You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
631 lines
20 KiB
631 lines
20 KiB
/* |
|
* Copyright (c) 2011-2014, Wind River Systems, Inc. |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
/** |
|
* @file |
|
* @brief Macro utilities |
|
* |
|
* Macro utilities are the public interface for C/C++ code and device tree |
|
* related implementation. In general, C/C++ will include <sys/util.h> |
|
* instead this file directly. For device tree implementation, this file |
|
* should be include instead <sys/util_internal.h> |
|
*/ |
|
|
|
#ifndef ZEPHYR_INCLUDE_SYS_UTIL_MACROS_H_ |
|
#define ZEPHYR_INCLUDE_SYS_UTIL_MACROS_H_ |
|
|
|
#ifdef __cplusplus |
|
extern "C" { |
|
#endif |
|
|
|
/** |
|
* @addtogroup sys-util |
|
* @{ |
|
*/ |
|
|
|
/* |
|
* Most of the eldritch implementation details for all the macrobatics |
|
* below (APIs like IS_ENABLED(), COND_CODE_1(), etc.) are hidden away |
|
* in this file. |
|
*/ |
|
#include <sys/util_internal.h> |
|
|
|
#ifndef BIT |
|
#if defined(_ASMLANGUAGE) |
|
#define BIT(n) (1 << (n)) |
|
#else |
|
/** |
|
* @brief Unsigned integer with bit position @p n set (signed in |
|
* assembly language). |
|
*/ |
|
#define BIT(n) (1UL << (n)) |
|
#endif |
|
#endif |
|
|
|
/** @brief 64-bit unsigned integer with bit position @p _n set. */ |
|
#define BIT64(_n) (1ULL << (_n)) |
|
|
|
/** |
|
* @brief Set or clear a bit depending on a boolean value |
|
* |
|
* The argument @p var is a variable whose value is written to as a |
|
* side effect. |
|
* |
|
* @param var Variable to be altered |
|
* @param bit Bit number |
|
* @param set if 0, clears @p bit in @p var; any other value sets @p bit |
|
*/ |
|
#define WRITE_BIT(var, bit, set) \ |
|
((var) = (set) ? ((var) | BIT(bit)) : ((var) & ~BIT(bit))) |
|
|
|
/** |
|
* @brief Bit mask with bits 0 through <tt>n-1</tt> (inclusive) set, |
|
* or 0 if @p n is 0. |
|
*/ |
|
#define BIT_MASK(n) (BIT(n) - 1UL) |
|
|
|
/** |
|
* @brief 64-bit bit mask with bits 0 through <tt>n-1</tt> (inclusive) set, |
|
* or 0 if @p n is 0. |
|
*/ |
|
#define BIT64_MASK(n) (BIT64(n) - 1ULL) |
|
|
|
/** |
|
* @brief Check for macro definition in compiler-visible expressions |
|
* |
|
* This trick was pioneered in Linux as the config_enabled() macro. It |
|
* has the effect of taking a macro value that may be defined to "1" |
|
* or may not be defined at all and turning it into a literal |
|
* expression that can be handled by the C compiler instead of just |
|
* the preprocessor. It is often used with a @p CONFIG_FOO macro which |
|
* may be defined to 1 via Kconfig, or left undefined. |
|
* |
|
* That is, it works similarly to <tt>\#if defined(CONFIG_FOO)</tt> |
|
* except that its expansion is a C expression. Thus, much <tt>\#ifdef</tt> |
|
* usage can be replaced with equivalents like: |
|
* |
|
* if (IS_ENABLED(CONFIG_FOO)) { |
|
* do_something_with_foo |
|
* } |
|
* |
|
* This is cleaner since the compiler can generate errors and warnings |
|
* for @p do_something_with_foo even when @p CONFIG_FOO is undefined. |
|
* |
|
* @param config_macro Macro to check |
|
* @return 1 if @p config_macro is defined to 1, 0 otherwise (including |
|
* if @p config_macro is not defined) |
|
*/ |
|
#define IS_ENABLED(config_macro) Z_IS_ENABLED1(config_macro) |
|
/* INTERNAL: the first pass above is just to expand any existing |
|
* macros, we need the macro value to be e.g. a literal "1" at |
|
* expansion time in the next macro, not "(1)", etc... Standard |
|
* recursive expansion does not work. |
|
*/ |
|
|
|
/** |
|
* @brief Insert code depending on whether @p _flag expands to 1 or not. |
|
* |
|
* This relies on similar tricks as IS_ENABLED(), but as the result of |
|
* @p _flag expansion, results in either @p _if_1_code or @p |
|
* _else_code is expanded. |
|
* |
|
* To prevent the preprocessor from treating commas as argument |
|
* separators, the @p _if_1_code and @p _else_code expressions must be |
|
* inside brackets/parentheses: <tt>()</tt>. These are stripped away |
|
* during macro expansion. |
|
* |
|
* Example: |
|
* |
|
* COND_CODE_1(CONFIG_FLAG, (uint32_t x;), (there_is_no_flag();)) |
|
* |
|
* If @p CONFIG_FLAG is defined to 1, this expands to: |
|
* |
|
* uint32_t x; |
|
* |
|
* It expands to <tt>there_is_no_flag();</tt> otherwise. |
|
* |
|
* This could be used as an alternative to: |
|
* |
|
* #if defined(CONFIG_FLAG) && (CONFIG_FLAG == 1) |
|
* #define MAYBE_DECLARE(x) uint32_t x |
|
* #else |
|
* #define MAYBE_DECLARE(x) there_is_no_flag() |
|
* #endif |
|
* |
|
* MAYBE_DECLARE(x); |
|
* |
|
* However, the advantage of COND_CODE_1() is that code is resolved in |
|
* place where it is used, while the @p \#if method defines @p |
|
* MAYBE_DECLARE on two lines and requires it to be invoked again on a |
|
* separate line. This makes COND_CODE_1() more concise and also |
|
* sometimes more useful when used within another macro's expansion. |
|
* |
|
* @note @p _flag can be the result of preprocessor expansion, e.g. |
|
* an expression involving <tt>NUM_VA_ARGS_LESS_1(...)</tt>. |
|
* However, @p _if_1_code is only expanded if @p _flag expands |
|
* to the integer literal 1. Integer expressions that evaluate |
|
* to 1, e.g. after doing some arithmetic, will not work. |
|
* |
|
* @param _flag evaluated flag |
|
* @param _if_1_code result if @p _flag expands to 1; must be in parentheses |
|
* @param _else_code result otherwise; must be in parentheses |
|
*/ |
|
#define COND_CODE_1(_flag, _if_1_code, _else_code) \ |
|
Z_COND_CODE_1(_flag, _if_1_code, _else_code) |
|
|
|
/** |
|
* @brief Like COND_CODE_1() except tests if @p _flag is 0. |
|
* |
|
* This is like COND_CODE_1(), except that it tests whether @p _flag |
|
* expands to the integer literal 0. It expands to @p _if_0_code if |
|
* so, and @p _else_code otherwise; both of these must be enclosed in |
|
* parentheses. |
|
* |
|
* @param _flag evaluated flag |
|
* @param _if_0_code result if @p _flag expands to 0; must be in parentheses |
|
* @param _else_code result otherwise; must be in parentheses |
|
* @see COND_CODE_1() |
|
*/ |
|
#define COND_CODE_0(_flag, _if_0_code, _else_code) \ |
|
Z_COND_CODE_0(_flag, _if_0_code, _else_code) |
|
|
|
/** |
|
* @brief Insert code if @p _flag is defined and equals 1. |
|
* |
|
* Like COND_CODE_1(), this expands to @p _code if @p _flag is defined to 1; |
|
* it expands to nothing otherwise. |
|
* |
|
* Example: |
|
* |
|
* IF_ENABLED(CONFIG_FLAG, (uint32_t foo;)) |
|
* |
|
* If @p CONFIG_FLAG is defined to 1, this expands to: |
|
* |
|
* uint32_t foo; |
|
* |
|
* and to nothing otherwise. |
|
* |
|
* It can be considered as a more compact alternative to: |
|
* |
|
* #if defined(CONFIG_FLAG) && (CONFIG_FLAG == 1) |
|
* uint32_t foo; |
|
* #endif |
|
* |
|
* @param _flag evaluated flag |
|
* @param _code result if @p _flag expands to 1; must be in parentheses |
|
*/ |
|
#define IF_ENABLED(_flag, _code) \ |
|
COND_CODE_1(_flag, _code, ()) |
|
|
|
/** |
|
* @brief Check if a macro has a replacement expression |
|
* |
|
* If @p a is a macro defined to a nonempty value, this will return |
|
* true, otherwise it will return false. It only works with defined |
|
* macros, so an additional @p \#ifdef test may be needed in some cases. |
|
* |
|
* This macro may be used with COND_CODE_1() and COND_CODE_0() while |
|
* processing <tt>__VA_ARGS__</tt> to avoid processing empty arguments. |
|
* |
|
* Example: |
|
* |
|
* #define EMPTY |
|
* #define NON_EMPTY 1 |
|
* #undef UNDEFINED |
|
* IS_EMPTY(EMPTY) |
|
* IS_EMPTY(NON_EMPTY) |
|
* IS_EMPTY(UNDEFINED) |
|
* #if defined(EMPTY) && IS_EMPTY(EMPTY) == true |
|
* some_conditional_code |
|
* #endif |
|
* |
|
* In above examples, the invocations of IS_EMPTY(...) return @p true, |
|
* @p false, and @p true; @p some_conditional_code is included. |
|
* |
|
* @param ... macro to check for emptiness (may be <tt>__VA_ARGS__</tt>) |
|
*/ |
|
#define IS_EMPTY(...) Z_IS_EMPTY_(__VA_ARGS__) |
|
|
|
/** |
|
* @brief Remove empty arguments from list. |
|
* |
|
* During macro expansion, <tt>__VA_ARGS__</tt> and other preprocessor |
|
* generated lists may contain empty elements, e.g.: |
|
* |
|
* #define LIST ,a,b,,d, |
|
* |
|
* Using EMPTY to show each empty element, LIST contains: |
|
* |
|
* EMPTY, a, b, EMPTY, d |
|
* |
|
* When processing such lists, e.g. using FOR_EACH(), all empty elements |
|
* will be processed, and may require filtering out. |
|
* To make that process easier, it is enough to invoke LIST_DROP_EMPTY |
|
* which will remove all empty elements. |
|
* |
|
* Example: |
|
* |
|
* LIST_DROP_EMPTY(LIST) |
|
* |
|
* expands to: |
|
* |
|
* a, b, d |
|
* |
|
* @param ... list to be processed |
|
*/ |
|
#define LIST_DROP_EMPTY(...) \ |
|
Z_LIST_DROP_FIRST(FOR_EACH(Z_LIST_NO_EMPTIES, (), __VA_ARGS__)) |
|
|
|
/** |
|
* @brief Macro with an empty expansion |
|
* |
|
* This trivial definition is provided for readability when a macro |
|
* should expand to an empty result, which e.g. is sometimes needed to |
|
* silence checkpatch. |
|
* |
|
* Example: |
|
* |
|
* #define LIST_ITEM(n) , item##n |
|
* |
|
* The above would cause checkpatch to complain, but: |
|
* |
|
* #define LIST_ITEM(n) EMPTY, item##n |
|
* |
|
* would not. |
|
*/ |
|
#define EMPTY |
|
|
|
/** |
|
* @brief Macro that expands to its argument |
|
* |
|
* This is useful in macros like @c FOR_EACH() when there is no |
|
* transformation required on the list elements. |
|
* |
|
* @param V any value |
|
*/ |
|
#define IDENTITY(V) V |
|
|
|
/** |
|
* @brief Get nth argument from argument list. |
|
* |
|
* @param N Argument index to fetch. Counter from 1. |
|
* @param ... Variable list of argments from which one argument is returned. |
|
* |
|
* @return Nth argument. |
|
*/ |
|
#define GET_ARG_N(N, ...) Z_GET_ARG_##N(__VA_ARGS__) |
|
|
|
/** |
|
* @brief Strips n first arguments from the argument list. |
|
* |
|
* @param N Number of arguments to discard. |
|
* @param ... Variable list of argments. |
|
* |
|
* @return argument list without N first arguments. |
|
*/ |
|
#define GET_ARGS_LESS_N(N, ...) Z_GET_ARGS_LESS_##N(__VA_ARGS__) |
|
|
|
/** |
|
* @brief Like <tt>a || b</tt>, but does evaluation and |
|
* short-circuiting at C preprocessor time. |
|
* |
|
* This is not the same as the binary @p || operator; in particular, |
|
* @p a should expand to an integer literal 0 or 1. However, @p b |
|
* can be any value. |
|
* |
|
* This can be useful when @p b is an expression that would cause a |
|
* build error when @p a is 1. |
|
*/ |
|
#define UTIL_OR(a, b) COND_CODE_1(UTIL_BOOL(a), (a), (b)) |
|
|
|
/** |
|
* @brief Like <tt>a && b</tt>, but does evaluation and |
|
* short-circuiting at C preprocessor time. |
|
* |
|
* This is not the same as the binary @p &&, however; in particular, |
|
* @p a should expand to an integer literal 0 or 1. However, @p b |
|
* can be any value. |
|
* |
|
* This can be useful when @p b is an expression that would cause a |
|
* build error when @p a is 0. |
|
*/ |
|
#define UTIL_AND(a, b) COND_CODE_1(UTIL_BOOL(a), (b), (0)) |
|
|
|
/** |
|
* @brief Generates a sequence of code with configurable separator. |
|
* |
|
* Example: |
|
* |
|
* #define FOO(i, _) MY_PWM ## i |
|
* { LISTIFY(PWM_COUNT, FOO, (,)) } |
|
* |
|
* The above two lines expand to: |
|
* |
|
* { MY_PWM0 , MY_PWM1 } |
|
* |
|
* @param LEN The length of the sequence. Must be an integer literal less |
|
* than 255. |
|
* @param F A macro function that accepts at least two arguments: |
|
* <tt>F(i, ...)</tt>. @p F is called repeatedly in the expansion. |
|
* Its first argument @p i is the index in the sequence, and |
|
* the variable list of arguments passed to LISTIFY are passed |
|
* through to @p F. |
|
* |
|
* @param sep Separator (e.g. comma or semicolon). Must be in parentheses; |
|
* this is required to enable providing a comma as separator. |
|
* |
|
* @note Calling LISTIFY with undefined arguments has undefined |
|
* behavior. |
|
*/ |
|
#define LISTIFY(LEN, F, sep, ...) UTIL_CAT(Z_UTIL_LISTIFY_, LEN)(F, sep, __VA_ARGS__) |
|
|
|
/** |
|
* @brief Generates a sequence of code. Deprecated, use @ref LISTIFY. |
|
* |
|
* @deprecated Use @ref LISTIFY instead. |
|
* |
|
* Example: |
|
* |
|
* #define FOO(i, _) MY_PWM ## i , |
|
* { UTIL_LISTIFY(PWM_COUNT, FOO) } |
|
* |
|
* The above two lines expand to: |
|
* |
|
* { MY_PWM0 , MY_PWM1 , } |
|
* |
|
* @param LEN The length of the sequence. Must be an integer literal less |
|
* than 255. |
|
* @param F A macro function that accepts at least two arguments: |
|
* <tt>F(i, ...)</tt>. @p F is called repeatedly in the expansion. |
|
* Its first argument @p i is the index in the sequence, and |
|
* the variable list of arguments passed to UTIL_LISTIFY are passed |
|
* through to @p F. |
|
* |
|
* @note Calling UTIL_LISTIFY with undefined arguments has undefined |
|
* behavior. |
|
*/ |
|
#define UTIL_LISTIFY(LEN, F, ...) LISTIFY(LEN, F, (), __VA_ARGS__) __DEPRECATED_MACRO |
|
|
|
/** |
|
* @brief Call a macro @p F on each provided argument with a given |
|
* separator between each call. |
|
* |
|
* Example: |
|
* |
|
* #define F(x) int a##x |
|
* FOR_EACH(F, (;), 4, 5, 6); |
|
* |
|
* This expands to: |
|
* |
|
* int a4; |
|
* int a5; |
|
* int a6; |
|
* |
|
* @param F Macro to invoke |
|
* @param sep Separator (e.g. comma or semicolon). Must be in parentheses; |
|
* this is required to enable providing a comma as separator. |
|
* @param ... Variable argument list. The macro @p F is invoked as |
|
* <tt>F(element)</tt> for each element in the list. |
|
*/ |
|
#define FOR_EACH(F, sep, ...) \ |
|
Z_FOR_EACH(F, sep, REVERSE_ARGS(__VA_ARGS__)) |
|
|
|
/** |
|
* @brief Like FOR_EACH(), but with a terminator instead of a separator, |
|
* and drops empty elements from the argument list |
|
* |
|
* The @p sep argument to <tt>FOR_EACH(F, (sep), a, b)</tt> is a |
|
* separator which is placed between calls to @p F, like this: |
|
* |
|
* FOR_EACH(F, (sep), a, b) // F(a) sep F(b) |
|
* // ^^^ no sep here! |
|
* |
|
* By contrast, the @p term argument to <tt>FOR_EACH_NONEMPTY_TERM(F, (term), |
|
* a, b)</tt> is added after each time @p F appears in the expansion: |
|
* |
|
* FOR_EACH_NONEMPTY_TERM(F, (term), a, b) // F(a) term F(b) term |
|
* // ^^^^ |
|
* |
|
* Further, any empty elements are dropped: |
|
* |
|
* FOR_EACH_NONEMPTY_TERM(F, (term), a, EMPTY, b) // F(a) term F(b) term |
|
* |
|
* This is more convenient in some cases, because FOR_EACH_NONEMPTY_TERM() |
|
* expands to nothing when given an empty argument list, and it's |
|
* often cumbersome to write a macro @p F that does the right thing |
|
* even when given an empty argument. |
|
* |
|
* One example is when <tt>__VA_ARGS__</tt> may or may not be empty, |
|
* and the results are embedded in a larger initializer: |
|
* |
|
* #define SQUARE(x) ((x)*(x)) |
|
* |
|
* int my_array[] = { |
|
* FOR_EACH_NONEMPTY_TERM(SQUARE, (,), FOO(...)) |
|
* FOR_EACH_NONEMPTY_TERM(SQUARE, (,), BAR(...)) |
|
* FOR_EACH_NONEMPTY_TERM(SQUARE, (,), BAZ(...)) |
|
* }; |
|
* |
|
* This is more convenient than: |
|
* |
|
* 1. figuring out whether the @p FOO, @p BAR, and @p BAZ expansions |
|
* are empty and adding a comma manually (or not) between FOR_EACH() |
|
* calls |
|
* 2. rewriting SQUARE so it reacts appropriately when "x" is empty |
|
* (which would be necessary if e.g. @p FOO expands to nothing) |
|
* |
|
* @param F Macro to invoke on each nonempty element of the variable |
|
* arguments |
|
* @param term Terminator (e.g. comma or semicolon) placed after each |
|
* invocation of F. Must be in parentheses; this is required |
|
* to enable providing a comma as separator. |
|
* @param ... Variable argument list. The macro @p F is invoked as |
|
* <tt>F(element)</tt> for each nonempty element in the list. |
|
*/ |
|
#define FOR_EACH_NONEMPTY_TERM(F, term, ...) \ |
|
COND_CODE_0( \ |
|
/* are there zero non-empty arguments ? */ \ |
|
NUM_VA_ARGS_LESS_1(LIST_DROP_EMPTY(__VA_ARGS__, _)), \ |
|
/* if so, expand to nothing */ \ |
|
(), \ |
|
/* otherwise, expand to: */ \ |
|
(/* FOR_EACH() on nonempty elements, */ \ |
|
FOR_EACH(F, term, LIST_DROP_EMPTY(__VA_ARGS__)) \ |
|
/* plus a final terminator */ \ |
|
__DEBRACKET term \ |
|
)) |
|
|
|
/** |
|
* @brief Call macro @p F on each provided argument, with the argument's index |
|
* as an additional parameter. |
|
* |
|
* This is like FOR_EACH(), except @p F should be a macro which takes two |
|
* arguments: <tt>F(index, variable_arg)</tt>. |
|
* |
|
* Example: |
|
* |
|
* #define F(idx, x) int a##idx = x |
|
* FOR_EACH_IDX(F, (;), 4, 5, 6); |
|
* |
|
* This expands to: |
|
* |
|
* int a0 = 4; |
|
* int a1 = 5; |
|
* int a2 = 6; |
|
* |
|
* @param F Macro to invoke |
|
* @param sep Separator (e.g. comma or semicolon). Must be in parentheses; |
|
* this is required to enable providing a comma as separator. |
|
* @param ... Variable argument list. The macro @p F is invoked as |
|
* <tt>F(index, element)</tt> for each element in the list. |
|
*/ |
|
#define FOR_EACH_IDX(F, sep, ...) \ |
|
Z_FOR_EACH_IDX(F, sep, REVERSE_ARGS(__VA_ARGS__)) |
|
|
|
/** |
|
* @brief Call macro @p F on each provided argument, with an additional fixed |
|
* argument as a parameter. |
|
* |
|
* This is like FOR_EACH(), except @p F should be a macro which takes two |
|
* arguments: <tt>F(variable_arg, fixed_arg)</tt>. |
|
* |
|
* Example: |
|
* |
|
* static void func(int val, void *dev); |
|
* FOR_EACH_FIXED_ARG(func, (;), dev, 4, 5, 6); |
|
* |
|
* This expands to: |
|
* |
|
* func(4, dev); |
|
* func(5, dev); |
|
* func(6, dev); |
|
* |
|
* @param F Macro to invoke |
|
* @param sep Separator (e.g. comma or semicolon). Must be in parentheses; |
|
* this is required to enable providing a comma as separator. |
|
* @param fixed_arg Fixed argument passed to @p F as the second macro parameter. |
|
* @param ... Variable argument list. The macro @p F is invoked as |
|
* <tt>F(element, fixed_arg)</tt> for each element in the list. |
|
*/ |
|
#define FOR_EACH_FIXED_ARG(F, sep, fixed_arg, ...) \ |
|
Z_FOR_EACH_FIXED_ARG(F, sep, fixed_arg, REVERSE_ARGS(__VA_ARGS__)) |
|
|
|
/** |
|
* @brief Calls macro @p F for each variable argument with an index and fixed |
|
* argument |
|
* |
|
* This is like the combination of FOR_EACH_IDX() with FOR_EACH_FIXED_ARG(). |
|
* |
|
* Example: |
|
* |
|
* #define F(idx, x, fixed_arg) int fixed_arg##idx = x |
|
* FOR_EACH_IDX_FIXED_ARG(F, (;), a, 4, 5, 6); |
|
* |
|
* This expands to: |
|
* |
|
* int a0 = 4; |
|
* int a1 = 5; |
|
* int a2 = 6; |
|
* |
|
* @param F Macro to invoke |
|
* @param sep Separator (e.g. comma or semicolon). Must be in parentheses; |
|
* This is required to enable providing a comma as separator. |
|
* @param fixed_arg Fixed argument passed to @p F as the third macro parameter. |
|
* @param ... Variable list of arguments. The macro @p F is invoked as |
|
* <tt>F(index, element, fixed_arg)</tt> for each element in |
|
* the list. |
|
*/ |
|
#define FOR_EACH_IDX_FIXED_ARG(F, sep, fixed_arg, ...) \ |
|
Z_FOR_EACH_IDX_FIXED_ARG(F, sep, fixed_arg, REVERSE_ARGS(__VA_ARGS__)) |
|
|
|
/** @brief Reverse arguments order. |
|
* |
|
* @param ... Variable argument list. |
|
*/ |
|
#define REVERSE_ARGS(...) \ |
|
Z_FOR_EACH_ENGINE(Z_FOR_EACH_EXEC, (,), Z_BYPASS, _, __VA_ARGS__) |
|
|
|
/** |
|
* @brief Number of arguments in the variable arguments list minus one. |
|
* |
|
* @param ... List of arguments |
|
* @return Number of variadic arguments in the argument list, minus one |
|
*/ |
|
#define NUM_VA_ARGS_LESS_1(...) \ |
|
NUM_VA_ARGS_LESS_1_IMPL(__VA_ARGS__, 63, 62, 61, \ |
|
60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \ |
|
50, 49, 48, 47, 46, 45, 44, 43, 42, 41, \ |
|
40, 39, 38, 37, 36, 35, 34, 33, 32, 31, \ |
|
30, 29, 28, 27, 26, 25, 24, 23, 22, 21, \ |
|
20, 19, 18, 17, 16, 15, 14, 13, 12, 11, \ |
|
10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, ~) |
|
|
|
/** |
|
* @brief Mapping macro that pastes results together |
|
* |
|
* This is similar to FOR_EACH() in that it invokes a macro repeatedly |
|
* on each element of <tt>__VA_ARGS__</tt>. However, unlike FOR_EACH(), |
|
* MACRO_MAP_CAT() pastes the results together into a single token. |
|
* |
|
* For example, with this macro FOO: |
|
* |
|
* #define FOO(x) item_##x##_ |
|
* |
|
* <tt>MACRO_MAP_CAT(FOO, a, b, c),</tt> expands to the token: |
|
* |
|
* item_a_item_b_item_c_ |
|
* |
|
* @param ... Macro to expand on each argument, followed by its |
|
* arguments. (The macro should take exactly one argument.) |
|
* @return The results of expanding the macro on each argument, all pasted |
|
* together |
|
*/ |
|
#define MACRO_MAP_CAT(...) MACRO_MAP_CAT_(__VA_ARGS__) |
|
|
|
/** |
|
* @brief Mapping macro that pastes a fixed number of results together |
|
* |
|
* Similar to @ref MACRO_MAP_CAT(), but expects a fixed number of |
|
* arguments. If more arguments are given than are expected, the rest |
|
* are ignored. |
|
* |
|
* @param N Number of arguments to map |
|
* @param ... Macro to expand on each argument, followed by its |
|
* arguments. (The macro should take exactly one argument.) |
|
* @return The results of expanding the macro on each argument, all pasted |
|
* together |
|
*/ |
|
#define MACRO_MAP_CAT_N(N, ...) MACRO_MAP_CAT_N_(N, __VA_ARGS__) |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
#ifdef __cplusplus |
|
} |
|
#endif |
|
|
|
#endif /* ZEPHYR_INCLUDE_SYS_UTIL_MACROS_H_ */
|
|
|