8 kB in size */
/* Considering one layout of full flash size, even with 2 banks */
stm32_flash_layout[0].pages_count = FLASH_SIZE / FLASH_PAGE_SIZE;
stm32_flash_layout[0].pages_size = FLASH_PAGE_SIZE;
#if defined(CONFIG_SOC_SERIES_STM32L5X)
} else {
/* L5 flash without dualbank has 4k pages */
stm32_flash_layout[0].pages_count = FLASH_PAGE_NB_128_BITS;
stm32_flash_layout[0].pages_size = FLASH_PAGE_SIZE_128_BITS;
#endif /* CONFIG_SOC_SERIES_STM32L5X */
}
/*
* In this case the stm32_flash_layout table has one single element
* when read by the flash_get_page_info()
*/
stm32_flash_layout_size = 1;
}
*layout_size = stm32_flash_layout_size;
}