Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

763 lines
19 KiB

/*
* Copyright 2024 Google LLC
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/device.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/util.h>
#include <zephyr/kernel.h>
#include <zephyr/usb_c/usbc.h>
#include <zephyr/usb_c/tcpci.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/drivers/usb_c/tcpci_priv.h>
LOG_MODULE_REGISTER(tcpci, CONFIG_USBC_LOG_LEVEL);
#define LOG_COMM_ERR_STR "Can't communicate with TCPC %s@%x (%s %x = %04x)"
const struct tcpci_reg_dump_map tcpci_std_regs[TCPCI_STD_REGS_SIZE] = {
{
.addr = TCPC_REG_VENDOR_ID,
.name = "VENDOR_ID",
.size = 2,
},
{
.addr = TCPC_REG_PRODUCT_ID,
.name = "PRODUCT_ID",
.size = 2,
},
{
.addr = TCPC_REG_BCD_DEV,
.name = "DEVICE_ID",
.size = 2,
},
{
.addr = TCPC_REG_TC_REV,
.name = "USBTYPEC_REV",
.size = 2,
},
{
.addr = TCPC_REG_PD_REV,
.name = "USBPD_REV_VER",
.size = 2,
},
{
.addr = TCPC_REG_PD_INT_REV,
.name = "PD_INTERFACE_REV",
.size = 2,
},
{
.addr = TCPC_REG_ALERT,
.name = "ALERT",
.size = 2,
},
{
.addr = TCPC_REG_ALERT_MASK,
.name = "ALERT_MASK",
.size = 2,
},
{
.addr = TCPC_REG_POWER_STATUS_MASK,
.name = "POWER_STATUS_MASK",
.size = 1,
},
{
.addr = TCPC_REG_FAULT_STATUS_MASK,
.name = "FAULT_STATUS_MASK",
.size = 1,
},
{
.addr = TCPC_REG_EXT_STATUS_MASK,
.name = "EXTENDED_STATUS_MASK",
.size = 1,
},
{
.addr = TCPC_REG_ALERT_EXT_MASK,
.name = "ALERT_EXTENDED_MASK",
.size = 1,
},
{
.addr = TCPC_REG_CONFIG_STD_OUTPUT,
.name = "CFG_STANDARD_OUTPUT",
.size = 1,
},
{
.addr = TCPC_REG_TCPC_CTRL,
.name = "TCPC_CONTROL",
.size = 1,
},
{
.addr = TCPC_REG_ROLE_CTRL,
.name = "ROLE_CONTROL",
.size = 1,
},
{
.addr = TCPC_REG_FAULT_CTRL,
.name = "FAULT_CONTROL",
.size = 1,
},
{
.addr = TCPC_REG_POWER_CTRL,
.name = "POWER_CONTROL",
.size = 1,
},
{
.addr = TCPC_REG_CC_STATUS,
.name = "CC_STATUS",
.size = 1,
},
{
.addr = TCPC_REG_POWER_STATUS,
.name = "POWER_STATUS",
.size = 1,
},
{
.addr = TCPC_REG_FAULT_STATUS,
.name = "FAULT_STATUS",
.size = 1,
},
{
.addr = TCPC_REG_EXT_STATUS,
.name = "EXTENDED_STATUS",
.size = 1,
},
{
.addr = TCPC_REG_ALERT_EXT,
.name = "ALERT_EXTENDED",
.size = 1,
},
{
.addr = TCPC_REG_DEV_CAP_1,
.name = "DEVICE_CAPABILITIES_1",
.size = 2,
},
{
.addr = TCPC_REG_DEV_CAP_2,
.name = "DEVICE_CAPABILITIES_2",
.size = 2,
},
{
.addr = TCPC_REG_STD_INPUT_CAP,
.name = "STANDARD_INPUT_CAPABILITIES",
.size = 1,
},
{
.addr = TCPC_REG_STD_OUTPUT_CAP,
.name = "STANDARD_OUTPUT_CAPABILITIES",
.size = 1,
},
{
.addr = TCPC_REG_CONFIG_EXT_1,
.name = "CFG_EXTENDED1",
.size = 1,
},
{
.addr = TCPC_REG_GENERIC_TIMER,
.name = "GENERIC_TIMER",
.size = 2,
},
{
.addr = TCPC_REG_MSG_HDR_INFO,
.name = "MESSAGE_HEADER_INFO",
.size = 1,
},
{
.addr = TCPC_REG_RX_DETECT,
.name = "RECEIVE_DETECT",
.size = 1,
},
{
.addr = TCPC_REG_TRANSMIT,
.name = "TRANSMIT",
.size = 1,
},
{
.addr = TCPC_REG_VBUS_VOLTAGE,
.name = "VBUS_VOLTAGE",
.size = 2,
},
{
.addr = TCPC_REG_VBUS_SINK_DISCONNECT_THRESH,
.name = "VBUS_SINK_DISCONNECT_THRESHOLD",
.size = 2,
},
{
.addr = TCPC_REG_VBUS_STOP_DISCHARGE_THRESH,
.name = "VBUS_STOP_DISCHARGE_THRESHOLD",
.size = 2,
},
{
.addr = TCPC_REG_VBUS_VOLTAGE_ALARM_HI_CFG,
.name = "VBUS_VOLTAGE_ALARM_HI_CFG",
.size = 2,
},
{
.addr = TCPC_REG_VBUS_VOLTAGE_ALARM_LO_CFG,
.name = "VBUS_VOLTAGE_ALARM_LO_CFG",
.size = 2,
},
{
.addr = TCPC_REG_VBUS_NONDEFAULT_TARGET,
.name = "VBUS_NONDEFAULT_TARGET",
.size = 2,
},
{
.addr = TCPC_REG_DEV_CAP_3,
.name = "DEVICE_CAPABILITIES_3",
.size = 2,
},
};
int tcpci_read_reg8(const struct i2c_dt_spec *i2c, uint8_t reg, uint8_t *value)
{
int ret;
for (int a = 0; a < CONFIG_USBC_TCPC_TCPCI_I2C_RETRIES; a++) {
ret = i2c_write_read(i2c->bus, i2c->addr, &reg, sizeof(reg), value, sizeof(*value));
if (ret == 0) {
break;
}
}
if (ret != 0) {
LOG_ERR(LOG_COMM_ERR_STR, i2c->bus->name, i2c->addr, "r8", reg, *value);
}
return ret;
}
int tcpci_write_reg8(const struct i2c_dt_spec *i2c, uint8_t reg, uint8_t value)
{
uint8_t buf[2] = {reg, value};
int ret;
for (int a = 0; a < CONFIG_USBC_TCPC_TCPCI_I2C_RETRIES; a++) {
ret = i2c_write(i2c->bus, buf, 2, i2c->addr);
if (ret == 0) {
break;
}
}
if (ret != 0) {
LOG_ERR(LOG_COMM_ERR_STR, i2c->bus->name, i2c->addr, "w8", reg, value);
}
return ret;
}
int tcpci_update_reg8(const struct i2c_dt_spec *i2c, uint8_t reg, uint8_t mask, uint8_t value)
{
uint8_t old_value;
int ret;
ret = tcpci_read_reg8(i2c, reg, &old_value);
if (ret != 0) {
return ret;
}
old_value &= ~mask;
old_value |= (value & mask);
ret = tcpci_write_reg8(i2c, reg, old_value);
return ret;
}
int tcpci_read_reg16(const struct i2c_dt_spec *i2c, uint8_t reg, uint16_t *value)
{
int ret;
for (int a = 0; a < CONFIG_USBC_TCPC_TCPCI_I2C_RETRIES; a++) {
ret = i2c_write_read(i2c->bus, i2c->addr, &reg, sizeof(reg), value, sizeof(*value));
if (ret == 0) {
*value = sys_le16_to_cpu(*value);
break;
}
}
if (ret != 0) {
LOG_ERR(LOG_COMM_ERR_STR, i2c->bus->name, i2c->addr, "r16", reg, *value);
}
return ret;
}
int tcpci_write_reg16(const struct i2c_dt_spec *i2c, uint8_t reg, uint16_t value)
{
value = sys_cpu_to_le16(value);
uint8_t *value_ptr = (uint8_t *)&value;
uint8_t buf[3] = {reg, value_ptr[0], value_ptr[1]};
int ret;
for (int a = 0; a < CONFIG_USBC_TCPC_TCPCI_I2C_RETRIES; a++) {
ret = i2c_write(i2c->bus, buf, 3, i2c->addr);
if (ret == 0) {
break;
}
}
if (ret != 0) {
LOG_ERR(LOG_COMM_ERR_STR, i2c->bus->name, i2c->addr, "w16", reg, value);
}
return ret;
}
enum tcpc_alert tcpci_alert_reg_to_enum(uint16_t reg)
{
/**
* Hard reset enum has priority since it causes other bits to be ignored. Other values
* are sorted by corresponding bits index in the register.
*/
if (reg & TCPC_REG_ALERT_RX_HARD_RST) {
/** Received Hard Reset message */
return TCPC_ALERT_HARD_RESET_RECEIVED;
} else if (reg & TCPC_REG_ALERT_CC_STATUS) {
/** CC status changed */
return TCPC_ALERT_CC_STATUS;
} else if (reg & TCPC_REG_ALERT_POWER_STATUS) {
/** Power status changed */
return TCPC_ALERT_POWER_STATUS;
} else if (reg & TCPC_REG_ALERT_RX_STATUS) {
/** Receive Buffer register changed */
return TCPC_ALERT_MSG_STATUS;
} else if (reg & TCPC_REG_ALERT_TX_FAILED) {
/** SOP* message transmission not successful */
return TCPC_ALERT_TRANSMIT_MSG_FAILED;
} else if (reg & TCPC_REG_ALERT_TX_DISCARDED) {
/**
* Reset or SOP* message transmission not sent
* due to an incoming receive message
*/
return TCPC_ALERT_TRANSMIT_MSG_DISCARDED;
} else if (reg & TCPC_REG_ALERT_TX_SUCCESS) {
/** Reset or SOP* message transmission successful */
return TCPC_ALERT_TRANSMIT_MSG_SUCCESS;
} else if (reg & TCPC_REG_ALERT_V_ALARM_HI) {
/** A high-voltage alarm has occurred */
return TCPC_ALERT_VBUS_ALARM_HI;
} else if (reg & TCPC_REG_ALERT_V_ALARM_LO) {
/** A low-voltage alarm has occurred */
return TCPC_ALERT_VBUS_ALARM_LO;
} else if (reg & TCPC_REG_ALERT_FAULT) {
/** A fault has occurred. Read the FAULT_STATUS register */
return TCPC_ALERT_FAULT_STATUS;
} else if (reg & TCPC_REG_ALERT_RX_BUF_OVF) {
/** TCPC RX buffer has overflowed */
return TCPC_ALERT_RX_BUFFER_OVERFLOW;
} else if (reg & TCPC_REG_ALERT_VBUS_DISCNCT) {
/** The TCPC in Attached.SNK state has detected a sink disconnect */
return TCPC_ALERT_VBUS_SNK_DISCONNECT;
} else if (reg & TCPC_REG_ALERT_RX_BEGINNING) {
/** Receive buffer register changed */
return TCPC_ALERT_BEGINNING_MSG_STATUS;
} else if (reg & TCPC_REG_ALERT_EXT_STATUS) {
/** Extended status changed */
return TCPC_ALERT_EXTENDED_STATUS;
} else if (reg & TCPC_REG_ALERT_ALERT_EXT) {
/**
* An extended interrupt event has occurred. Read the alert_extended
* register
*/
return TCPC_ALERT_EXTENDED;
} else if (reg & TCPC_REG_ALERT_VENDOR_DEF) {
/** A vendor defined alert has been detected */
return TCPC_ALERT_VENDOR_DEFINED;
}
LOG_ERR("Invalid alert register value");
return -1;
}
int tcpci_tcpm_get_cc(const struct i2c_dt_spec *bus, enum tc_cc_voltage_state *cc1,
enum tc_cc_voltage_state *cc2)
{
uint8_t role;
uint8_t status;
int cc1_present_rd, cc2_present_rd;
int rv;
if (cc1 == NULL || cc2 == NULL) {
return -EINVAL;
}
/* errors will return CC as open */
*cc1 = TC_CC_VOLT_OPEN;
*cc2 = TC_CC_VOLT_OPEN;
/* Get the ROLE CONTROL and CC STATUS values */
rv = tcpci_read_reg8(bus, TCPC_REG_ROLE_CTRL, &role);
if (rv != 0) {
return rv;
}
rv = tcpci_read_reg8(bus, TCPC_REG_CC_STATUS, &status);
if (rv != 0) {
return rv;
}
/* Get the current CC values from the CC STATUS */
*cc1 = TCPC_REG_CC_STATUS_CC1_STATE(status);
*cc2 = TCPC_REG_CC_STATUS_CC2_STATE(status);
/* Determine if we are presenting Rd */
cc1_present_rd = 0;
cc2_present_rd = 0;
if (role & TCPC_REG_ROLE_CTRL_DRP_MASK) {
/*
* We are doing DRP. We will use the CC STATUS
* ConnectResult to determine if we are presenting
* Rd or Rp.
*/
int term;
term = !!(status & TCPC_REG_CC_STATUS_CONNECT_RESULT);
if (*cc1 != TC_CC_VOLT_OPEN) {
cc1_present_rd = term;
}
if (*cc2 != TC_CC_VOLT_OPEN) {
cc2_present_rd = term;
}
} else {
/*
* We are not doing DRP. We will use the ROLE CONTROL
* CC values to determine if we are presenting Rd or Rp.
*/
int role_cc1, role_cc2;
role_cc1 = TCPC_REG_ROLE_CTRL_CC1(role);
role_cc2 = TCPC_REG_ROLE_CTRL_CC2(role);
if (*cc1 != TC_CC_VOLT_OPEN) {
cc1_present_rd = (role_cc1 == TC_CC_RD);
}
if (*cc2 != TC_CC_VOLT_OPEN) {
cc2_present_rd = (role_cc2 == TC_CC_RD);
}
}
*cc1 |= cc1_present_rd << 2;
*cc2 |= cc2_present_rd << 2;
return 0;
}
int tcpci_tcpm_get_chip_info(const struct i2c_dt_spec *bus, struct tcpc_chip_info *chip_info)
{
int ret;
if (chip_info == NULL) {
return -EIO;
}
ret = tcpci_read_reg16(bus, TCPC_REG_VENDOR_ID, &chip_info->vendor_id);
if (ret != 0) {
return ret;
}
ret = tcpci_read_reg16(bus, TCPC_REG_PRODUCT_ID, &chip_info->product_id);
if (ret != 0) {
return ret;
}
return tcpci_read_reg16(bus, TCPC_REG_BCD_DEV, &chip_info->device_id);
}
int tcpci_tcpm_dump_std_reg(const struct i2c_dt_spec *bus)
{
uint16_t value;
for (unsigned int a = 0; a < ARRAY_SIZE(tcpci_std_regs); a++) {
switch (tcpci_std_regs[a].size) {
case 1:
tcpci_read_reg8(bus, tcpci_std_regs[a].addr, (uint8_t *)&value);
LOG_INF("- %-30s(0x%02x) = 0x%02x", tcpci_std_regs[a].name,
tcpci_std_regs[a].addr, (uint8_t)value);
break;
case 2:
tcpci_read_reg16(bus, tcpci_std_regs[a].addr, &value);
LOG_INF("- %-30s(0x%02x) = 0x%04x", tcpci_std_regs[a].name,
tcpci_std_regs[a].addr, value);
break;
}
}
return 0;
}
int tcpci_tcpm_set_bist_test_mode(const struct i2c_dt_spec *bus, bool enable)
{
return tcpci_update_reg8(bus, TCPC_REG_TCPC_CTRL, TCPC_REG_TCPC_CTRL_BIST_TEST_MODE,
enable ? TCPC_REG_TCPC_CTRL_BIST_TEST_MODE : 0);
}
int tcpci_tcpm_transmit_data(const struct i2c_dt_spec *bus, struct pd_msg *msg,
const uint8_t retries)
{
int reg = TCPC_REG_TX_BUFFER;
int rv;
int cnt = 4 * msg->header.number_of_data_objects;
/* If not SOP* transmission, just write to the transmit register */
if (msg->header.message_type >= NUM_SOP_STAR_TYPES) {
/*
* Per TCPCI spec, do not specify retry (although the TCPC
* should ignore retry field for these 3 types).
*/
return tcpci_write_reg8(
bus, TCPC_REG_TRANSMIT,
TCPC_REG_TRANSMIT_SET_WITHOUT_RETRY(msg->header.message_type));
}
if (cnt > 0) {
reg = TCPC_REG_TX_BUFFER;
/* TX_BYTE_CNT includes extra bytes for message header */
cnt += sizeof(msg->header.raw_value);
struct i2c_msg buf[3];
uint8_t tmp[2] = {TCPC_REG_TX_BUFFER, cnt};
buf[0].buf = tmp;
buf[0].len = 2;
buf[0].flags = I2C_MSG_WRITE;
buf[1].buf = (uint8_t *)&msg->header.raw_value;
buf[1].len = sizeof(msg->header.raw_value);
buf[1].flags = I2C_MSG_WRITE;
buf[2].buf = (uint8_t *)msg->data;
buf[2].len = msg->len;
buf[2].flags = I2C_MSG_WRITE | I2C_MSG_STOP;
if (cnt > sizeof(msg->header.raw_value)) {
rv = i2c_transfer(bus->bus, buf, 3, bus->addr);
} else {
buf[1].flags |= I2C_MSG_STOP;
rv = i2c_transfer(bus->bus, buf, 2, bus->addr);
}
/* If tcpc write fails, return error */
if (rv) {
return rv;
}
}
/*
* We always retry in TCPC hardware since the TCPM is too slow to
* respond within tRetry (~195 usec).
*
* The retry count used is dependent on the maximum PD revision
* supported at build time.
*/
rv = tcpci_write_reg8(bus, TCPC_REG_TRANSMIT,
TCPC_REG_TRANSMIT_SET_WITH_RETRY(retries, msg->type));
return rv;
}
int tcpci_tcpm_select_rp_value(const struct i2c_dt_spec *bus, enum tc_rp_value rp)
{
return tcpci_update_reg8(bus, TCPC_REG_ROLE_CTRL, TCPC_REG_ROLE_CTRL_RP_MASK,
TCPC_REG_ROLE_CTRL_SET(0, rp, 0, 0));
}
int tcpci_tcpm_get_rp_value(const struct i2c_dt_spec *bus, enum tc_rp_value *rp)
{
uint8_t reg_value = 0;
int ret;
ret = tcpci_read_reg8(bus, TCPC_REG_ROLE_CTRL, &reg_value);
*rp = TCPC_REG_ROLE_CTRL_RP(reg_value);
return ret;
}
int tcpci_tcpm_set_cc(const struct i2c_dt_spec *bus, enum tc_cc_pull pull)
{
return tcpci_update_reg8(bus, TCPC_REG_ROLE_CTRL,
TCPC_REG_ROLE_CTRL_CC1_MASK | TCPC_REG_ROLE_CTRL_CC2_MASK,
TCPC_REG_ROLE_CTRL_SET(0, 0, pull, pull));
}
int tcpci_tcpm_set_vconn(const struct i2c_dt_spec *bus, bool enable)
{
return tcpci_update_reg8(bus, TCPC_REG_POWER_CTRL, TCPC_REG_POWER_CTRL_VCONN_EN,
enable ? TCPC_REG_POWER_CTRL_VCONN_EN : 0);
}
int tcpci_tcpm_set_roles(const struct i2c_dt_spec *bus, enum pd_rev_type pd_rev,
enum tc_power_role power_role, enum tc_data_role data_role)
{
return tcpci_update_reg8(bus, TCPC_REG_MSG_HDR_INFO, TCPC_REG_MSG_HDR_INFO_ROLES_MASK,
TCPC_REG_MSG_HDR_INFO_SET(pd_rev, data_role, power_role));
}
int tcpci_tcpm_set_drp_toggle(const struct i2c_dt_spec *bus, uint8_t pd_int_rev, bool enable)
{
int ret;
/* Set auto drp toggle */
ret = tcpci_update_reg8(bus, TCPC_REG_ROLE_CTRL, TCPC_REG_ROLE_CTRL_DRP_MASK,
TCPC_REG_ROLE_CTRL_SET(enable, 0, 0, 0));
if (ret != 0) {
return ret;
}
/*
* For TCPCI Rev 2.0, unless the TCPM sets TCPC_REG_TCPC_CTRL_EN_LOOK4CONNECTION_ALERT,
* TCPC by default masks Alert assertion when CC_STATUS_LOOK4CONNECTION changes state.
*/
if (pd_int_rev >= PD_INT_REV20) {
ret = tcpci_update_reg8(bus, TCPC_REG_TCPC_CTRL,
TCPC_REG_TCPC_CTRL_EN_LOOK4CONNECTION_ALERT,
enable ? TCPC_REG_TCPC_CTRL_EN_LOOK4CONNECTION_ALERT : 0);
if (ret != 0) {
return ret;
}
}
if (enable) {
/* Set Look4Connection command */
return tcpci_write_reg8(bus, TCPC_REG_COMMAND, TCPC_REG_COMMAND_LOOK4CONNECTION);
}
return 0;
}
int tcpci_tcpm_set_rx_type(const struct i2c_dt_spec *bus, uint8_t rx_type)
{
return tcpci_write_reg8(bus, TCPC_REG_RX_DETECT, rx_type);
}
int tcpci_tcpm_set_cc_polarity(const struct i2c_dt_spec *bus, enum tc_cc_polarity polarity)
{
return tcpci_update_reg8(
bus, TCPC_REG_TCPC_CTRL, TCPC_REG_TCPC_CTRL_PLUG_ORIENTATION,
(polarity == TC_POLARITY_CC1) ? 0 : TCPC_REG_TCPC_CTRL_PLUG_ORIENTATION);
}
int tcpci_tcpm_get_status_register(const struct i2c_dt_spec *bus, enum tcpc_status_reg reg,
uint16_t *status)
{
switch (reg) {
case TCPC_ALERT_STATUS:
return tcpci_read_reg16(bus, TCPC_REG_ALERT, status);
case TCPC_CC_STATUS:
return tcpci_read_reg8(bus, TCPC_REG_CC_STATUS, (uint8_t *)status);
case TCPC_POWER_STATUS:
return tcpci_read_reg8(bus, TCPC_REG_POWER_STATUS, (uint8_t *)status);
case TCPC_FAULT_STATUS:
return tcpci_read_reg8(bus, TCPC_REG_FAULT_STATUS, (uint8_t *)status);
case TCPC_EXTENDED_STATUS:
return tcpci_read_reg8(bus, TCPC_REG_EXT_STATUS, (uint8_t *)status);
case TCPC_EXTENDED_ALERT_STATUS:
return tcpci_read_reg8(bus, TCPC_REG_ALERT_EXT, (uint8_t *)status);
default:
LOG_ERR("Not a TCPCI-specified reg address");
return -EINVAL;
}
}
int tcpci_tcpm_clear_status_register(const struct i2c_dt_spec *bus, enum tcpc_status_reg reg,
uint16_t mask)
{
switch (reg) {
case TCPC_ALERT_STATUS:
return tcpci_write_reg16(bus, TCPC_REG_ALERT, mask);
case TCPC_CC_STATUS:
LOG_ERR("CC_STATUS is cleared by the TCPC");
return -EINVAL;
case TCPC_POWER_STATUS:
LOG_ERR("POWER_STATUS is cleared by the TCPC");
return -EINVAL;
case TCPC_FAULT_STATUS:
return tcpci_write_reg8(bus, TCPC_REG_FAULT_STATUS, (uint8_t)mask);
case TCPC_EXTENDED_STATUS:
return tcpci_write_reg8(bus, TCPC_REG_EXT_STATUS, (uint8_t)mask);
case TCPC_EXTENDED_ALERT_STATUS:
return tcpci_write_reg8(bus, TCPC_REG_ALERT_EXT, (uint8_t)mask);
default:
LOG_ERR("Not a TCPCI-specified reg address");
return -EINVAL;
}
}
int tcpci_tcpm_mask_status_register(const struct i2c_dt_spec *bus, enum tcpc_status_reg reg,
uint16_t mask)
{
switch (reg) {
case TCPC_ALERT_STATUS:
return tcpci_write_reg16(bus, TCPC_REG_ALERT_MASK, mask);
case TCPC_CC_STATUS:
LOG_ERR("CC_STATUS does not have a corresponding mask register");
return -EINVAL;
case TCPC_POWER_STATUS:
return tcpci_write_reg8(bus, TCPC_REG_POWER_STATUS_MASK, (uint8_t)mask);
case TCPC_FAULT_STATUS:
return tcpci_write_reg8(bus, TCPC_REG_FAULT_STATUS_MASK, (uint8_t)mask);
case TCPC_EXTENDED_STATUS:
return tcpci_write_reg8(bus, TCPC_REG_EXT_STATUS_MASK, (uint8_t)mask);
case TCPC_EXTENDED_ALERT_STATUS:
return tcpci_write_reg8(bus, TCPC_REG_ALERT_EXT_MASK, (uint8_t)mask);
default:
LOG_ERR("Not a TCPCI-specified reg address");
return -EINVAL;
}
}
int tcpci_tcpm_set_snk_ctrl(const struct i2c_dt_spec *bus, bool enable)
{
return tcpci_write_reg8(bus, TCPC_REG_COMMAND,
enable ? TCPC_REG_COMMAND_SNK_CTRL_HIGH : TCPC_REG_COMMAND_SNK_CTRL_LOW);
}
int tcpci_tcpm_set_src_ctrl(const struct i2c_dt_spec *bus, bool enable)
{
return tcpci_write_reg8(bus, TCPC_REG_COMMAND,
enable ? TCPC_REG_COMMAND_SRC_CTRL_DEF : TCPC_REG_COMMAND_SRC_CTRL_LOW);
}
int tcpci_tcpm_get_snk_ctrl(const struct i2c_dt_spec *bus, bool *sinking)
{
uint16_t reg;
int ret;
ret = tcpci_tcpm_get_status_register(bus, TCPC_REG_POWER_STATUS, &reg);
if (ret == 0) {
*sinking = reg & TCPC_REG_POWER_STATUS_SINKING_VBUS;
}
return ret;
}
int tcpci_tcpm_get_src_ctrl(const struct i2c_dt_spec *bus, bool *sourcing)
{
uint16_t reg;
int ret;
ret = tcpci_tcpm_get_status_register(bus, TCPC_REG_POWER_STATUS, &reg);
if (ret == 0) {
*sourcing = reg & TCPC_REG_POWER_STATUS_SOURCING_VBUS;
}
return ret;
}
int tcpci_tcpm_set_debug_accessory(const struct i2c_dt_spec *bus, bool enable)
{
return tcpci_update_reg8(bus, TCPC_REG_CONFIG_STD_OUTPUT,
TCPC_REG_CONFIG_STD_OUTPUT_DBG_ACC_CONN_N,
enable ? 0 : TCPC_REG_CONFIG_STD_OUTPUT_DBG_ACC_CONN_N);
}
int tcpci_tcpm_set_low_power_mode(const struct i2c_dt_spec *bus, bool enable)
{
return tcpci_write_reg8(bus, TCPC_REG_COMMAND,
enable ? TCPC_REG_COMMAND_I2CIDLE : TCPC_REG_COMMAND_WAKE_I2C);
}