You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
715 lines
19 KiB
715 lines
19 KiB
/* |
|
* Copyright (c) 2018 Workaround GmbH |
|
* Copyright (c) 2018 Allterco Robotics |
|
* Copyright (c) 2018 Linaro Limited |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
* |
|
* Source file for the STM32 RTC driver |
|
* |
|
*/ |
|
|
|
#define DT_DRV_COMPAT st_stm32_rtc |
|
|
|
#include <time.h> |
|
|
|
#include <zephyr/drivers/clock_control/stm32_clock_control.h> |
|
#include <zephyr/drivers/clock_control.h> |
|
#include <zephyr/sys/util.h> |
|
#include <zephyr/kernel.h> |
|
#include <soc.h> |
|
#include <stm32_ll_exti.h> |
|
#include <stm32_ll_pwr.h> |
|
#include <stm32_ll_rcc.h> |
|
#include <stm32_ll_rtc.h> |
|
#include <zephyr/drivers/counter.h> |
|
#include <zephyr/sys/timeutil.h> |
|
#include <zephyr/pm/device.h> |
|
|
|
#include <zephyr/logging/log.h> |
|
#include <zephyr/irq.h> |
|
|
|
#include "stm32_hsem.h" |
|
|
|
LOG_MODULE_REGISTER(counter_rtc_stm32, CONFIG_COUNTER_LOG_LEVEL); |
|
|
|
/* Seconds from 1970-01-01T00:00:00 to 2000-01-01T00:00:00 */ |
|
#define T_TIME_OFFSET 946684800 |
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32L4X) |
|
#define RTC_EXTI_LINE LL_EXTI_LINE_18 |
|
#elif defined(CONFIG_SOC_SERIES_STM32C0X) \ |
|
|| defined(CONFIG_SOC_SERIES_STM32G0X) |
|
#define RTC_EXTI_LINE LL_EXTI_LINE_19 |
|
#elif defined(CONFIG_SOC_SERIES_STM32F4X) \ |
|
|| defined(CONFIG_SOC_SERIES_STM32F0X) \ |
|
|| defined(CONFIG_SOC_SERIES_STM32F1X) \ |
|
|| defined(CONFIG_SOC_SERIES_STM32F2X) \ |
|
|| defined(CONFIG_SOC_SERIES_STM32F3X) \ |
|
|| defined(CONFIG_SOC_SERIES_STM32F7X) \ |
|
|| defined(CONFIG_SOC_SERIES_STM32WBX) \ |
|
|| defined(CONFIG_SOC_SERIES_STM32G4X) \ |
|
|| defined(CONFIG_SOC_SERIES_STM32L0X) \ |
|
|| defined(CONFIG_SOC_SERIES_STM32L1X) \ |
|
|| defined(CONFIG_SOC_SERIES_STM32L5X) \ |
|
|| defined(CONFIG_SOC_SERIES_STM32H7X) \ |
|
|| defined(CONFIG_SOC_SERIES_STM32H5X) \ |
|
|| defined(CONFIG_SOC_SERIES_STM32WLX) |
|
#define RTC_EXTI_LINE LL_EXTI_LINE_17 |
|
#endif |
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32F1X) |
|
#define COUNTER_NO_DATE |
|
#endif |
|
|
|
#if DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSI |
|
/* LSI */ |
|
#define RTCCLK_FREQ STM32_LSI_FREQ |
|
#else |
|
/* LSE */ |
|
#define RTCCLK_FREQ STM32_LSE_FREQ |
|
#endif /* DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSI */ |
|
|
|
#if !defined(CONFIG_SOC_SERIES_STM32F1X) |
|
#ifndef CONFIG_COUNTER_RTC_STM32_SUBSECONDS |
|
#define RTC_ASYNCPRE BIT_MASK(7) |
|
#else /* !CONFIG_COUNTER_RTC_STM32_SUBSECONDS */ |
|
/* Get the highest possible clock for the subsecond register */ |
|
#define RTC_ASYNCPRE 1 |
|
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */ |
|
#else /* CONFIG_SOC_SERIES_STM32F1X */ |
|
#define RTC_ASYNCPRE (RTCCLK_FREQ - 1) |
|
#endif /* CONFIG_SOC_SERIES_STM32F1X */ |
|
|
|
/* Adjust the second sync prescaler to get 1Hz on ck_spre */ |
|
#define RTC_SYNCPRE ((RTCCLK_FREQ / (1 + RTC_ASYNCPRE)) - 1) |
|
|
|
#ifndef CONFIG_COUNTER_RTC_STM32_SUBSECONDS |
|
typedef uint32_t tick_t; |
|
#else |
|
typedef uint64_t tick_t; |
|
#endif |
|
|
|
struct rtc_stm32_config { |
|
struct counter_config_info counter_info; |
|
LL_RTC_InitTypeDef ll_rtc_config; |
|
const struct stm32_pclken *pclken; |
|
}; |
|
|
|
struct rtc_stm32_data { |
|
counter_alarm_callback_t callback; |
|
uint32_t ticks; |
|
void *user_data; |
|
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS |
|
bool irq_on_late; |
|
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */ |
|
}; |
|
|
|
static inline ErrorStatus ll_func_init_alarm(RTC_TypeDef *rtc, uint32_t format, |
|
LL_RTC_AlarmTypeDef *alarmStruct) |
|
{ |
|
#if defined(CONFIG_SOC_SERIES_STM32F1X) |
|
return LL_RTC_ALARM_Init(rtc, format, alarmStruct); |
|
#else |
|
return LL_RTC_ALMA_Init(rtc, format, alarmStruct); |
|
#endif |
|
} |
|
|
|
static inline void ll_func_clear_alarm_flag(RTC_TypeDef *rtc) |
|
{ |
|
#if defined(CONFIG_SOC_SERIES_STM32F1X) |
|
LL_RTC_ClearFlag_ALR(rtc); |
|
#else |
|
LL_RTC_ClearFlag_ALRA(rtc); |
|
#endif |
|
} |
|
|
|
static inline uint32_t ll_func_is_active_alarm(RTC_TypeDef *rtc) |
|
{ |
|
#if defined(CONFIG_SOC_SERIES_STM32F1X) |
|
return LL_RTC_IsActiveFlag_ALR(rtc); |
|
#else |
|
return LL_RTC_IsActiveFlag_ALRA(rtc); |
|
#endif |
|
} |
|
|
|
static inline void ll_func_enable_interrupt_alarm(RTC_TypeDef *rtc) |
|
{ |
|
#if defined(CONFIG_SOC_SERIES_STM32F1X) |
|
LL_RTC_EnableIT_ALR(rtc); |
|
#else |
|
LL_RTC_EnableIT_ALRA(rtc); |
|
#endif |
|
} |
|
|
|
static inline void ll_func_disable_interrupt_alarm(RTC_TypeDef *rtc) |
|
{ |
|
#if defined(CONFIG_SOC_SERIES_STM32F1X) |
|
LL_RTC_DisableIT_ALR(rtc); |
|
#else |
|
LL_RTC_DisableIT_ALRA(rtc); |
|
#endif |
|
} |
|
|
|
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS |
|
static inline uint32_t ll_func_isenabled_interrupt_alarm(RTC_TypeDef *rtc) |
|
{ |
|
#if defined(CONFIG_SOC_SERIES_STM32F1X) |
|
return LL_RTC_IsEnabledIT_ALR(rtc); |
|
#else |
|
return LL_RTC_IsEnabledIT_ALRA(rtc); |
|
#endif |
|
} |
|
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */ |
|
|
|
static inline void ll_func_enable_alarm(RTC_TypeDef *rtc) |
|
{ |
|
#if defined(CONFIG_SOC_SERIES_STM32F1X) |
|
ARG_UNUSED(rtc); |
|
#else |
|
LL_RTC_ALMA_Enable(rtc); |
|
#endif |
|
} |
|
|
|
static inline void ll_func_disable_alarm(RTC_TypeDef *rtc) |
|
{ |
|
#if defined(CONFIG_SOC_SERIES_STM32F1X) |
|
ARG_UNUSED(rtc); |
|
#else |
|
LL_RTC_ALMA_Disable(rtc); |
|
#endif |
|
} |
|
|
|
static void rtc_stm32_irq_config(const struct device *dev); |
|
|
|
|
|
static int rtc_stm32_start(const struct device *dev) |
|
{ |
|
#if defined(CONFIG_SOC_SERIES_STM32WBAX) || defined(CONFIG_SOC_SERIES_STM32U5X) |
|
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); |
|
const struct rtc_stm32_config *cfg = dev->config; |
|
|
|
/* Enable RTC bus clock */ |
|
if (clock_control_on(clk, (clock_control_subsys_t) &cfg->pclken[0]) != 0) { |
|
LOG_ERR("RTC clock enabling failed\n"); |
|
return -EIO; |
|
} |
|
#else |
|
ARG_UNUSED(dev); |
|
|
|
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY); |
|
LL_RCC_EnableRTC(); |
|
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID); |
|
#endif |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static int rtc_stm32_stop(const struct device *dev) |
|
{ |
|
#if defined(CONFIG_SOC_SERIES_STM32WBAX) || defined(CONFIG_SOC_SERIES_STM32U5X) |
|
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); |
|
const struct rtc_stm32_config *cfg = dev->config; |
|
|
|
/* Disable RTC bus clock */ |
|
if (clock_control_off(clk, (clock_control_subsys_t) &cfg->pclken[0]) != 0) { |
|
LOG_ERR("RTC clock disabling failed\n"); |
|
return -EIO; |
|
} |
|
#else |
|
ARG_UNUSED(dev); |
|
|
|
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY); |
|
LL_RCC_DisableRTC(); |
|
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID); |
|
#endif |
|
|
|
return 0; |
|
} |
|
|
|
#if !defined(COUNTER_NO_DATE) |
|
tick_t rtc_stm32_read(const struct device *dev) |
|
{ |
|
struct tm now = { 0 }; |
|
time_t ts; |
|
uint32_t rtc_date, rtc_time; |
|
tick_t ticks; |
|
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS |
|
uint32_t rtc_subseconds; |
|
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */ |
|
ARG_UNUSED(dev); |
|
|
|
/* Enable Backup access */ |
|
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || \ |
|
defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP) |
|
LL_PWR_EnableBkUpAccess(); |
|
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ |
|
|
|
/* Read time and date registers. Make sure value of the previous register |
|
* hasn't been changed while reading the next one. |
|
*/ |
|
do { |
|
rtc_date = LL_RTC_DATE_Get(RTC); |
|
|
|
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS |
|
do { |
|
rtc_time = LL_RTC_TIME_Get(RTC); |
|
rtc_subseconds = LL_RTC_TIME_GetSubSecond(RTC); |
|
} while (rtc_time != LL_RTC_TIME_Get(RTC)); |
|
#else /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */ |
|
rtc_time = LL_RTC_TIME_Get(RTC); |
|
#endif |
|
|
|
} while (rtc_date != LL_RTC_DATE_Get(RTC)); |
|
|
|
/* Convert calendar datetime to UNIX timestamp */ |
|
/* RTC start time: 1st, Jan, 2000 */ |
|
/* time_t start: 1st, Jan, 1970 */ |
|
now.tm_year = 100 + |
|
__LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_YEAR(rtc_date)); |
|
/* tm_mon allowed values are 0-11 */ |
|
now.tm_mon = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_MONTH(rtc_date)) - 1; |
|
now.tm_mday = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_DAY(rtc_date)); |
|
|
|
now.tm_hour = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_HOUR(rtc_time)); |
|
now.tm_min = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_MINUTE(rtc_time)); |
|
now.tm_sec = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_SECOND(rtc_time)); |
|
|
|
ts = timeutil_timegm(&now); |
|
|
|
/* Return number of seconds since RTC init */ |
|
ts -= T_TIME_OFFSET; |
|
|
|
__ASSERT(sizeof(time_t) == 8, "unexpected time_t definition"); |
|
|
|
ticks = ts * counter_get_frequency(dev); |
|
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS |
|
/* The RTC counts up, except for the subsecond register which counts |
|
* down starting from the sync prescaler value. Add already counted |
|
* ticks. |
|
*/ |
|
ticks += RTC_SYNCPRE - rtc_subseconds; |
|
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */ |
|
|
|
return ticks; |
|
} |
|
#else /* defined(COUNTER_NO_DATE) */ |
|
tick_t rtc_stm32_read(const struct device *dev) |
|
{ |
|
uint32_t rtc_time, ticks; |
|
|
|
ARG_UNUSED(dev); |
|
|
|
/* Enable Backup access */ |
|
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || \ |
|
defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP) |
|
LL_PWR_EnableBkUpAccess(); |
|
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ |
|
|
|
rtc_time = LL_RTC_TIME_Get(RTC); |
|
|
|
ticks = rtc_time; |
|
|
|
return ticks; |
|
} |
|
#endif /* !defined(COUNTER_NO_DATE) */ |
|
|
|
static int rtc_stm32_get_value(const struct device *dev, uint32_t *ticks) |
|
{ |
|
*ticks = (uint32_t)rtc_stm32_read(dev); |
|
return 0; |
|
} |
|
|
|
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS |
|
static int rtc_stm32_get_value_64(const struct device *dev, uint64_t *ticks) |
|
{ |
|
*ticks = rtc_stm32_read(dev); |
|
return 0; |
|
} |
|
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */ |
|
|
|
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS |
|
static void rtc_stm32_set_int_pending(void) |
|
{ |
|
NVIC_SetPendingIRQ(DT_INST_IRQN(0)); |
|
} |
|
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */ |
|
|
|
static int rtc_stm32_set_alarm(const struct device *dev, uint8_t chan_id, |
|
const struct counter_alarm_cfg *alarm_cfg) |
|
{ |
|
#if !defined(COUNTER_NO_DATE) |
|
struct tm alarm_tm; |
|
time_t alarm_val_s; |
|
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS |
|
uint32_t alarm_val_ss; |
|
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */ |
|
#else |
|
uint32_t remain; |
|
#endif |
|
LL_RTC_AlarmTypeDef rtc_alarm; |
|
struct rtc_stm32_data *data = dev->data; |
|
|
|
tick_t now = rtc_stm32_read(dev); |
|
tick_t ticks = alarm_cfg->ticks; |
|
|
|
if (data->callback != NULL) { |
|
LOG_DBG("Alarm busy\n"); |
|
return -EBUSY; |
|
} |
|
|
|
|
|
data->callback = alarm_cfg->callback; |
|
data->user_data = alarm_cfg->user_data; |
|
|
|
#if !defined(COUNTER_NO_DATE) |
|
if ((alarm_cfg->flags & COUNTER_ALARM_CFG_ABSOLUTE) == 0) { |
|
/* Add +1 in order to compensate the partially started tick. |
|
* Alarm will expire between requested ticks and ticks+1. |
|
* In case only 1 tick is requested, it will avoid |
|
* that tick+1 event occurs before alarm setting is finished. |
|
*/ |
|
ticks += now + 1; |
|
alarm_val_s = (time_t)(ticks / counter_get_frequency(dev)) + T_TIME_OFFSET; |
|
} else { |
|
alarm_val_s = (time_t)(ticks / counter_get_frequency(dev)); |
|
} |
|
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS |
|
alarm_val_ss = ticks % counter_get_frequency(dev); |
|
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */ |
|
|
|
#else |
|
if ((alarm_cfg->flags & COUNTER_ALARM_CFG_ABSOLUTE) == 0) { |
|
remain = ticks + now + 1; |
|
} else { |
|
remain = ticks; |
|
} |
|
|
|
/* In F1X, an interrupt occurs when the counter expires, |
|
* not when the counter matches, so set -1 |
|
*/ |
|
remain--; |
|
#endif |
|
|
|
#if !defined(COUNTER_NO_DATE) |
|
#ifndef CONFIG_COUNTER_RTC_STM32_SUBSECONDS |
|
LOG_DBG("Set Alarm: %d\n", ticks); |
|
#else /* !CONFIG_COUNTER_RTC_STM32_SUBSECONDS */ |
|
LOG_DBG("Set Alarm: %llu\n", ticks); |
|
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */ |
|
|
|
gmtime_r(&alarm_val_s, &alarm_tm); |
|
|
|
/* Apply ALARM_A */ |
|
rtc_alarm.AlarmTime.TimeFormat = LL_RTC_TIME_FORMAT_AM_OR_24; |
|
rtc_alarm.AlarmTime.Hours = alarm_tm.tm_hour; |
|
rtc_alarm.AlarmTime.Minutes = alarm_tm.tm_min; |
|
rtc_alarm.AlarmTime.Seconds = alarm_tm.tm_sec; |
|
|
|
rtc_alarm.AlarmMask = LL_RTC_ALMA_MASK_NONE; |
|
rtc_alarm.AlarmDateWeekDaySel = LL_RTC_ALMA_DATEWEEKDAYSEL_DATE; |
|
rtc_alarm.AlarmDateWeekDay = alarm_tm.tm_mday; |
|
#else |
|
rtc_alarm.AlarmTime.Hours = remain / 3600; |
|
remain -= rtc_alarm.AlarmTime.Hours * 3600; |
|
rtc_alarm.AlarmTime.Minutes = remain / 60; |
|
remain -= rtc_alarm.AlarmTime.Minutes * 60; |
|
rtc_alarm.AlarmTime.Seconds = remain; |
|
#endif |
|
|
|
LL_RTC_DisableWriteProtection(RTC); |
|
ll_func_disable_alarm(RTC); |
|
LL_RTC_EnableWriteProtection(RTC); |
|
|
|
if (ll_func_init_alarm(RTC, LL_RTC_FORMAT_BIN, &rtc_alarm) != SUCCESS) { |
|
return -EIO; |
|
} |
|
|
|
LL_RTC_DisableWriteProtection(RTC); |
|
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS |
|
/* Care about all bits of the subsecond register */ |
|
LL_RTC_ALMA_SetSubSecondMask(RTC, 0xF); |
|
LL_RTC_ALMA_SetSubSecond(RTC, RTC_SYNCPRE - alarm_val_ss); |
|
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */ |
|
ll_func_enable_alarm(RTC); |
|
ll_func_clear_alarm_flag(RTC); |
|
ll_func_enable_interrupt_alarm(RTC); |
|
LL_RTC_EnableWriteProtection(RTC); |
|
|
|
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS |
|
/* The reference manual says: |
|
* "Each change of the RTC_CR register is taken into account after |
|
* 1 to 2 RTCCLK clock cycles due to clock synchronization." |
|
* It means we need at least two cycles after programming the CR |
|
* register. It is confirmed experimentally. |
|
* |
|
* It should happen only if one tick alarm is requested and a tick |
|
* occurs while processing the function. Trigger the irq manually in |
|
* this case. |
|
*/ |
|
now = rtc_stm32_read(dev); |
|
if ((ticks - now < 2) || (now > ticks)) { |
|
data->irq_on_late = 1; |
|
rtc_stm32_set_int_pending(); |
|
} |
|
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */ |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static int rtc_stm32_cancel_alarm(const struct device *dev, uint8_t chan_id) |
|
{ |
|
struct rtc_stm32_data *data = dev->data; |
|
|
|
LL_RTC_DisableWriteProtection(RTC); |
|
ll_func_clear_alarm_flag(RTC); |
|
ll_func_disable_interrupt_alarm(RTC); |
|
ll_func_disable_alarm(RTC); |
|
LL_RTC_EnableWriteProtection(RTC); |
|
|
|
data->callback = NULL; |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static uint32_t rtc_stm32_get_pending_int(const struct device *dev) |
|
{ |
|
return ll_func_is_active_alarm(RTC) != 0; |
|
} |
|
|
|
|
|
static uint32_t rtc_stm32_get_top_value(const struct device *dev) |
|
{ |
|
const struct counter_config_info *info = dev->config; |
|
|
|
return info->max_top_value; |
|
} |
|
|
|
|
|
static int rtc_stm32_set_top_value(const struct device *dev, |
|
const struct counter_top_cfg *cfg) |
|
{ |
|
const struct counter_config_info *info = dev->config; |
|
|
|
if ((cfg->ticks != info->max_top_value) || |
|
!(cfg->flags & COUNTER_TOP_CFG_DONT_RESET)) { |
|
return -ENOTSUP; |
|
} else { |
|
return 0; |
|
} |
|
|
|
|
|
} |
|
|
|
void rtc_stm32_isr(const struct device *dev) |
|
{ |
|
struct rtc_stm32_data *data = dev->data; |
|
counter_alarm_callback_t alarm_callback = data->callback; |
|
|
|
uint32_t now = rtc_stm32_read(dev); |
|
|
|
if (ll_func_is_active_alarm(RTC) != 0 |
|
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS |
|
|| (data->irq_on_late && ll_func_isenabled_interrupt_alarm(RTC)) |
|
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */ |
|
) { |
|
|
|
LL_RTC_DisableWriteProtection(RTC); |
|
ll_func_clear_alarm_flag(RTC); |
|
ll_func_disable_interrupt_alarm(RTC); |
|
ll_func_disable_alarm(RTC); |
|
LL_RTC_EnableWriteProtection(RTC); |
|
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS |
|
data->irq_on_late = 0; |
|
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */ |
|
|
|
if (alarm_callback != NULL) { |
|
data->callback = NULL; |
|
alarm_callback(dev, 0, now, data->user_data); |
|
} |
|
} |
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32H7X) && defined(CONFIG_CPU_CORTEX_M4) |
|
LL_C2_EXTI_ClearFlag_0_31(RTC_EXTI_LINE); |
|
#elif defined(CONFIG_SOC_SERIES_STM32C0X) \ |
|
|| defined(CONFIG_SOC_SERIES_STM32G0X) \ |
|
|| defined(CONFIG_SOC_SERIES_STM32L5X) \ |
|
|| defined(CONFIG_SOC_SERIES_STM32H5X) |
|
LL_EXTI_ClearRisingFlag_0_31(RTC_EXTI_LINE); |
|
#elif defined(CONFIG_SOC_SERIES_STM32U5X) || defined(CONFIG_SOC_SERIES_STM32WBAX) |
|
/* in STM32U5 family RTC is not connected to EXTI */ |
|
#else |
|
LL_EXTI_ClearFlag_0_31(RTC_EXTI_LINE); |
|
#endif |
|
} |
|
|
|
|
|
static int rtc_stm32_init(const struct device *dev) |
|
{ |
|
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); |
|
const struct rtc_stm32_config *cfg = dev->config; |
|
struct rtc_stm32_data *data = dev->data; |
|
|
|
data->callback = NULL; |
|
|
|
if (!device_is_ready(clk)) { |
|
LOG_ERR("clock control device not ready"); |
|
return -ENODEV; |
|
} |
|
|
|
/* Enable RTC bus clock */ |
|
if (clock_control_on(clk, (clock_control_subsys_t) &cfg->pclken[0]) != 0) { |
|
LOG_ERR("clock op failed\n"); |
|
return -EIO; |
|
} |
|
|
|
/* Enable Backup access */ |
|
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY); |
|
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || \ |
|
defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP) |
|
LL_PWR_EnableBkUpAccess(); |
|
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ |
|
|
|
/* Enable RTC clock source */ |
|
if (clock_control_configure(clk, |
|
(clock_control_subsys_t) &cfg->pclken[1], |
|
NULL) != 0) { |
|
LOG_ERR("clock configure failed\n"); |
|
return -EIO; |
|
} |
|
|
|
#if !defined(CONFIG_SOC_SERIES_STM32WBAX) |
|
LL_RCC_EnableRTC(); |
|
#endif |
|
|
|
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID); |
|
|
|
#if !defined(CONFIG_COUNTER_RTC_STM32_SAVE_VALUE_BETWEEN_RESETS) |
|
if (LL_RTC_DeInit(RTC) != SUCCESS) { |
|
return -EIO; |
|
} |
|
#endif |
|
|
|
if (LL_RTC_Init(RTC, ((LL_RTC_InitTypeDef *) |
|
&cfg->ll_rtc_config)) != SUCCESS) { |
|
return -EIO; |
|
} |
|
|
|
#ifdef RTC_CR_BYPSHAD |
|
LL_RTC_DisableWriteProtection(RTC); |
|
LL_RTC_EnableShadowRegBypass(RTC); |
|
LL_RTC_EnableWriteProtection(RTC); |
|
#endif /* RTC_CR_BYPSHAD */ |
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32H7X) && defined(CONFIG_CPU_CORTEX_M4) |
|
LL_C2_EXTI_EnableIT_0_31(RTC_EXTI_LINE); |
|
LL_EXTI_EnableRisingTrig_0_31(RTC_EXTI_LINE); |
|
#elif defined(CONFIG_SOC_SERIES_STM32U5X) || defined(CONFIG_SOC_SERIES_STM32WBAX) |
|
/* in STM32U5 family RTC is not connected to EXTI */ |
|
#else |
|
LL_EXTI_EnableIT_0_31(RTC_EXTI_LINE); |
|
LL_EXTI_EnableRisingTrig_0_31(RTC_EXTI_LINE); |
|
#endif |
|
|
|
rtc_stm32_irq_config(dev); |
|
|
|
return 0; |
|
} |
|
|
|
static struct rtc_stm32_data rtc_data; |
|
|
|
#if DT_INST_NUM_CLOCKS(0) == 1 |
|
#warning STM32 RTC needs a kernel source clock. Please define it in dts file |
|
static const struct stm32_pclken rtc_clk[] = { |
|
STM32_CLOCK_INFO(0, DT_DRV_INST(0)), |
|
/* Use Kconfig to configure source clocks fields (Deprecated) */ |
|
/* Fortunately, values are consistent across enabled series */ |
|
#ifdef CONFIG_COUNTER_RTC_STM32_CLOCK_LSE |
|
{.bus = STM32_SRC_LSE, .enr = RTC_SEL(1)} |
|
#else |
|
{.bus = STM32_SRC_LSI, .enr = RTC_SEL(2)} |
|
#endif |
|
}; |
|
#else |
|
static const struct stm32_pclken rtc_clk[] = STM32_DT_INST_CLOCKS(0); |
|
#endif |
|
|
|
static const struct rtc_stm32_config rtc_config = { |
|
.counter_info = { |
|
.max_top_value = UINT32_MAX, |
|
#ifndef CONFIG_COUNTER_RTC_STM32_SUBSECONDS |
|
/* freq = 1Hz for not subsec based driver */ |
|
.freq = RTCCLK_FREQ / ((RTC_ASYNCPRE + 1) * (RTC_SYNCPRE + 1)), |
|
#else /* !CONFIG_COUNTER_RTC_STM32_SUBSECONDS */ |
|
.freq = RTCCLK_FREQ / (RTC_ASYNCPRE + 1), |
|
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */ |
|
.flags = COUNTER_CONFIG_INFO_COUNT_UP, |
|
.channels = 1, |
|
}, |
|
.ll_rtc_config = { |
|
.AsynchPrescaler = RTC_ASYNCPRE, |
|
#if !defined(CONFIG_SOC_SERIES_STM32F1X) |
|
.HourFormat = LL_RTC_HOURFORMAT_24HOUR, |
|
.SynchPrescaler = RTC_SYNCPRE, |
|
#else /* CONFIG_SOC_SERIES_STM32F1X */ |
|
.OutPutSource = LL_RTC_CALIB_OUTPUT_NONE, |
|
#endif /* CONFIG_SOC_SERIES_STM32F1X */ |
|
}, |
|
.pclken = rtc_clk, |
|
}; |
|
|
|
#ifdef CONFIG_PM_DEVICE |
|
static int rtc_stm32_pm_action(const struct device *dev, |
|
enum pm_device_action action) |
|
{ |
|
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); |
|
const struct rtc_stm32_config *cfg = dev->config; |
|
|
|
switch (action) { |
|
case PM_DEVICE_ACTION_RESUME: |
|
/* Enable RTC bus clock */ |
|
if (clock_control_on(clk, (clock_control_subsys_t) &cfg->pclken[0]) != 0) { |
|
LOG_ERR("clock op failed\n"); |
|
return -EIO; |
|
} |
|
break; |
|
case PM_DEVICE_ACTION_SUSPEND: |
|
break; |
|
default: |
|
return -ENOTSUP; |
|
} |
|
|
|
return 0; |
|
} |
|
#endif /* CONFIG_PM_DEVICE */ |
|
|
|
static const struct counter_driver_api rtc_stm32_driver_api = { |
|
.start = rtc_stm32_start, |
|
.stop = rtc_stm32_stop, |
|
.get_value = rtc_stm32_get_value, |
|
#ifdef CONFIG_COUNTER_RTC_STM32_SUBSECONDS |
|
.get_value_64 = rtc_stm32_get_value_64, |
|
#endif /* CONFIG_COUNTER_RTC_STM32_SUBSECONDS */ |
|
.set_alarm = rtc_stm32_set_alarm, |
|
.cancel_alarm = rtc_stm32_cancel_alarm, |
|
.set_top_value = rtc_stm32_set_top_value, |
|
.get_pending_int = rtc_stm32_get_pending_int, |
|
.get_top_value = rtc_stm32_get_top_value, |
|
}; |
|
|
|
PM_DEVICE_DT_INST_DEFINE(0, rtc_stm32_pm_action); |
|
|
|
DEVICE_DT_INST_DEFINE(0, &rtc_stm32_init, PM_DEVICE_DT_INST_GET(0), |
|
&rtc_data, &rtc_config, PRE_KERNEL_1, |
|
CONFIG_COUNTER_INIT_PRIORITY, &rtc_stm32_driver_api); |
|
|
|
static void rtc_stm32_irq_config(const struct device *dev) |
|
{ |
|
IRQ_CONNECT(DT_INST_IRQN(0), |
|
DT_INST_IRQ(0, priority), |
|
rtc_stm32_isr, DEVICE_DT_INST_GET(0), 0); |
|
irq_enable(DT_INST_IRQN(0)); |
|
}
|
|
|