Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3120 lines
64 KiB

/*
* Copyright (c) 2017 Linaro Limited
* Copyright (c) 2021 Nordic Semiconductor
* Copyright (c) 2023 Arm Limited (or its affiliates). All rights reserved.
* Copyright (c) 2025 Aerlync Labs Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/* Zephyr headers */
#include <zephyr/logging/log.h>
LOG_MODULE_DECLARE(net_sock, CONFIG_NET_SOCKETS_LOG_LEVEL);
#include <zephyr/kernel.h>
#include <zephyr/net/mld.h>
#include <zephyr/net/net_context.h>
#include <zephyr/net/net_pkt.h>
#include <zephyr/tracing/tracing.h>
#include <zephyr/net/socket.h>
#include <zephyr/net/socket_types.h>
#include <zephyr/posix/fcntl.h>
#include <zephyr/sys/fdtable.h>
#include <zephyr/sys/math_extras.h>
#include <zephyr/sys/iterable_sections.h>
#if defined(CONFIG_SOCKS)
#include "socks.h"
#endif
#include <zephyr/net/igmp.h>
#include "../../ip/ipv6.h"
#include "../../ip/net_stats.h"
#include "sockets_internal.h"
#include "../../ip/tcp_internal.h"
#include "../../ip/net_private.h"
#if defined(CONFIG_NET_SOCKETS_INET_RAW)
BUILD_ASSERT(IPPROTO_IP == 0, "Wildcard IPPROTO_IP must equal 0.");
#endif
const struct socket_op_vtable sock_fd_op_vtable;
static void zsock_received_cb(struct net_context *ctx,
struct net_pkt *pkt,
union net_ip_header *ip_hdr,
union net_proto_header *proto_hdr,
int status,
void *user_data);
static int fifo_wait_non_empty(struct k_fifo *fifo, k_timeout_t timeout)
{
struct k_poll_event events[] = {
K_POLL_EVENT_INITIALIZER(K_POLL_TYPE_FIFO_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY, fifo),
};
return k_poll(events, ARRAY_SIZE(events), timeout);
}
static void zsock_flush_queue(struct net_context *ctx)
{
bool is_listen = net_context_get_state(ctx) == NET_CONTEXT_LISTENING;
void *p;
/* recv_q and accept_q are shared via a union */
while ((p = k_fifo_get(&ctx->recv_q, K_NO_WAIT)) != NULL) {
if (is_listen) {
NET_DBG("discarding ctx %p", p);
/* Note that we must release all the packets we
* might have received to the accepted socket.
*/
zsock_flush_queue(p);
net_context_put(p);
} else {
NET_DBG("discarding pkt %p", p);
net_pkt_unref(p);
}
}
/* Some threads might be waiting on recv, cancel the wait */
k_fifo_cancel_wait(&ctx->recv_q);
/* Wake reader if it was sleeping */
(void)k_condvar_signal(&ctx->cond.recv);
}
static int zsock_socket_internal(int family, int type, int proto)
{
int fd = zvfs_reserve_fd();
struct net_context *ctx;
int res;
if (fd < 0) {
return -1;
}
if (proto == 0) {
if (family == AF_INET || family == AF_INET6) {
if (type == SOCK_DGRAM) {
proto = IPPROTO_UDP;
} else if (type == SOCK_STREAM) {
proto = IPPROTO_TCP;
}
}
}
res = net_context_get(family, type, proto, &ctx);
if (res < 0) {
zvfs_free_fd(fd);
errno = -res;
return -1;
}
/* Initialize user_data, all other calls will preserve it */
ctx->user_data = NULL;
/* The socket flags are stored here */
ctx->socket_data = NULL;
/* recv_q and accept_q are in union */
k_fifo_init(&ctx->recv_q);
/* Condition variable is used to avoid keeping lock for a long time
* when waiting data to be received
*/
k_condvar_init(&ctx->cond.recv);
/* TCP context is effectively owned by both application
* and the stack: stack may detect that peer closed/aborted
* connection, but it must not dispose of the context behind
* the application back. Likewise, when application "closes"
* context, it's not disposed of immediately - there's yet
* closing handshake for stack to perform.
*/
if (proto == IPPROTO_TCP) {
net_context_ref(ctx);
}
zvfs_finalize_typed_fd(fd, ctx, (const struct fd_op_vtable *)&sock_fd_op_vtable,
ZVFS_MODE_IFSOCK);
NET_DBG("socket: ctx=%p, fd=%d", ctx, fd);
return fd;
}
int zsock_close_ctx(struct net_context *ctx, int sock)
{
int ret;
SYS_PORT_TRACING_OBJ_FUNC_ENTER(socket, close, sock);
NET_DBG("close: ctx=%p, fd=%d", ctx, sock);
/* Reset callbacks to avoid any race conditions while
* flushing queues. No need to check return values here,
* as these are fail-free operations and we're closing
* socket anyway.
*/
if (net_context_get_state(ctx) == NET_CONTEXT_LISTENING) {
(void)net_context_accept(ctx, NULL, K_NO_WAIT, NULL);
} else {
(void)net_context_recv(ctx, NULL, K_NO_WAIT, NULL);
}
ctx->user_data = INT_TO_POINTER(EINTR);
sock_set_error(ctx);
zsock_flush_queue(ctx);
ret = net_context_put(ctx);
if (ret < 0) {
errno = -ret;
ret = -1;
}
SYS_PORT_TRACING_OBJ_FUNC_EXIT(socket, close, sock, ret < 0 ? -errno : ret);
if (ret == 0) {
(void)sock_obj_core_dealloc(sock);
}
return ret;
}
static void zsock_accepted_cb(struct net_context *new_ctx,
struct sockaddr *addr, socklen_t addrlen,
int status, void *user_data)
{
struct net_context *parent = user_data;
NET_DBG("parent=%p, ctx=%p, st=%d", parent, new_ctx, status);
if (status == 0) {
/* This just installs a callback, so cannot fail. */
(void)net_context_recv(new_ctx, zsock_received_cb, K_NO_WAIT,
NULL);
k_fifo_init(&new_ctx->recv_q);
k_condvar_init(&new_ctx->cond.recv);
k_fifo_put(&parent->accept_q, new_ctx);
/* TCP context is effectively owned by both application
* and the stack: stack may detect that peer closed/aborted
* connection, but it must not dispose of the context behind
* the application back. Likewise, when application "closes"
* context, it's not disposed of immediately - there's yet
* closing handshake for stack to perform.
*/
net_context_ref(new_ctx);
(void)k_condvar_signal(&parent->cond.recv);
}
}
static void zsock_received_cb(struct net_context *ctx,
struct net_pkt *pkt,
union net_ip_header *ip_hdr,
union net_proto_header *proto_hdr,
int status,
void *user_data)
{
if (ctx->cond.lock) {
(void)k_mutex_lock(ctx->cond.lock, K_FOREVER);
}
NET_DBG("ctx=%p, pkt=%p, st=%d, user_data=%p", ctx, pkt, status,
user_data);
if (status < 0) {
ctx->user_data = INT_TO_POINTER(-status);
sock_set_error(ctx);
}
/* if pkt is NULL, EOF */
if (!pkt) {
struct net_pkt *last_pkt = k_fifo_peek_tail(&ctx->recv_q);
if (!last_pkt) {
/* If there're no packets in the queue, recv() may
* be blocked waiting on it to become non-empty,
* so cancel that wait.
*/
sock_set_eof(ctx);
k_fifo_cancel_wait(&ctx->recv_q);
NET_DBG("Marked socket %p as peer-closed", ctx);
} else {
net_pkt_set_eof(last_pkt, true);
NET_DBG("Set EOF flag on pkt %p", last_pkt);
}
goto unlock;
}
/* Normal packet */
net_pkt_set_eof(pkt, false);
net_pkt_set_rx_stats_tick(pkt, k_cycle_get_32());
k_fifo_put(&ctx->recv_q, pkt);
unlock:
/* Wake reader if it was sleeping */
(void)k_condvar_signal(&ctx->cond.recv);
if (ctx->cond.lock) {
(void)k_mutex_unlock(ctx->cond.lock);
}
}
int zsock_shutdown_ctx(struct net_context *ctx, int how)
{
int ret;
if (how == ZSOCK_SHUT_RD) {
if (net_context_get_state(ctx) == NET_CONTEXT_LISTENING) {
ret = net_context_accept(ctx, NULL, K_NO_WAIT, NULL);
if (ret < 0) {
errno = -ret;
return -1;
}
} else {
ret = net_context_recv(ctx, NULL, K_NO_WAIT, NULL);
if (ret < 0) {
errno = -ret;
return -1;
}
}
sock_set_eof(ctx);
zsock_flush_queue(ctx);
return 0;
}
if (how == ZSOCK_SHUT_WR || how == ZSOCK_SHUT_RDWR) {
errno = ENOTSUP;
return -1;
}
errno = EINVAL;
return -1;
}
int zsock_bind_ctx(struct net_context *ctx, const struct sockaddr *addr,
socklen_t addrlen)
{
int ret;
ret = net_context_bind(ctx, addr, addrlen);
if (ret < 0) {
errno = -ret;
return -1;
}
/* For DGRAM or RAW socket, we expect to receive packets after call to
* bind(), but for STREAM socket, next expected operation is
* listen(), which doesn't work if recv callback is set.
*/
if (net_context_get_type(ctx) == SOCK_DGRAM ||
net_context_get_type(ctx) == SOCK_RAW) {
ret = net_context_recv(ctx, zsock_received_cb, K_NO_WAIT,
ctx->user_data);
if (ret < 0) {
errno = -ret;
return -1;
}
}
return 0;
}
static void zsock_connected_cb(struct net_context *ctx, int status, void *user_data)
{
if (status < 0) {
ctx->user_data = INT_TO_POINTER(-status);
sock_set_error(ctx);
}
}
int zsock_connect_ctx(struct net_context *ctx, const struct sockaddr *addr,
socklen_t addrlen)
{
k_timeout_t timeout = K_MSEC(CONFIG_NET_SOCKETS_CONNECT_TIMEOUT);
net_context_connect_cb_t cb = NULL;
int ret;
if (net_context_get_type(ctx) == SOCK_RAW) {
errno = EOPNOTSUPP;
return -1;
}
#if defined(CONFIG_SOCKS)
if (net_context_is_proxy_enabled(ctx)) {
ret = net_socks5_connect(ctx, addr, addrlen);
if (ret < 0) {
errno = -ret;
return -1;
}
ret = net_context_recv(ctx, zsock_received_cb,
K_NO_WAIT, ctx->user_data);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
#endif
if (net_context_get_state(ctx) == NET_CONTEXT_CONNECTED) {
return 0;
}
if (net_context_get_state(ctx) == NET_CONTEXT_CONNECTING) {
if (sock_is_error(ctx)) {
errno = POINTER_TO_INT(ctx->user_data);
return -1;
}
errno = EALREADY;
return -1;
}
if (sock_is_nonblock(ctx)) {
timeout = K_NO_WAIT;
cb = zsock_connected_cb;
}
if (net_context_get_type(ctx) == SOCK_STREAM) {
/* For STREAM sockets net_context_recv() only installs
* recv callback w/o side effects, and it has to be done
* first to avoid race condition, when TCP stream data
* arrives right after connect.
*/
ret = net_context_recv(ctx, zsock_received_cb,
K_NO_WAIT, ctx->user_data);
if (ret < 0) {
errno = -ret;
return -1;
}
ret = net_context_connect(ctx, addr, addrlen, cb,
timeout, ctx->user_data);
if (ret < 0) {
errno = -ret;
return -1;
}
} else {
ret = net_context_connect(ctx, addr, addrlen, cb,
timeout, ctx->user_data);
if (ret < 0) {
errno = -ret;
return -1;
}
ret = net_context_recv(ctx, zsock_received_cb,
K_NO_WAIT, ctx->user_data);
if (ret < 0) {
errno = -ret;
return -1;
}
}
return 0;
}
int zsock_listen_ctx(struct net_context *ctx, int backlog)
{
int ret;
if (net_context_get_type(ctx) == SOCK_RAW) {
errno = EOPNOTSUPP;
return -1;
}
ret = net_context_listen(ctx, backlog);
if (ret < 0) {
errno = -ret;
return -1;
}
ret = net_context_accept(ctx, zsock_accepted_cb, K_NO_WAIT, ctx);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
int zsock_accept_ctx(struct net_context *parent, struct sockaddr *addr,
socklen_t *addrlen)
{
struct net_context *ctx;
struct net_pkt *last_pkt;
int fd, ret;
if (net_context_get_type(parent) == SOCK_RAW) {
errno = EOPNOTSUPP;
return -1;
}
if (!sock_is_nonblock(parent)) {
k_timeout_t timeout = K_FOREVER;
/* accept() can reuse zsock_wait_data(), as underneath it's
* monitoring the same queue (accept_q is an alias for recv_q).
*/
ret = zsock_wait_data(parent, &timeout);
if (ret < 0) {
errno = -ret;
return -1;
}
}
ctx = k_fifo_get(&parent->accept_q, K_NO_WAIT);
if (ctx == NULL) {
errno = EAGAIN;
return -1;
}
fd = zvfs_reserve_fd();
if (fd < 0) {
zsock_flush_queue(ctx);
net_context_put(ctx);
return -1;
}
/* Check if the connection is already disconnected */
last_pkt = k_fifo_peek_tail(&ctx->recv_q);
if (last_pkt) {
if (net_pkt_eof(last_pkt)) {
sock_set_eof(ctx);
zvfs_free_fd(fd);
zsock_flush_queue(ctx);
net_context_put(ctx);
errno = ECONNABORTED;
return -1;
}
}
if (net_context_is_closing(ctx)) {
errno = ECONNABORTED;
zvfs_free_fd(fd);
zsock_flush_queue(ctx);
net_context_put(ctx);
return -1;
}
net_context_set_accepting(ctx, false);
if (addr != NULL && addrlen != NULL) {
int len = MIN(*addrlen, sizeof(ctx->remote));
memcpy(addr, &ctx->remote, len);
/* addrlen is a value-result argument, set to actual
* size of source address
*/
if (ctx->remote.sa_family == AF_INET) {
*addrlen = sizeof(struct sockaddr_in);
} else if (ctx->remote.sa_family == AF_INET6) {
*addrlen = sizeof(struct sockaddr_in6);
} else {
zvfs_free_fd(fd);
errno = ENOTSUP;
zsock_flush_queue(ctx);
net_context_put(ctx);
return -1;
}
}
NET_DBG("accept: ctx=%p, fd=%d", ctx, fd);
zvfs_finalize_typed_fd(fd, ctx, (const struct fd_op_vtable *)&sock_fd_op_vtable,
ZVFS_MODE_IFSOCK);
return fd;
}
#define WAIT_BUFS_INITIAL_MS 10
#define WAIT_BUFS_MAX_MS 100
#define MAX_WAIT_BUFS K_MSEC(CONFIG_NET_SOCKET_MAX_SEND_WAIT)
static int send_check_and_wait(struct net_context *ctx, int status,
k_timepoint_t buf_timeout, k_timeout_t timeout,
uint32_t *retry_timeout)
{
if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
goto out;
}
if (status != -ENOBUFS && status != -EAGAIN) {
goto out;
}
/* If we cannot get any buffers in reasonable
* amount of time, then do not wait forever as
* there might be some bigger issue.
* If we get -EAGAIN and cannot recover, then
* it means that the sending window is blocked
* and we just cannot send anything.
*/
if (sys_timepoint_expired(buf_timeout)) {
if (status == -ENOBUFS) {
status = -ENOMEM;
} else {
status = -ENOBUFS;
}
goto out;
}
if (!K_TIMEOUT_EQ(timeout, K_FOREVER)) {
*retry_timeout =
MIN(*retry_timeout, k_ticks_to_ms_floor32(timeout.ticks));
}
if (ctx->cond.lock) {
(void)k_mutex_unlock(ctx->cond.lock);
}
if (status == -ENOBUFS) {
/* We can monitor net_pkt/net_buf availability, so just wait. */
k_sleep(K_MSEC(*retry_timeout));
}
if (status == -EAGAIN) {
if (IS_ENABLED(CONFIG_NET_NATIVE_TCP) &&
net_context_get_type(ctx) == SOCK_STREAM &&
!net_if_is_ip_offloaded(net_context_get_iface(ctx))) {
struct k_poll_event event;
k_poll_event_init(&event,
K_POLL_TYPE_SEM_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
net_tcp_tx_sem_get(ctx));
k_poll(&event, 1, K_MSEC(*retry_timeout));
} else {
k_sleep(K_MSEC(*retry_timeout));
}
}
/* Exponentially increase the retry timeout
* Cap the value to WAIT_BUFS_MAX_MS
*/
*retry_timeout = MIN(WAIT_BUFS_MAX_MS, *retry_timeout << 1);
if (ctx->cond.lock) {
(void)k_mutex_lock(ctx->cond.lock, K_FOREVER);
}
return 0;
out:
errno = -status;
return -1;
}
ssize_t zsock_sendto_ctx(struct net_context *ctx, const void *buf, size_t len,
int flags,
const struct sockaddr *dest_addr, socklen_t addrlen)
{
k_timeout_t timeout = K_FOREVER;
uint32_t retry_timeout = WAIT_BUFS_INITIAL_MS;
k_timepoint_t buf_timeout, end;
int status;
if ((flags & ZSOCK_MSG_DONTWAIT) || sock_is_nonblock(ctx)) {
timeout = K_NO_WAIT;
buf_timeout = sys_timepoint_calc(K_NO_WAIT);
} else {
net_context_get_option(ctx, NET_OPT_SNDTIMEO, &timeout, NULL);
buf_timeout = sys_timepoint_calc(MAX_WAIT_BUFS);
}
end = sys_timepoint_calc(timeout);
/* Register the callback before sending in order to receive the response
* from the peer.
*/
status = net_context_recv(ctx, zsock_received_cb,
K_NO_WAIT, ctx->user_data);
if (status < 0) {
errno = -status;
return -1;
}
while (1) {
if (dest_addr) {
status = net_context_sendto(ctx, buf, len, dest_addr,
addrlen, NULL, timeout,
ctx->user_data);
} else {
status = net_context_send(ctx, buf, len, NULL, timeout,
ctx->user_data);
}
if (status < 0) {
status = send_check_and_wait(ctx, status, buf_timeout,
timeout, &retry_timeout);
if (status < 0) {
return status;
}
/* Update the timeout value in case loop is repeated. */
timeout = sys_timepoint_timeout(end);
continue;
}
break;
}
return status;
}
ssize_t zsock_sendmsg_ctx(struct net_context *ctx, const struct msghdr *msg,
int flags)
{
k_timeout_t timeout = K_FOREVER;
uint32_t retry_timeout = WAIT_BUFS_INITIAL_MS;
k_timepoint_t buf_timeout, end;
int status;
if ((flags & ZSOCK_MSG_DONTWAIT) || sock_is_nonblock(ctx)) {
timeout = K_NO_WAIT;
buf_timeout = sys_timepoint_calc(K_NO_WAIT);
} else {
net_context_get_option(ctx, NET_OPT_SNDTIMEO, &timeout, NULL);
buf_timeout = sys_timepoint_calc(MAX_WAIT_BUFS);
}
end = sys_timepoint_calc(timeout);
while (1) {
status = net_context_sendmsg(ctx, msg, flags, NULL, timeout, NULL);
if (status < 0) {
status = send_check_and_wait(ctx, status,
buf_timeout,
timeout, &retry_timeout);
if (status < 0) {
return status;
}
/* Update the timeout value in case loop is repeated. */
timeout = sys_timepoint_timeout(end);
continue;
}
break;
}
return status;
}
static int sock_get_pkt_src_addr(struct net_context *ctx,
struct net_pkt *pkt,
struct sockaddr *addr,
socklen_t addrlen)
{
int ret = 0;
struct net_pkt_cursor backup;
uint16_t *port;
enum net_ip_protocol proto = net_context_get_proto(ctx);
enum net_sock_type type = net_context_get_type(ctx);
if (!addr || !pkt) {
return -EINVAL;
}
net_pkt_cursor_backup(pkt, &backup);
net_pkt_cursor_init(pkt);
addr->sa_family = net_pkt_family(pkt);
if (IS_ENABLED(CONFIG_NET_IPV4) &&
net_pkt_family(pkt) == AF_INET) {
NET_PKT_DATA_ACCESS_CONTIGUOUS_DEFINE(ipv4_access,
struct net_ipv4_hdr);
struct sockaddr_in *addr4 = net_sin(addr);
struct net_ipv4_hdr *ipv4_hdr;
if (addrlen < sizeof(struct sockaddr_in)) {
ret = -EINVAL;
goto error;
}
ipv4_hdr = (struct net_ipv4_hdr *)net_pkt_get_data(
pkt, &ipv4_access);
if (!ipv4_hdr ||
net_pkt_acknowledge_data(pkt, &ipv4_access) ||
net_pkt_skip(pkt, net_pkt_ipv4_opts_len(pkt))) {
ret = -ENOBUFS;
goto error;
}
net_ipv4_addr_copy_raw((uint8_t *)&addr4->sin_addr, ipv4_hdr->src);
port = &addr4->sin_port;
} else if (IS_ENABLED(CONFIG_NET_IPV6) &&
net_pkt_family(pkt) == AF_INET6) {
NET_PKT_DATA_ACCESS_CONTIGUOUS_DEFINE(ipv6_access,
struct net_ipv6_hdr);
struct sockaddr_in6 *addr6 = net_sin6(addr);
struct net_ipv6_hdr *ipv6_hdr;
if (addrlen < sizeof(struct sockaddr_in6)) {
ret = -EINVAL;
goto error;
}
ipv6_hdr = (struct net_ipv6_hdr *)net_pkt_get_data(
pkt, &ipv6_access);
if (!ipv6_hdr ||
net_pkt_acknowledge_data(pkt, &ipv6_access) ||
net_pkt_skip(pkt, net_pkt_ipv6_ext_len(pkt))) {
ret = -ENOBUFS;
goto error;
}
net_ipv6_addr_copy_raw((uint8_t *)&addr6->sin6_addr, ipv6_hdr->src);
port = &addr6->sin6_port;
} else {
ret = -ENOTSUP;
goto error;
}
if (IS_ENABLED(CONFIG_NET_UDP) && proto == IPPROTO_UDP) {
NET_PKT_DATA_ACCESS_DEFINE(udp_access, struct net_udp_hdr);
struct net_udp_hdr *udp_hdr;
udp_hdr = (struct net_udp_hdr *)net_pkt_get_data(pkt,
&udp_access);
if (!udp_hdr) {
ret = -ENOBUFS;
goto error;
}
*port = udp_hdr->src_port;
} else if (IS_ENABLED(CONFIG_NET_TCP) && proto == IPPROTO_TCP) {
NET_PKT_DATA_ACCESS_DEFINE(tcp_access, struct net_tcp_hdr);
struct net_tcp_hdr *tcp_hdr;
tcp_hdr = (struct net_tcp_hdr *)net_pkt_get_data(pkt,
&tcp_access);
if (!tcp_hdr) {
ret = -ENOBUFS;
goto error;
}
*port = tcp_hdr->src_port;
} else if (IS_ENABLED(CONFIG_NET_SOCKETS_INET_RAW) && type == SOCK_RAW) {
*port = 0;
} else {
ret = -ENOTSUP;
}
error:
net_pkt_cursor_restore(pkt, &backup);
return ret;
}
#if defined(CONFIG_NET_OFFLOAD)
static bool net_pkt_remote_addr_is_unspecified(struct net_pkt *pkt)
{
bool ret = true;
if (net_pkt_family(pkt) == AF_INET) {
ret = net_ipv4_is_addr_unspecified(&net_sin(&pkt->remote)->sin_addr);
} else if (net_pkt_family(pkt) == AF_INET6) {
ret = net_ipv6_is_addr_unspecified(&net_sin6(&pkt->remote)->sin6_addr);
}
return ret;
}
static int sock_get_offload_pkt_src_addr(struct net_pkt *pkt,
struct net_context *ctx,
struct sockaddr *addr,
socklen_t addrlen)
{
int ret = 0;
if (!addr || !pkt) {
return -EINVAL;
}
if (!net_pkt_remote_addr_is_unspecified(pkt)) {
if (IS_ENABLED(CONFIG_NET_IPV4) &&
net_pkt_family(pkt) == AF_INET) {
if (addrlen < sizeof(struct sockaddr_in)) {
ret = -EINVAL;
goto error;
}
memcpy(addr, &pkt->remote, sizeof(struct sockaddr_in));
} else if (IS_ENABLED(CONFIG_NET_IPV6) &&
net_pkt_family(pkt) == AF_INET6) {
if (addrlen < sizeof(struct sockaddr_in6)) {
ret = -EINVAL;
goto error;
}
memcpy(addr, &pkt->remote, sizeof(struct sockaddr_in6));
}
} else if (ctx->flags & NET_CONTEXT_REMOTE_ADDR_SET) {
memcpy(addr, &ctx->remote, MIN(addrlen, sizeof(ctx->remote)));
} else {
ret = -ENOTSUP;
}
error:
return ret;
}
#else
static int sock_get_offload_pkt_src_addr(struct net_pkt *pkt,
struct net_context *ctx,
struct sockaddr *addr,
socklen_t addrlen)
{
ARG_UNUSED(pkt);
ARG_UNUSED(ctx);
ARG_UNUSED(addr);
ARG_UNUSED(addrlen);
return 0;
}
#endif /* CONFIG_NET_OFFLOAD */
void net_socket_update_tc_rx_time(struct net_pkt *pkt, uint32_t end_tick)
{
net_pkt_set_rx_stats_tick(pkt, end_tick);
net_stats_update_tc_rx_time(net_pkt_iface(pkt),
net_pkt_priority(pkt),
net_pkt_create_time(pkt),
end_tick);
SYS_PORT_TRACING_FUNC(net, rx_time, pkt, end_tick);
if (IS_ENABLED(CONFIG_NET_PKT_RXTIME_STATS_DETAIL)) {
uint32_t val, prev = net_pkt_create_time(pkt);
int i;
for (i = 0; i < net_pkt_stats_tick_count(pkt); i++) {
if (!net_pkt_stats_tick(pkt)[i]) {
break;
}
val = net_pkt_stats_tick(pkt)[i] - prev;
prev = net_pkt_stats_tick(pkt)[i];
net_pkt_stats_tick(pkt)[i] = val;
}
net_stats_update_tc_rx_time_detail(
net_pkt_iface(pkt),
net_pkt_priority(pkt),
net_pkt_stats_tick(pkt));
}
}
int zsock_wait_data(struct net_context *ctx, k_timeout_t *timeout)
{
int ret;
if (ctx->cond.lock == NULL) {
/* For some reason the lock pointer is not set properly
* when called by fdtable.c:zvfs_finalize_fd()
* It is not practical to try to figure out the fdtable
* lock at this point so skip it.
*/
NET_WARN("No lock pointer set for context %p", ctx);
return -EINVAL;
}
if (k_fifo_is_empty(&ctx->recv_q)) {
/* Wait for the data to arrive but without holding a lock */
ret = k_condvar_wait(&ctx->cond.recv, ctx->cond.lock,
*timeout);
if (ret < 0) {
return ret;
}
if (sock_is_error(ctx)) {
return -POINTER_TO_INT(ctx->user_data);
}
}
return 0;
}
static int insert_pktinfo(struct msghdr *msg, int level, int type,
void *pktinfo, size_t pktinfo_len)
{
struct cmsghdr *cmsg;
if (msg->msg_controllen < pktinfo_len) {
return -EINVAL;
}
for (cmsg = CMSG_FIRSTHDR(msg); cmsg != NULL; cmsg = CMSG_NXTHDR(msg, cmsg)) {
if (cmsg->cmsg_len == 0) {
break;
}
}
if (cmsg == NULL) {
return -EINVAL;
}
cmsg->cmsg_len = CMSG_LEN(pktinfo_len);
cmsg->cmsg_level = level;
cmsg->cmsg_type = type;
memcpy(CMSG_DATA(cmsg), pktinfo, pktinfo_len);
return 0;
}
static int add_timestamping(struct net_context *ctx,
struct net_pkt *pkt,
struct msghdr *msg)
{
uint8_t timestamping = 0;
net_context_get_option(ctx, NET_OPT_TIMESTAMPING, &timestamping, NULL);
if (timestamping) {
return insert_pktinfo(msg, SOL_SOCKET, SO_TIMESTAMPING,
net_pkt_timestamp(pkt), sizeof(struct net_ptp_time));
}
return -ENOTSUP;
}
static int add_pktinfo(struct net_context *ctx,
struct net_pkt *pkt,
struct msghdr *msg)
{
int ret = -ENOTSUP;
struct net_pkt_cursor backup;
net_pkt_cursor_backup(pkt, &backup);
net_pkt_cursor_init(pkt);
if (IS_ENABLED(CONFIG_NET_IPV4) && net_pkt_family(pkt) == AF_INET) {
NET_PKT_DATA_ACCESS_CONTIGUOUS_DEFINE(ipv4_access,
struct net_ipv4_hdr);
struct in_pktinfo info;
struct net_ipv4_hdr *ipv4_hdr;
ipv4_hdr = (struct net_ipv4_hdr *)net_pkt_get_data(
pkt, &ipv4_access);
if (ipv4_hdr == NULL ||
net_pkt_acknowledge_data(pkt, &ipv4_access) ||
net_pkt_skip(pkt, net_pkt_ipv4_opts_len(pkt))) {
ret = -ENOBUFS;
goto out;
}
net_ipv4_addr_copy_raw((uint8_t *)&info.ipi_addr, ipv4_hdr->dst);
net_ipv4_addr_copy_raw((uint8_t *)&info.ipi_spec_dst,
(uint8_t *)net_sin_ptr(&ctx->local)->sin_addr);
info.ipi_ifindex = ctx->iface;
ret = insert_pktinfo(msg, IPPROTO_IP, IP_PKTINFO,
&info, sizeof(info));
goto out;
}
if (IS_ENABLED(CONFIG_NET_IPV6) && net_pkt_family(pkt) == AF_INET6) {
NET_PKT_DATA_ACCESS_CONTIGUOUS_DEFINE(ipv6_access,
struct net_ipv6_hdr);
struct in6_pktinfo info;
struct net_ipv6_hdr *ipv6_hdr;
ipv6_hdr = (struct net_ipv6_hdr *)net_pkt_get_data(
pkt, &ipv6_access);
if (ipv6_hdr == NULL ||
net_pkt_acknowledge_data(pkt, &ipv6_access) ||
net_pkt_skip(pkt, net_pkt_ipv6_ext_len(pkt))) {
ret = -ENOBUFS;
goto out;
}
net_ipv6_addr_copy_raw((uint8_t *)&info.ipi6_addr, ipv6_hdr->dst);
info.ipi6_ifindex = ctx->iface;
ret = insert_pktinfo(msg, IPPROTO_IPV6, IPV6_RECVPKTINFO,
&info, sizeof(info));
goto out;
}
out:
net_pkt_cursor_restore(pkt, &backup);
return ret;
}
static int update_msg_controllen(struct msghdr *msg)
{
struct cmsghdr *cmsg;
size_t cmsg_space = 0;
for (cmsg = CMSG_FIRSTHDR(msg); cmsg != NULL; cmsg = CMSG_NXTHDR(msg, cmsg)) {
if (cmsg->cmsg_len == 0) {
break;
}
cmsg_space += cmsg->cmsg_len;
}
msg->msg_controllen = cmsg_space;
return 0;
}
static ssize_t zsock_recv_dgram(struct net_context *ctx,
struct msghdr *msg,
void *buf,
size_t max_len,
int flags,
struct sockaddr *src_addr,
socklen_t *addrlen)
{
k_timeout_t timeout = K_FOREVER;
size_t recv_len = 0;
size_t read_len;
struct net_pkt_cursor backup;
struct net_pkt *pkt;
if ((flags & ZSOCK_MSG_DONTWAIT) || sock_is_nonblock(ctx)) {
timeout = K_NO_WAIT;
} else {
int ret;
net_context_get_option(ctx, NET_OPT_RCVTIMEO, &timeout, NULL);
ret = zsock_wait_data(ctx, &timeout);
if (ret < 0) {
errno = -ret;
return -1;
}
}
if (flags & ZSOCK_MSG_PEEK) {
int res;
res = fifo_wait_non_empty(&ctx->recv_q, timeout);
/* EAGAIN when timeout expired, EINTR when cancelled */
if (res && res != -EAGAIN && res != -EINTR) {
errno = -res;
return -1;
}
pkt = k_fifo_peek_head(&ctx->recv_q);
} else {
pkt = k_fifo_get(&ctx->recv_q, timeout);
}
if (!pkt) {
errno = EAGAIN;
return -1;
}
net_pkt_cursor_backup(pkt, &backup);
if (src_addr && addrlen) {
if (IS_ENABLED(CONFIG_NET_OFFLOAD) &&
net_if_is_ip_offloaded(net_context_get_iface(ctx))) {
int ret;
ret = sock_get_offload_pkt_src_addr(pkt, ctx, src_addr,
*addrlen);
if (ret < 0) {
errno = -ret;
NET_DBG("sock_get_offload_pkt_src_addr %d", ret);
goto fail;
}
} else {
int ret;
ret = sock_get_pkt_src_addr(ctx, pkt, src_addr, *addrlen);
if (ret < 0) {
errno = -ret;
NET_DBG("sock_get_pkt_src_addr %d", ret);
goto fail;
}
}
/* addrlen is a value-result argument, set to actual
* size of source address
*/
if (src_addr->sa_family == AF_INET) {
*addrlen = sizeof(struct sockaddr_in);
} else if (src_addr->sa_family == AF_INET6) {
*addrlen = sizeof(struct sockaddr_in6);
} else {
errno = ENOTSUP;
goto fail;
}
}
if (msg != NULL) {
int iovec = 0;
size_t tmp_read_len;
if (msg->msg_iovlen < 1 || msg->msg_iov == NULL) {
errno = ENOMEM;
return -1;
}
recv_len = net_pkt_remaining_data(pkt);
tmp_read_len = read_len = MIN(recv_len, max_len);
while (tmp_read_len > 0) {
size_t len;
buf = msg->msg_iov[iovec].iov_base;
if (buf == NULL) {
errno = EINVAL;
return -1;
}
len = MIN(tmp_read_len, msg->msg_iov[iovec].iov_len);
if (net_pkt_read(pkt, buf, len)) {
errno = ENOBUFS;
goto fail;
}
if (len <= tmp_read_len) {
tmp_read_len -= len;
iovec++;
} else {
errno = EINVAL;
return -1;
}
}
if (recv_len != read_len) {
msg->msg_flags |= ZSOCK_MSG_TRUNC;
}
} else {
recv_len = net_pkt_remaining_data(pkt);
read_len = MIN(recv_len, max_len);
if (net_pkt_read(pkt, buf, read_len)) {
errno = ENOBUFS;
goto fail;
}
}
if (msg != NULL) {
if (msg->msg_control != NULL) {
if (msg->msg_controllen > 0) {
if (IS_ENABLED(CONFIG_NET_CONTEXT_TIMESTAMPING) &&
net_context_is_timestamping_set(ctx)) {
if (add_timestamping(ctx, pkt, msg) < 0) {
msg->msg_flags |= ZSOCK_MSG_CTRUNC;
}
}
if (IS_ENABLED(CONFIG_NET_CONTEXT_RECV_PKTINFO) &&
net_context_is_recv_pktinfo_set(ctx)) {
if (add_pktinfo(ctx, pkt, msg) < 0) {
msg->msg_flags |= ZSOCK_MSG_CTRUNC;
}
}
/* msg_controllen must be updated to reflect the total length of all
* control messages in the buffer. If there are no control data,
* msg_controllen will be cleared as expected It will also take into
* account pre-existing control data
*/
update_msg_controllen(msg);
}
} else {
msg->msg_controllen = 0U;
}
}
if ((IS_ENABLED(CONFIG_NET_PKT_RXTIME_STATS) ||
IS_ENABLED(CONFIG_TRACING_NET_CORE)) &&
!(flags & ZSOCK_MSG_PEEK)) {
net_socket_update_tc_rx_time(pkt, k_cycle_get_32());
}
if (!(flags & ZSOCK_MSG_PEEK)) {
net_pkt_unref(pkt);
} else {
net_pkt_cursor_restore(pkt, &backup);
}
return (flags & ZSOCK_MSG_TRUNC) ? recv_len : read_len;
fail:
if (!(flags & ZSOCK_MSG_PEEK)) {
net_pkt_unref(pkt);
}
return -1;
}
static size_t zsock_recv_stream_immediate(struct net_context *ctx, uint8_t **buf, size_t *max_len,
int flags)
{
size_t len;
size_t pkt_len;
size_t recv_len = 0;
struct net_pkt *pkt;
struct net_pkt_cursor backup;
struct net_pkt *origin = NULL;
const bool do_recv = !(buf == NULL || max_len == NULL);
size_t _max_len = (max_len == NULL) ? SIZE_MAX : *max_len;
const bool peek = (flags & ZSOCK_MSG_PEEK) == ZSOCK_MSG_PEEK;
while (_max_len > 0) {
/* only peek until we know we can dequeue and / or requeue buffer */
pkt = k_fifo_peek_head(&ctx->recv_q);
if (pkt == NULL || pkt == origin) {
break;
}
if (origin == NULL) {
/* mark first pkt to avoid cycles when observing */
origin = pkt;
}
pkt_len = net_pkt_remaining_data(pkt);
len = MIN(_max_len, pkt_len);
recv_len += len;
_max_len -= len;
if (do_recv && len > 0) {
if (peek) {
net_pkt_cursor_backup(pkt, &backup);
}
net_pkt_read(pkt, *buf, len);
/* update buffer position for caller */
*buf += len;
if (peek) {
net_pkt_cursor_restore(pkt, &backup);
}
}
if (do_recv && !peek) {
if (len == pkt_len) {
/* dequeue empty packets when not observing */
pkt = k_fifo_get(&ctx->recv_q, K_NO_WAIT);
if (net_pkt_eof(pkt)) {
sock_set_eof(ctx);
}
if (IS_ENABLED(CONFIG_NET_PKT_RXTIME_STATS) ||
IS_ENABLED(CONFIG_TRACING_NET_CORE)) {
net_socket_update_tc_rx_time(pkt, k_cycle_get_32());
}
net_pkt_unref(pkt);
}
} else if (!do_recv || peek) {
/* requeue packets when observing */
k_fifo_put(&ctx->recv_q, k_fifo_get(&ctx->recv_q, K_NO_WAIT));
}
}
if (do_recv) {
/* convey remaining buffer size back to caller */
*max_len = _max_len;
}
return recv_len;
}
static int zsock_fionread_ctx(struct net_context *ctx)
{
size_t ret = zsock_recv_stream_immediate(ctx, NULL, NULL, 0);
return MIN(ret, INT_MAX);
}
static ssize_t zsock_recv_stream_timed(struct net_context *ctx, struct msghdr *msg,
uint8_t *buf, size_t max_len,
int flags, k_timeout_t timeout)
{
int res;
k_timepoint_t end;
size_t recv_len = 0, iovec = 0, available_len;
const bool waitall = (flags & ZSOCK_MSG_WAITALL) == ZSOCK_MSG_WAITALL;
if (msg != NULL && buf == NULL) {
if (msg->msg_iovlen < 1) {
return -EINVAL;
}
buf = msg->msg_iov[iovec].iov_base;
available_len = msg->msg_iov[iovec].iov_len;
}
for (end = sys_timepoint_calc(timeout); max_len > 0; timeout = sys_timepoint_timeout(end)) {
if (sock_is_error(ctx)) {
return -POINTER_TO_INT(ctx->user_data);
}
if (sock_is_eof(ctx)) {
return 0;
}
if (!K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
res = zsock_wait_data(ctx, &timeout);
if (res < 0) {
return res;
}
}
if (msg != NULL) {
again:
res = zsock_recv_stream_immediate(ctx, &buf, &available_len, flags);
recv_len += res;
if (res == 0 && recv_len == 0 && K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
return -EAGAIN;
}
buf = (uint8_t *)(msg->msg_iov[iovec].iov_base) + res;
max_len -= res;
if (available_len == 0) {
/* All data to this iovec was written */
iovec++;
if (iovec == msg->msg_iovlen) {
break;
}
buf = msg->msg_iov[iovec].iov_base;
available_len = msg->msg_iov[iovec].iov_len;
/* If there is more data, read it now and do not wait */
if (buf != NULL && available_len > 0) {
goto again;
}
continue;
}
} else {
res = zsock_recv_stream_immediate(ctx, &buf, &max_len, flags);
recv_len += res;
if (res == 0) {
if (recv_len == 0 && K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
return -EAGAIN;
}
}
}
if (!waitall) {
break;
}
}
return recv_len;
}
static ssize_t zsock_recv_stream(struct net_context *ctx, struct msghdr *msg,
void *buf, size_t max_len, int flags)
{
ssize_t res;
size_t recv_len = 0;
k_timeout_t timeout = K_FOREVER;
if (!net_context_is_used(ctx)) {
errno = EBADF;
return -1;
}
if (net_context_get_state(ctx) != NET_CONTEXT_CONNECTED) {
errno = ENOTCONN;
return -1;
}
if ((flags & ZSOCK_MSG_DONTWAIT) || sock_is_nonblock(ctx)) {
timeout = K_NO_WAIT;
} else if (!sock_is_eof(ctx) && !sock_is_error(ctx)) {
net_context_get_option(ctx, NET_OPT_RCVTIMEO, &timeout, NULL);
}
if (max_len == 0) {
/* no bytes requested - done! */
return 0;
}
res = zsock_recv_stream_timed(ctx, msg, buf, max_len, flags, timeout);
recv_len += MAX(0, res);
if (res < 0) {
errno = -res;
return -1;
}
if (!(flags & ZSOCK_MSG_PEEK)) {
net_context_update_recv_wnd(ctx, recv_len);
}
return recv_len;
}
ssize_t zsock_recvfrom_ctx(struct net_context *ctx, void *buf, size_t max_len,
int flags,
struct sockaddr *src_addr, socklen_t *addrlen)
{
enum net_sock_type sock_type = net_context_get_type(ctx);
if (max_len == 0) {
return 0;
}
if (sock_type == SOCK_DGRAM || sock_type == SOCK_RAW) {
return zsock_recv_dgram(ctx, NULL, buf, max_len, flags, src_addr, addrlen);
} else if (sock_type == SOCK_STREAM) {
return zsock_recv_stream(ctx, NULL, buf, max_len, flags);
}
__ASSERT(0, "Unknown socket type");
errno = ENOTSUP;
return -1;
}
ssize_t zsock_recvmsg_ctx(struct net_context *ctx, struct msghdr *msg,
int flags)
{
enum net_sock_type sock_type = net_context_get_type(ctx);
size_t i, max_len = 0;
if (msg == NULL) {
errno = EINVAL;
return -1;
}
if (msg->msg_iov == NULL) {
errno = ENOMEM;
return -1;
}
for (i = 0; i < msg->msg_iovlen; i++) {
max_len += msg->msg_iov[i].iov_len;
}
if (sock_type == SOCK_DGRAM || sock_type == SOCK_RAW) {
return zsock_recv_dgram(ctx, msg, NULL, max_len, flags,
msg->msg_name, &msg->msg_namelen);
} else if (sock_type == SOCK_STREAM) {
return zsock_recv_stream(ctx, msg, NULL, max_len, flags);
}
__ASSERT(0, "Unknown socket type");
errno = ENOTSUP;
return -1;
}
static int zsock_poll_prepare_ctx(struct net_context *ctx,
struct zsock_pollfd *pfd,
struct k_poll_event **pev,
struct k_poll_event *pev_end)
{
if (pfd->events & ZSOCK_POLLIN) {
if (*pev == pev_end) {
return -ENOMEM;
}
(*pev)->obj = &ctx->recv_q;
(*pev)->type = K_POLL_TYPE_FIFO_DATA_AVAILABLE;
(*pev)->mode = K_POLL_MODE_NOTIFY_ONLY;
(*pev)->state = K_POLL_STATE_NOT_READY;
(*pev)++;
}
if (pfd->events & ZSOCK_POLLOUT) {
if (IS_ENABLED(CONFIG_NET_NATIVE_TCP) &&
net_context_get_type(ctx) == SOCK_STREAM &&
!net_if_is_ip_offloaded(net_context_get_iface(ctx))) {
if (*pev == pev_end) {
return -ENOMEM;
}
if (net_context_get_state(ctx) == NET_CONTEXT_CONNECTING) {
(*pev)->obj = net_tcp_conn_sem_get(ctx);
} else {
(*pev)->obj = net_tcp_tx_sem_get(ctx);
}
(*pev)->type = K_POLL_TYPE_SEM_AVAILABLE;
(*pev)->mode = K_POLL_MODE_NOTIFY_ONLY;
(*pev)->state = K_POLL_STATE_NOT_READY;
(*pev)++;
} else {
return -EALREADY;
}
}
/* If socket is already in EOF or error, it can be reported
* immediately, so we tell poll() to short-circuit wait.
*/
if (sock_is_eof(ctx) || sock_is_error(ctx)) {
return -EALREADY;
}
return 0;
}
static int zsock_poll_update_ctx(struct net_context *ctx,
struct zsock_pollfd *pfd,
struct k_poll_event **pev)
{
ARG_UNUSED(ctx);
if (pfd->events & ZSOCK_POLLIN) {
if (((*pev)->state != K_POLL_STATE_NOT_READY &&
(*pev)->state != K_POLL_STATE_CANCELLED) ||
sock_is_eof(ctx)) {
pfd->revents |= ZSOCK_POLLIN;
}
(*pev)++;
}
if (pfd->events & ZSOCK_POLLOUT) {
if (IS_ENABLED(CONFIG_NET_NATIVE_TCP) &&
net_context_get_type(ctx) == SOCK_STREAM &&
!net_if_is_ip_offloaded(net_context_get_iface(ctx))) {
if ((*pev)->state != K_POLL_STATE_NOT_READY &&
!sock_is_eof(ctx) &&
(net_context_get_state(ctx) == NET_CONTEXT_CONNECTED)) {
pfd->revents |= ZSOCK_POLLOUT;
}
(*pev)++;
} else {
pfd->revents |= ZSOCK_POLLOUT;
}
}
if (sock_is_error(ctx)) {
pfd->revents |= ZSOCK_POLLERR;
}
if (sock_is_eof(ctx)) {
pfd->revents |= ZSOCK_POLLHUP;
}
return 0;
}
static enum tcp_conn_option get_tcp_option(int optname)
{
switch (optname) {
case TCP_KEEPIDLE:
return TCP_OPT_KEEPIDLE;
case TCP_KEEPINTVL:
return TCP_OPT_KEEPINTVL;
case TCP_KEEPCNT:
return TCP_OPT_KEEPCNT;
}
return -EINVAL;
}
static int ipv4_multicast_if(struct net_context *ctx, const void *optval,
socklen_t optlen, bool do_get)
{
struct net_if *iface = NULL;
int ifindex, ret;
if (do_get) {
struct net_if_addr *ifaddr;
size_t len = sizeof(ifindex);
if (optval == NULL || (optlen != sizeof(struct in_addr))) {
errno = EINVAL;
return -1;
}
ret = net_context_get_option(ctx, NET_OPT_MCAST_IFINDEX,
&ifindex, &len);
if (ret < 0) {
errno = -ret;
return -1;
}
if (ifindex == 0) {
/* No interface set */
((struct in_addr *)optval)->s_addr = INADDR_ANY;
return 0;
}
ifaddr = net_if_ipv4_addr_get_first_by_index(ifindex);
if (ifaddr == NULL) {
errno = ENOENT;
return -1;
}
net_ipaddr_copy((struct in_addr *)optval, &ifaddr->address.in_addr);
return 0;
}
/* setsockopt() can accept either struct ip_mreqn or
* struct ip_mreq. We need to handle both cases.
*/
if (optval == NULL || (optlen != sizeof(struct ip_mreqn) &&
optlen != sizeof(struct ip_mreq))) {
errno = EINVAL;
return -1;
}
if (optlen == sizeof(struct ip_mreqn)) {
struct ip_mreqn *mreqn = (struct ip_mreqn *)optval;
if (mreqn->imr_ifindex != 0) {
iface = net_if_get_by_index(mreqn->imr_ifindex);
} else if (mreqn->imr_address.s_addr != INADDR_ANY) {
struct net_if_addr *ifaddr;
ifaddr = net_if_ipv4_addr_lookup(&mreqn->imr_address, &iface);
if (ifaddr == NULL) {
errno = ENOENT;
return -1;
}
}
} else {
struct ip_mreq *mreq = (struct ip_mreq *)optval;
if (mreq->imr_interface.s_addr != INADDR_ANY) {
struct net_if_addr *ifaddr;
ifaddr = net_if_ipv4_addr_lookup(&mreq->imr_interface, &iface);
if (ifaddr == NULL) {
errno = ENOENT;
return -1;
}
}
}
if (iface == NULL) {
ifindex = 0;
} else {
ifindex = net_if_get_by_iface(iface);
}
ret = net_context_set_option(ctx, NET_OPT_MCAST_IFINDEX,
&ifindex, sizeof(ifindex));
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
int zsock_getsockopt_ctx(struct net_context *ctx, int level, int optname,
void *optval, socklen_t *optlen)
{
int ret;
switch (level) {
case SOL_SOCKET:
switch (optname) {
case SO_ERROR: {
if (*optlen != sizeof(int)) {
errno = EINVAL;
return -1;
}
*(int *)optval = POINTER_TO_INT(ctx->user_data);
return 0;
}
case SO_TYPE: {
int type = (int)net_context_get_type(ctx);
if (*optlen != sizeof(type)) {
errno = EINVAL;
return -1;
}
*(int *)optval = type;
return 0;
}
case SO_TXTIME:
if (IS_ENABLED(CONFIG_NET_CONTEXT_TXTIME)) {
ret = net_context_get_option(ctx,
NET_OPT_TXTIME,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_PROTOCOL: {
int proto = (int)net_context_get_proto(ctx);
if (*optlen != sizeof(proto)) {
errno = EINVAL;
return -1;
}
*(int *)optval = proto;
return 0;
}
case SO_DOMAIN: {
if (*optlen != sizeof(int)) {
errno = EINVAL;
return -1;
}
*(int *)optval = net_context_get_family(ctx);
return 0;
}
break;
case SO_RCVBUF:
if (IS_ENABLED(CONFIG_NET_CONTEXT_RCVBUF)) {
ret = net_context_get_option(ctx,
NET_OPT_RCVBUF,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_SNDBUF:
if (IS_ENABLED(CONFIG_NET_CONTEXT_SNDBUF)) {
ret = net_context_get_option(ctx,
NET_OPT_SNDBUF,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_REUSEADDR:
if (IS_ENABLED(CONFIG_NET_CONTEXT_REUSEADDR)) {
ret = net_context_get_option(ctx,
NET_OPT_REUSEADDR,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_REUSEPORT:
if (IS_ENABLED(CONFIG_NET_CONTEXT_REUSEPORT)) {
ret = net_context_get_option(ctx,
NET_OPT_REUSEPORT,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_KEEPALIVE:
if (IS_ENABLED(CONFIG_NET_TCP_KEEPALIVE) &&
net_context_get_proto(ctx) == IPPROTO_TCP) {
ret = net_tcp_get_option(ctx,
TCP_OPT_KEEPALIVE,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_TIMESTAMPING:
if (IS_ENABLED(CONFIG_NET_CONTEXT_TIMESTAMPING)) {
ret = net_context_get_option(ctx,
NET_OPT_TIMESTAMPING,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
}
break;
case IPPROTO_TCP:
switch (optname) {
case TCP_NODELAY:
ret = net_tcp_get_option(ctx, TCP_OPT_NODELAY, optval, optlen);
return ret;
case TCP_KEEPIDLE:
__fallthrough;
case TCP_KEEPINTVL:
__fallthrough;
case TCP_KEEPCNT:
if (IS_ENABLED(CONFIG_NET_TCP_KEEPALIVE)) {
ret = net_tcp_get_option(ctx,
get_tcp_option(optname),
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
}
break;
case IPPROTO_IP:
switch (optname) {
case IP_TOS:
if (IS_ENABLED(CONFIG_NET_CONTEXT_DSCP_ECN)) {
ret = net_context_get_option(ctx,
NET_OPT_DSCP_ECN,
optval,
optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case IP_TTL:
ret = net_context_get_option(ctx, NET_OPT_TTL,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
case IP_MULTICAST_IF:
if (IS_ENABLED(CONFIG_NET_IPV4)) {
if (net_context_get_family(ctx) != AF_INET) {
errno = EAFNOSUPPORT;
return -1;
}
return ipv4_multicast_if(ctx, optval, *optlen, true);
}
break;
case IP_MULTICAST_TTL:
ret = net_context_get_option(ctx, NET_OPT_MCAST_TTL,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
case IP_MTU:
if (IS_ENABLED(CONFIG_NET_IPV4)) {
ret = net_context_get_option(ctx, NET_OPT_MTU,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case IP_LOCAL_PORT_RANGE:
if (IS_ENABLED(CONFIG_NET_CONTEXT_CLAMP_PORT_RANGE)) {
ret = net_context_get_option(ctx,
NET_OPT_LOCAL_PORT_RANGE,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
#if defined(CONFIG_NET_IPV4)
case IP_MULTICAST_LOOP:
ret = net_context_get_option(ctx,
NET_OPT_IPV4_MCAST_LOOP,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
#endif
}
break;
case IPPROTO_IPV6:
switch (optname) {
case IPV6_MTU:
if (IS_ENABLED(CONFIG_NET_IPV6)) {
ret = net_context_get_option(ctx, NET_OPT_MTU,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case IPV6_V6ONLY:
if (IS_ENABLED(CONFIG_NET_IPV4_MAPPING_TO_IPV6)) {
ret = net_context_get_option(ctx,
NET_OPT_IPV6_V6ONLY,
optval,
optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case IPV6_ADDR_PREFERENCES:
if (IS_ENABLED(CONFIG_NET_IPV6)) {
ret = net_context_get_option(ctx,
NET_OPT_ADDR_PREFERENCES,
optval,
optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case IPV6_TCLASS:
if (IS_ENABLED(CONFIG_NET_CONTEXT_DSCP_ECN)) {
ret = net_context_get_option(ctx,
NET_OPT_DSCP_ECN,
optval,
optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case IPV6_UNICAST_HOPS:
ret = net_context_get_option(ctx,
NET_OPT_UNICAST_HOP_LIMIT,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
case IPV6_MULTICAST_IF:
if (IS_ENABLED(CONFIG_NET_IPV6)) {
if (net_context_get_family(ctx) != AF_INET6) {
errno = EAFNOSUPPORT;
return -1;
}
ret = net_context_get_option(ctx,
NET_OPT_MCAST_IFINDEX,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
case IPV6_MULTICAST_HOPS:
ret = net_context_get_option(ctx,
NET_OPT_MCAST_HOP_LIMIT,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
case IPV6_MULTICAST_LOOP:
ret = net_context_get_option(ctx,
NET_OPT_IPV6_MCAST_LOOP,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
}
errno = ENOPROTOOPT;
return -1;
}
static int ipv4_multicast_group(struct net_context *ctx, const void *optval,
socklen_t optlen, bool do_join)
{
struct ip_mreqn *mreqn;
struct net_if *iface;
int ifindex, ret;
if (optval == NULL || optlen != sizeof(struct ip_mreqn)) {
errno = EINVAL;
return -1;
}
mreqn = (struct ip_mreqn *)optval;
if (mreqn->imr_multiaddr.s_addr == INADDR_ANY) {
errno = EINVAL;
return -1;
}
if (mreqn->imr_ifindex != 0) {
iface = net_if_get_by_index(mreqn->imr_ifindex);
} else {
ifindex = net_if_ipv4_addr_lookup_by_index(&mreqn->imr_address);
iface = net_if_get_by_index(ifindex);
}
if (iface == NULL) {
/* Check if ctx has already an interface and if not,
* then select the default interface.
*/
if (ctx->iface <= 0) {
iface = net_if_get_default();
} else {
iface = net_if_get_by_index(ctx->iface);
}
if (iface == NULL) {
errno = EINVAL;
return -1;
}
}
if (do_join) {
ret = net_ipv4_igmp_join(iface, &mreqn->imr_multiaddr, NULL);
} else {
ret = net_ipv4_igmp_leave(iface, &mreqn->imr_multiaddr);
}
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
static int ipv6_multicast_group(struct net_context *ctx, const void *optval,
socklen_t optlen, bool do_join)
{
struct ipv6_mreq *mreq;
struct net_if *iface;
int ret;
if (optval == NULL || optlen != sizeof(struct ipv6_mreq)) {
errno = EINVAL;
return -1;
}
mreq = (struct ipv6_mreq *)optval;
if (memcmp(&mreq->ipv6mr_multiaddr,
net_ipv6_unspecified_address(),
sizeof(mreq->ipv6mr_multiaddr)) == 0) {
errno = EINVAL;
return -1;
}
iface = net_if_get_by_index(mreq->ipv6mr_ifindex);
if (iface == NULL) {
/* Check if ctx has already an interface and if not,
* then select the default interface.
*/
if (ctx->iface <= 0) {
iface = net_if_get_default();
} else {
iface = net_if_get_by_index(ctx->iface);
}
if (iface == NULL) {
errno = ENOENT;
return -1;
}
}
if (do_join) {
ret = net_ipv6_mld_join(iface, &mreq->ipv6mr_multiaddr);
} else {
ret = net_ipv6_mld_leave(iface, &mreq->ipv6mr_multiaddr);
}
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
int zsock_setsockopt_ctx(struct net_context *ctx, int level, int optname,
const void *optval, socklen_t optlen)
{
int ret;
switch (level) {
case SOL_SOCKET:
switch (optname) {
case SO_RCVBUF:
if (IS_ENABLED(CONFIG_NET_CONTEXT_RCVBUF)) {
ret = net_context_set_option(ctx,
NET_OPT_RCVBUF,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_SNDBUF:
if (IS_ENABLED(CONFIG_NET_CONTEXT_SNDBUF)) {
ret = net_context_set_option(ctx,
NET_OPT_SNDBUF,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_REUSEADDR:
if (IS_ENABLED(CONFIG_NET_CONTEXT_REUSEADDR)) {
ret = net_context_set_option(ctx,
NET_OPT_REUSEADDR,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_REUSEPORT:
if (IS_ENABLED(CONFIG_NET_CONTEXT_REUSEPORT)) {
ret = net_context_set_option(ctx,
NET_OPT_REUSEPORT,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_PRIORITY:
if (IS_ENABLED(CONFIG_NET_CONTEXT_PRIORITY)) {
ret = net_context_set_option(ctx,
NET_OPT_PRIORITY,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_RCVTIMEO:
if (IS_ENABLED(CONFIG_NET_CONTEXT_RCVTIMEO)) {
const struct zsock_timeval *tv = optval;
k_timeout_t timeout;
if (optlen != sizeof(struct zsock_timeval)) {
errno = EINVAL;
return -1;
}
if (tv->tv_sec == 0 && tv->tv_usec == 0) {
timeout = K_FOREVER;
} else {
timeout = K_USEC(tv->tv_sec * 1000000ULL
+ tv->tv_usec);
}
ret = net_context_set_option(ctx,
NET_OPT_RCVTIMEO,
&timeout,
sizeof(timeout));
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_SNDTIMEO:
if (IS_ENABLED(CONFIG_NET_CONTEXT_SNDTIMEO)) {
const struct zsock_timeval *tv = optval;
k_timeout_t timeout;
if (optlen != sizeof(struct zsock_timeval)) {
errno = EINVAL;
return -1;
}
if (tv->tv_sec == 0 && tv->tv_usec == 0) {
timeout = K_FOREVER;
} else {
timeout = K_USEC(tv->tv_sec * 1000000ULL
+ tv->tv_usec);
}
ret = net_context_set_option(ctx,
NET_OPT_SNDTIMEO,
&timeout,
sizeof(timeout));
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_TXTIME:
if (IS_ENABLED(CONFIG_NET_CONTEXT_TXTIME)) {
ret = net_context_set_option(ctx,
NET_OPT_TXTIME,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_SOCKS5:
if (IS_ENABLED(CONFIG_SOCKS)) {
ret = net_context_set_option(ctx,
NET_OPT_SOCKS5,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
net_context_set_proxy_enabled(ctx, true);
return 0;
}
break;
case SO_BINDTODEVICE: {
struct net_if *iface;
const struct ifreq *ifreq = optval;
if (net_context_get_family(ctx) != AF_INET &&
net_context_get_family(ctx) != AF_INET6) {
errno = EAFNOSUPPORT;
return -1;
}
/* optlen equal to 0 or empty interface name should
* remove the binding.
*/
if ((optlen == 0) || (ifreq != NULL &&
strlen(ifreq->ifr_name) == 0)) {
ctx->flags &= ~NET_CONTEXT_BOUND_TO_IFACE;
return 0;
}
if ((ifreq == NULL) || (optlen != sizeof(*ifreq))) {
errno = EINVAL;
return -1;
}
if (IS_ENABLED(CONFIG_NET_INTERFACE_NAME)) {
ret = net_if_get_by_name(ifreq->ifr_name);
if (ret < 0) {
errno = -ret;
return -1;
}
iface = net_if_get_by_index(ret);
if (iface == NULL) {
errno = ENODEV;
return -1;
}
} else {
const struct device *dev;
dev = device_get_binding(ifreq->ifr_name);
if (dev == NULL) {
errno = ENODEV;
return -1;
}
iface = net_if_lookup_by_dev(dev);
if (iface == NULL) {
errno = ENODEV;
return -1;
}
}
net_context_bind_iface(ctx, iface);
return 0;
}
case SO_LINGER:
/* ignored. for compatibility purposes only */
return 0;
case SO_KEEPALIVE:
if (IS_ENABLED(CONFIG_NET_TCP_KEEPALIVE) &&
net_context_get_proto(ctx) == IPPROTO_TCP) {
ret = net_tcp_set_option(ctx,
TCP_OPT_KEEPALIVE,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case SO_TIMESTAMPING:
if (IS_ENABLED(CONFIG_NET_CONTEXT_TIMESTAMPING)) {
ret = net_context_set_option(ctx,
NET_OPT_TIMESTAMPING,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
}
break;
case IPPROTO_TCP:
switch (optname) {
case TCP_NODELAY:
ret = net_tcp_set_option(ctx,
TCP_OPT_NODELAY, optval, optlen);
return ret;
case TCP_KEEPIDLE:
__fallthrough;
case TCP_KEEPINTVL:
__fallthrough;
case TCP_KEEPCNT:
if (IS_ENABLED(CONFIG_NET_TCP_KEEPALIVE)) {
ret = net_tcp_set_option(ctx,
get_tcp_option(optname),
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
}
break;
case IPPROTO_IP:
switch (optname) {
case IP_TOS:
if (IS_ENABLED(CONFIG_NET_CONTEXT_DSCP_ECN)) {
ret = net_context_set_option(ctx,
NET_OPT_DSCP_ECN,
optval,
optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case IP_PKTINFO:
if (IS_ENABLED(CONFIG_NET_IPV4) &&
IS_ENABLED(CONFIG_NET_CONTEXT_RECV_PKTINFO)) {
ret = net_context_set_option(ctx,
NET_OPT_RECV_PKTINFO,
optval,
optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case IP_MULTICAST_IF:
if (IS_ENABLED(CONFIG_NET_IPV4)) {
return ipv4_multicast_if(ctx, optval, optlen, false);
}
break;
case IP_MULTICAST_TTL:
ret = net_context_set_option(ctx, NET_OPT_MCAST_TTL,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
case IP_TTL:
ret = net_context_set_option(ctx, NET_OPT_TTL,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
case IP_ADD_MEMBERSHIP:
if (IS_ENABLED(CONFIG_NET_IPV4)) {
return ipv4_multicast_group(ctx, optval,
optlen, true);
}
break;
case IP_DROP_MEMBERSHIP:
if (IS_ENABLED(CONFIG_NET_IPV4)) {
return ipv4_multicast_group(ctx, optval,
optlen, false);
}
break;
case IP_LOCAL_PORT_RANGE:
if (IS_ENABLED(CONFIG_NET_CONTEXT_CLAMP_PORT_RANGE)) {
ret = net_context_set_option(ctx,
NET_OPT_LOCAL_PORT_RANGE,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
#if defined(CONFIG_NET_IPV4)
case IP_MULTICAST_LOOP:
ret = net_context_set_option(ctx,
NET_OPT_IPV4_MCAST_LOOP,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
#endif
}
break;
case IPPROTO_IPV6:
switch (optname) {
case IPV6_MTU:
if (IS_ENABLED(CONFIG_NET_IPV6)) {
ret = net_context_set_option(ctx, NET_OPT_MTU,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case IPV6_V6ONLY:
if (IS_ENABLED(CONFIG_NET_IPV4_MAPPING_TO_IPV6)) {
ret = net_context_set_option(ctx,
NET_OPT_IPV6_V6ONLY,
optval,
optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
}
return 0;
case IPV6_RECVPKTINFO:
if (IS_ENABLED(CONFIG_NET_IPV6) &&
IS_ENABLED(CONFIG_NET_CONTEXT_RECV_PKTINFO)) {
ret = net_context_set_option(ctx,
NET_OPT_RECV_PKTINFO,
optval,
optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case IPV6_ADDR_PREFERENCES:
if (IS_ENABLED(CONFIG_NET_IPV6)) {
ret = net_context_set_option(ctx,
NET_OPT_ADDR_PREFERENCES,
optval,
optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case IPV6_TCLASS:
if (IS_ENABLED(CONFIG_NET_CONTEXT_DSCP_ECN)) {
ret = net_context_set_option(ctx,
NET_OPT_DSCP_ECN,
optval,
optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
case IPV6_UNICAST_HOPS:
ret = net_context_set_option(ctx,
NET_OPT_UNICAST_HOP_LIMIT,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
case IPV6_MULTICAST_IF:
ret = net_context_set_option(ctx,
NET_OPT_MCAST_IFINDEX,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
case IPV6_MULTICAST_HOPS:
ret = net_context_set_option(ctx,
NET_OPT_MCAST_HOP_LIMIT,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
case IPV6_ADD_MEMBERSHIP:
if (IS_ENABLED(CONFIG_NET_IPV6)) {
return ipv6_multicast_group(ctx, optval,
optlen, true);
}
break;
case IPV6_DROP_MEMBERSHIP:
if (IS_ENABLED(CONFIG_NET_IPV6)) {
return ipv6_multicast_group(ctx, optval,
optlen, false);
}
break;
case IPV6_MULTICAST_LOOP:
ret = net_context_set_option(ctx,
NET_OPT_IPV6_MCAST_LOOP,
optval, optlen);
if (ret < 0) {
errno = -ret;
return -1;
}
return 0;
}
break;
}
errno = ENOPROTOOPT;
return -1;
}
int zsock_getpeername_ctx(struct net_context *ctx, struct sockaddr *addr,
socklen_t *addrlen)
{
socklen_t newlen = 0;
if (net_context_get_type(ctx) == SOCK_RAW) {
errno = EOPNOTSUPP;
return -1;
}
if (addr == NULL || addrlen == NULL) {
errno = EINVAL;
return -1;
}
if (!(ctx->flags & NET_CONTEXT_REMOTE_ADDR_SET)) {
errno = ENOTCONN;
return -1;
}
if (net_context_get_type(ctx) == SOCK_STREAM &&
net_context_get_state(ctx) != NET_CONTEXT_CONNECTED) {
errno = ENOTCONN;
return -1;
}
if (IS_ENABLED(CONFIG_NET_IPV4) && ctx->remote.sa_family == AF_INET) {
struct sockaddr_in addr4 = { 0 };
addr4.sin_family = AF_INET;
addr4.sin_port = net_sin(&ctx->remote)->sin_port;
memcpy(&addr4.sin_addr, &net_sin(&ctx->remote)->sin_addr,
sizeof(struct in_addr));
newlen = sizeof(struct sockaddr_in);
memcpy(addr, &addr4, MIN(*addrlen, newlen));
} else if (IS_ENABLED(CONFIG_NET_IPV6) &&
ctx->remote.sa_family == AF_INET6) {
struct sockaddr_in6 addr6 = { 0 };
addr6.sin6_family = AF_INET6;
addr6.sin6_port = net_sin6(&ctx->remote)->sin6_port;
memcpy(&addr6.sin6_addr, &net_sin6(&ctx->remote)->sin6_addr,
sizeof(struct in6_addr));
newlen = sizeof(struct sockaddr_in6);
memcpy(addr, &addr6, MIN(*addrlen, newlen));
} else {
errno = EINVAL;
return -1;
}
*addrlen = newlen;
return 0;
}
int zsock_getsockname_ctx(struct net_context *ctx, struct sockaddr *addr,
socklen_t *addrlen)
{
socklen_t newlen = 0;
int ret;
if (IS_ENABLED(CONFIG_NET_IPV4) && ctx->local.family == AF_INET) {
struct sockaddr_in addr4 = { 0 };
if (net_sin_ptr(&ctx->local)->sin_addr == NULL) {
errno = EINVAL;
return -1;
}
newlen = sizeof(struct sockaddr_in);
ret = net_context_get_local_addr(ctx,
(struct sockaddr *)&addr4,
&newlen);
if (ret < 0) {
errno = -ret;
return -1;
}
memcpy(addr, &addr4, MIN(*addrlen, newlen));
} else if (IS_ENABLED(CONFIG_NET_IPV6) && ctx->local.family == AF_INET6) {
struct sockaddr_in6 addr6 = { 0 };
if (net_sin6_ptr(&ctx->local)->sin6_addr == NULL) {
errno = EINVAL;
return -1;
}
newlen = sizeof(struct sockaddr_in6);
ret = net_context_get_local_addr(ctx,
(struct sockaddr *)&addr6,
&newlen);
if (ret < 0) {
errno = -ret;
return -1;
}
memcpy(addr, &addr6, MIN(*addrlen, newlen));
} else {
errno = EINVAL;
return -1;
}
*addrlen = newlen;
return 0;
}
static ssize_t sock_read_vmeth(void *obj, void *buffer, size_t count)
{
return zsock_recvfrom_ctx(obj, buffer, count, 0, NULL, 0);
}
static ssize_t sock_write_vmeth(void *obj, const void *buffer, size_t count)
{
return zsock_sendto_ctx(obj, buffer, count, 0, NULL, 0);
}
static void zsock_ctx_set_lock(struct net_context *ctx, struct k_mutex *lock)
{
ctx->cond.lock = lock;
}
static int sock_ioctl_vmeth(void *obj, unsigned int request, va_list args)
{
switch (request) {
/* In Zephyr, fcntl() is just an alias of ioctl(). */
case F_GETFL:
if (sock_is_nonblock(obj)) {
return O_NONBLOCK;
}
return 0;
case F_SETFL: {
int flags;
flags = va_arg(args, int);
if (flags & O_NONBLOCK) {
sock_set_flag(obj, SOCK_NONBLOCK, SOCK_NONBLOCK);
} else {
sock_set_flag(obj, SOCK_NONBLOCK, 0);
}
return 0;
}
case ZFD_IOCTL_POLL_PREPARE: {
struct zsock_pollfd *pfd;
struct k_poll_event **pev;
struct k_poll_event *pev_end;
pfd = va_arg(args, struct zsock_pollfd *);
pev = va_arg(args, struct k_poll_event **);
pev_end = va_arg(args, struct k_poll_event *);
return zsock_poll_prepare_ctx(obj, pfd, pev, pev_end);
}
case ZFD_IOCTL_POLL_UPDATE: {
struct zsock_pollfd *pfd;
struct k_poll_event **pev;
pfd = va_arg(args, struct zsock_pollfd *);
pev = va_arg(args, struct k_poll_event **);
return zsock_poll_update_ctx(obj, pfd, pev);
}
case ZFD_IOCTL_SET_LOCK: {
struct k_mutex *lock;
lock = va_arg(args, struct k_mutex *);
zsock_ctx_set_lock(obj, lock);
return 0;
}
case ZFD_IOCTL_FIONBIO:
sock_set_flag(obj, SOCK_NONBLOCK, SOCK_NONBLOCK);
return 0;
case ZFD_IOCTL_FIONREAD: {
int *avail = va_arg(args, int *);
*avail = zsock_fionread_ctx(obj);
return 0;
}
default:
errno = EOPNOTSUPP;
return -1;
}
}
static int sock_shutdown_vmeth(void *obj, int how)
{
return zsock_shutdown_ctx(obj, how);
}
static int sock_bind_vmeth(void *obj, const struct sockaddr *addr,
socklen_t addrlen)
{
return zsock_bind_ctx(obj, addr, addrlen);
}
static int sock_connect_vmeth(void *obj, const struct sockaddr *addr,
socklen_t addrlen)
{
return zsock_connect_ctx(obj, addr, addrlen);
}
static int sock_listen_vmeth(void *obj, int backlog)
{
return zsock_listen_ctx(obj, backlog);
}
static int sock_accept_vmeth(void *obj, struct sockaddr *addr,
socklen_t *addrlen)
{
return zsock_accept_ctx(obj, addr, addrlen);
}
static ssize_t sock_sendto_vmeth(void *obj, const void *buf, size_t len,
int flags, const struct sockaddr *dest_addr,
socklen_t addrlen)
{
return zsock_sendto_ctx(obj, buf, len, flags, dest_addr, addrlen);
}
static ssize_t sock_sendmsg_vmeth(void *obj, const struct msghdr *msg,
int flags)
{
return zsock_sendmsg_ctx(obj, msg, flags);
}
static ssize_t sock_recvmsg_vmeth(void *obj, struct msghdr *msg, int flags)
{
return zsock_recvmsg_ctx(obj, msg, flags);
}
static ssize_t sock_recvfrom_vmeth(void *obj, void *buf, size_t max_len,
int flags, struct sockaddr *src_addr,
socklen_t *addrlen)
{
return zsock_recvfrom_ctx(obj, buf, max_len, flags,
src_addr, addrlen);
}
static int sock_getsockopt_vmeth(void *obj, int level, int optname,
void *optval, socklen_t *optlen)
{
return zsock_getsockopt_ctx(obj, level, optname, optval, optlen);
}
static int sock_setsockopt_vmeth(void *obj, int level, int optname,
const void *optval, socklen_t optlen)
{
return zsock_setsockopt_ctx(obj, level, optname, optval, optlen);
}
static int sock_close2_vmeth(void *obj, int fd)
{
return zsock_close_ctx(obj, fd);
}
static int sock_getpeername_vmeth(void *obj, struct sockaddr *addr,
socklen_t *addrlen)
{
return zsock_getpeername_ctx(obj, addr, addrlen);
}
static int sock_getsockname_vmeth(void *obj, struct sockaddr *addr,
socklen_t *addrlen)
{
return zsock_getsockname_ctx(obj, addr, addrlen);
}
const struct socket_op_vtable sock_fd_op_vtable = {
.fd_vtable = {
.read = sock_read_vmeth,
.write = sock_write_vmeth,
.close2 = sock_close2_vmeth,
.ioctl = sock_ioctl_vmeth,
},
.shutdown = sock_shutdown_vmeth,
.bind = sock_bind_vmeth,
.connect = sock_connect_vmeth,
.listen = sock_listen_vmeth,
.accept = sock_accept_vmeth,
.sendto = sock_sendto_vmeth,
.sendmsg = sock_sendmsg_vmeth,
.recvmsg = sock_recvmsg_vmeth,
.recvfrom = sock_recvfrom_vmeth,
.getsockopt = sock_getsockopt_vmeth,
.setsockopt = sock_setsockopt_vmeth,
.getpeername = sock_getpeername_vmeth,
.getsockname = sock_getsockname_vmeth,
};
static bool inet_is_supported(int family, int type, int proto)
{
if (family != AF_INET && family != AF_INET6) {
return false;
}
return true;
}
NET_SOCKET_REGISTER(af_inet46, NET_SOCKET_DEFAULT_PRIO, AF_UNSPEC,
inet_is_supported, zsock_socket_internal);