Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1085 lines
34 KiB

/*
* Copyright 2024 Ambiq Micro Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <soc.h>
#include <string.h>
#include <zephyr/drivers/clock_control/clock_control_ambiq.h>
#include <zephyr/sys/util.h>
#include <zephyr/kernel.h>
#include <zephyr/drivers/usb/udc.h>
#include <zephyr/sys/util.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/cache.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
#include "udc_common.h"
LOG_MODULE_REGISTER(udc_ambiq, CONFIG_UDC_DRIVER_LOG_LEVEL);
enum udc_ambiq_event_type {
/* SETUP packet received at Control Endpoint */
UDC_AMBIQ_EVT_HAL_SETUP,
/* OUT transaction completed */
UDC_AMBIQ_EVT_HAL_OUT_CMP,
/* IN transaction completed */
UDC_AMBIQ_EVT_HAL_IN_CMP,
/* Xfer request received via udc_ambiq_ep_enqueue API */
UDC_AMBIQ_EVT_XFER,
};
struct udc_ambiq_event {
const struct device *dev;
enum udc_ambiq_event_type type;
uint8_t ep;
};
K_MSGQ_DEFINE(drv_msgq, sizeof(struct udc_ambiq_event), CONFIG_UDC_AMBIQ_MAX_QMESSAGES,
sizeof(void *));
/* USB device controller access from devicetree */
#define DT_DRV_COMPAT ambiq_usb
#define EP0_MPS 64U
#define EP_FS_MPS 64U
#define EP_HS_MPS 512U
struct udc_ambiq_data {
struct k_thread thread_data;
void *usb_handle;
am_hal_usb_dev_speed_e usb_speed;
uint8_t setup[8];
uint8_t ctrl_pending_setup_buffer[8];
bool ctrl_pending_in_ack;
bool ctrl_pending_setup;
bool ctrl_setup_recv_at_status_in;
};
struct udc_ambiq_config {
uint32_t num_endpoints;
int speed_idx;
struct udc_ep_config *ep_cfg_in;
struct udc_ep_config *ep_cfg_out;
struct gpio_dt_spec vddusb33_gpio;
struct gpio_dt_spec vddusb0p9_gpio;
void (*make_thread)(const struct device *dev);
void (*irq_enable_func)(const struct device *dev);
void (*irq_disable_func)(const struct device *dev);
void (*callback_register_func)(const struct device *dev);
};
static int udc_ambiq_rx(const struct device *dev, uint8_t ep, struct net_buf *buf);
static int usbd_ctrl_feed_dout(const struct device *dev, const size_t length)
{
struct udc_ep_config *cfg = udc_get_ep_cfg(dev, USB_CONTROL_EP_OUT);
struct net_buf *buf;
buf = udc_ctrl_alloc(dev, USB_CONTROL_EP_OUT, length);
if (buf == NULL) {
return -ENOMEM;
}
k_fifo_put(&cfg->fifo, buf);
if (length) {
udc_ambiq_rx(dev, cfg->addr, buf);
}
return 0;
}
static int udc_ambiq_tx(const struct device *dev, uint8_t ep, struct net_buf *buf)
{
const struct udc_ambiq_data *priv = udc_get_private(dev);
struct udc_ep_config *cfg = udc_get_ep_cfg(dev, ep);
uint32_t status;
if (udc_ep_is_busy(cfg)) {
LOG_WRN("ep 0x%02x is busy!", ep);
return 0;
}
udc_ep_set_busy(cfg, true);
/* buf equals NULL is used as indication of ZLP request */
if (buf == NULL) {
status = am_hal_usb_ep_xfer(priv->usb_handle, ep, NULL, 0);
} else {
if (!IS_ENABLED(CONFIG_UDC_AMBIQ_PIO_MODE) && (ep != USB_CONTROL_EP_IN)) {
sys_cache_data_flush_range(buf->data, buf->size);
}
status = am_hal_usb_ep_xfer(priv->usb_handle, ep, buf->data, buf->len);
}
if (status != AM_HAL_STATUS_SUCCESS) {
udc_ep_set_busy(cfg, false);
LOG_ERR("am_hal_usb_ep_xfer write failed(0x%02x), %d", ep, (int)status);
return -EIO;
}
return 0;
}
static int udc_ambiq_rx(const struct device *dev, uint8_t ep, struct net_buf *buf)
{
struct udc_ambiq_data *priv = udc_get_private(dev);
struct udc_ep_config *ep_cfg = udc_get_ep_cfg(dev, ep);
uint32_t status;
uint16_t rx_size = buf->size;
if (udc_ep_is_busy(ep_cfg)) {
LOG_WRN("ep 0x%02x is busy!", ep);
return 0;
}
udc_ep_set_busy(ep_cfg, true);
/*
* Make sure that OUT transaction size triggered doesn't exceed EP's MPS,
* as the USB IP has no way to detect end on transaction when last packet
* is not a short packet. Except for UDC_AMBIQ_DMA1_MODE, where such
* detection is available.
*/
if (!IS_ENABLED(CONFIG_UDC_AMBIQ_DMA1_MODE) && (ep != USB_CONTROL_EP_OUT) &&
(ep_cfg->mps < rx_size)) {
rx_size = ep_cfg->mps;
}
/* Cache management if cache and DMA is enabled */
if (!IS_ENABLED(CONFIG_UDC_AMBIQ_PIO_MODE) && (ep != USB_CONTROL_EP_OUT)) {
sys_cache_data_invd_range(buf->data, buf->size);
}
status = am_hal_usb_ep_xfer(priv->usb_handle, ep, buf->data, rx_size);
if (status != AM_HAL_STATUS_SUCCESS) {
udc_ep_set_busy(ep_cfg, false);
LOG_ERR("am_hal_usb_ep_xfer read(rx) failed(0x%02x), %d", ep, (int)status);
return -EIO;
}
return 0;
}
static void udc_ambiq_evt_callback(const struct device *dev, am_hal_usb_dev_event_e dev_state)
{
struct udc_ambiq_data *priv = udc_get_private(dev);
switch (dev_state) {
case AM_HAL_USB_DEV_EVT_BUS_RESET:
/* enable usb bus interrupts */
am_hal_usb_intr_usb_enable(priv->usb_handle,
IF_ENABLED(CONFIG_UDC_ENABLE_SOF, (USB_CFG2_SOFE_Msk |))
USB_CFG2_ResumeE_Msk |
USB_CFG2_SuspendE_Msk | USB_CFG2_ResetE_Msk);
/* init the endpoint */
am_hal_usb_ep_init(priv->usb_handle, 0, 0, EP0_MPS);
/* Set USB device speed to HAL */
am_hal_usb_set_dev_speed(priv->usb_handle, priv->usb_speed);
LOG_INF("USB Reset event");
/* Submit USB reset event to UDC */
udc_submit_event(dev, UDC_EVT_RESET, 0);
break;
case AM_HAL_USB_DEV_EVT_RESUME:
/* Handle USB Resume event, then set device state to active */
am_hal_usb_set_dev_state(priv->usb_handle, AM_HAL_USB_DEV_STATE_ACTIVE);
LOG_INF("RESUMING from suspend");
udc_set_suspended(dev, false);
udc_submit_event(dev, UDC_EVT_RESUME, 0);
break;
case AM_HAL_USB_DEV_EVT_SOF:
udc_submit_sof_event(dev);
break;
case AM_HAL_USB_DEV_EVT_SUSPEND:
/* Handle USB Suspend event, then set device state to suspended */
am_hal_usb_set_dev_state(priv->usb_handle, AM_HAL_USB_DEV_STATE_SUSPENDED);
udc_set_suspended(dev, true);
udc_submit_event(dev, UDC_EVT_SUSPEND, 0);
break;
default:
/* Unreachable case */
break;
}
}
static void udc_ambiq_ep0_setup_callback(const struct device *dev, uint8_t *usb_setup)
{
struct udc_ambiq_event evt = {.type = UDC_AMBIQ_EVT_HAL_SETUP};
struct udc_ambiq_data *priv = udc_get_private(dev);
/* Defer Setup Packet that arrives when we are waiting for
* status stage for OUT data control transfer to be completed
*/
if (priv->ctrl_pending_in_ack) {
priv->ctrl_pending_setup = true;
memcpy(priv->ctrl_pending_setup_buffer, usb_setup, 8);
return;
}
/* Check whether we received SETUP packet during OUT_ACK (a.k.a STATUS_IN)
* state. If so, it might be inversion caused by register reading sequence.
* Raise flag accordingly and handle later.
*/
priv->ctrl_setup_recv_at_status_in = udc_ctrl_stage_is_status_in(dev);
memcpy(priv->setup, usb_setup, sizeof(struct usb_setup_packet));
k_msgq_put(&drv_msgq, &evt, K_NO_WAIT);
}
static void udc_ambiq_ep_xfer_complete_callback(const struct device *dev, uint8_t ep_addr,
uint32_t xfer_len, am_hal_usb_xfer_code_e code,
void *param)
{
struct net_buf *buf;
struct udc_ambiq_event evt;
/* Extract EP information and queue event */
evt.ep = ep_addr;
if (USB_EP_DIR_IS_IN(ep_addr)) {
evt.type = UDC_AMBIQ_EVT_HAL_IN_CMP;
} else {
struct udc_ep_config *ep_cfg = udc_get_ep_cfg(dev, ep_addr);
buf = udc_buf_peek(ep_cfg);
if (buf == NULL) {
LOG_ERR("No buffer for ep 0x%02x", ep_addr);
udc_submit_event(dev, UDC_EVT_ERROR, -ENOBUFS);
return;
}
net_buf_add(buf, xfer_len);
evt.type = UDC_AMBIQ_EVT_HAL_OUT_CMP;
}
k_msgq_put(&drv_msgq, &evt, K_NO_WAIT);
}
static enum udc_bus_speed udc_ambiq_device_speed(const struct device *dev)
{
struct udc_ambiq_data *priv = udc_get_private(dev);
am_hal_usb_dev_speed_e e_speed = am_hal_get_usb_dev_speed(priv->usb_handle);
if (e_speed == AM_HAL_USB_SPEED_HIGH) {
return UDC_BUS_SPEED_HS;
} else {
return UDC_BUS_SPEED_FS;
}
}
static int udc_ambiq_ep_enqueue(const struct device *dev, struct udc_ep_config *ep_cfg,
struct net_buf *buf)
{
struct udc_ambiq_data *priv = udc_get_private(dev);
struct udc_ambiq_event evt = {
.ep = ep_cfg->addr,
.type = UDC_AMBIQ_EVT_XFER,
};
LOG_DBG("%p enqueue %x %p", dev, ep_cfg->addr, buf);
udc_buf_put(ep_cfg, buf);
if (ep_cfg->addr == USB_CONTROL_EP_IN && buf->len == 0 && priv->ctrl_pending_in_ack) {
priv->ctrl_pending_in_ack = false;
udc_ambiq_ep_xfer_complete_callback(dev, USB_CONTROL_EP_IN, 0, 0, NULL);
return 0;
}
if (!ep_cfg->stat.halted) {
k_msgq_put(&drv_msgq, &evt, K_NO_WAIT);
}
return 0;
}
static int udc_ambiq_ep_dequeue(const struct device *dev, struct udc_ep_config *ep_cfg)
{
unsigned int lock_key;
struct udc_ambiq_data *priv = udc_get_private(dev);
struct net_buf *buf;
lock_key = irq_lock();
buf = udc_buf_get_all(ep_cfg);
if (buf) {
udc_submit_ep_event(dev, buf, -ECONNABORTED);
}
udc_ep_set_busy(ep_cfg, false);
am_hal_usb_ep_state_reset(priv->usb_handle, ep_cfg->addr);
irq_unlock(lock_key);
LOG_DBG("dequeue ep 0x%02x", ep_cfg->addr);
return 0;
}
static int udc_ambiq_ep_set_halt(const struct device *dev, struct udc_ep_config *ep_cfg)
{
struct udc_ambiq_data *priv = udc_get_private(dev);
LOG_DBG("Halt ep 0x%02x", ep_cfg->addr);
am_hal_usb_ep_stall(priv->usb_handle, ep_cfg->addr);
if (USB_EP_GET_IDX(ep_cfg->addr)) {
ep_cfg->stat.halted = true;
}
return 0;
}
static int udc_ambiq_ep_clear_halt(const struct device *dev, struct udc_ep_config *ep_cfg)
{
struct udc_ambiq_data *priv = udc_get_private(dev);
LOG_DBG("Clear halt ep 0x%02x", ep_cfg->addr);
am_hal_usb_ep_clear_stall(priv->usb_handle, ep_cfg->addr);
ep_cfg->stat.halted = false;
/* Resume queued transfer if any */
if (udc_buf_peek(ep_cfg)) {
struct udc_ambiq_event evt = {
.ep = ep_cfg->addr,
.type = UDC_AMBIQ_EVT_XFER,
};
k_msgq_put(&drv_msgq, &evt, K_NO_WAIT);
}
return 0;
}
static int udc_ambiq_ep_enable(const struct device *dev, struct udc_ep_config *ep_cfg)
{
struct udc_ambiq_data *priv = udc_get_private(dev);
uint8_t endpoint_type;
uint32_t status;
__ASSERT_NO_MSG(ep_cfg);
switch (ep_cfg->attributes) {
case USB_EP_TYPE_CONTROL:
endpoint_type = 0; /* AM_HAL_USB_EP_XFER_CONTROL */
break;
case USB_EP_TYPE_ISO:
endpoint_type = 1; /* AM_HAL_USB_EP_XFER_ISOCHRONOUS */
break;
case USB_EP_TYPE_BULK:
endpoint_type = 2; /* AM_HAL_USB_EP_XFER_BULK */
break;
case USB_EP_TYPE_INTERRUPT:
endpoint_type = 3; /* AM_HAL_USB_EP_XFER_INTERRUPT */
break;
default:
return -EINVAL;
}
status = am_hal_usb_ep_init(priv->usb_handle, ep_cfg->addr, endpoint_type, ep_cfg->mps);
if (status != AM_HAL_STATUS_SUCCESS) {
LOG_ERR("am_hal_usb_ep_init failed(0x%02x), %d", ep_cfg->addr, (int)status);
return -EIO;
}
LOG_DBG("Enable ep 0x%02x", ep_cfg->addr);
return 0;
}
static int udc_ambiq_ep_disable(const struct device *dev, struct udc_ep_config *ep_cfg)
{
struct udc_ambiq_data *priv = udc_get_private(dev);
__ASSERT_NO_MSG(ep_cfg);
am_hal_usb_ep_state_reset(priv->usb_handle, ep_cfg->addr);
LOG_DBG("Disable ep 0x%02x", ep_cfg->addr);
return 0;
}
static int udc_ambiq_host_wakeup(const struct device *dev)
{
struct udc_ambiq_data *priv = udc_get_private(dev);
am_hal_usb_start_remote_wakeup(priv->usb_handle);
return 0;
}
static int udc_ambiq_set_address(const struct device *dev, const uint8_t addr)
{
struct udc_ambiq_data *priv = udc_get_private(dev);
LOG_DBG("addr %u (0x%02x)", addr, addr);
am_hal_usb_set_addr(priv->usb_handle, addr);
am_hal_usb_set_dev_state(priv->usb_handle, AM_HAL_USB_DEV_STATE_ADDRESSED);
return 0;
}
static int udc_ambiq_test_mode(const struct device *dev, const uint8_t mode, const bool dryrun)
{
am_hal_usb_test_mode_e am_usb_test_mode;
struct udc_ambiq_data *priv = udc_get_private(dev);
switch (mode) {
case USB_SFS_TEST_MODE_J:
am_usb_test_mode = AM_HAL_USB_TEST_J;
break;
case USB_SFS_TEST_MODE_K:
am_usb_test_mode = AM_HAL_USB_TEST_K;
break;
case USB_SFS_TEST_MODE_SE0_NAK:
am_usb_test_mode = AM_HAL_USB_TEST_SE0_NAK;
break;
case USB_SFS_TEST_MODE_PACKET:
am_usb_test_mode = AM_HAL_USB_TEST_PACKET;
break;
default:
return -EINVAL;
}
if (dryrun) {
LOG_DBG("Test Mode %u supported", mode);
return 0;
}
am_hal_usb_enter_test_mode(priv->usb_handle);
am_hal_usb_test_mode(priv->usb_handle, am_usb_test_mode);
return 0;
}
static int udc_ambiq_enable(const struct device *dev)
{
struct udc_ambiq_data *priv = udc_get_private(dev);
/* USB soft connect */
am_hal_usb_attach(priv->usb_handle);
LOG_DBG("Enable UDC");
return 0;
}
static int udc_ambiq_disable(const struct device *dev)
{
unsigned int lock_key;
struct udc_ambiq_data *priv = udc_get_private(dev);
const struct udc_ambiq_config *cfg = dev->config;
/* Disable USB interrupt */
lock_key = irq_lock();
cfg->irq_disable_func(dev);
irq_unlock(lock_key);
/* Disable soft disconnect */
am_hal_usb_detach(priv->usb_handle);
am_hal_usb_intr_usb_disable(priv->usb_handle, USB_CFG2_SOFE_Msk | USB_CFG2_ResumeE_Msk |
USB_CFG2_SuspendE_Msk |
USB_CFG2_ResetE_Msk);
am_hal_usb_intr_usb_clear(priv->usb_handle);
for (unsigned int i = 0; i < cfg->num_endpoints; i++) {
am_hal_usb_ep_state_reset(priv->usb_handle, i);
am_hal_usb_ep_state_reset(priv->usb_handle, BIT(7) | i);
}
LOG_DBG("Disable UDC");
return 0;
}
static void udc_ambiq_usb_isr(const struct device *dev)
{
struct udc_ambiq_data *priv = udc_get_private(dev);
am_hal_usb_handle_isr(priv->usb_handle);
}
static int usb_power_rails_set(const struct device *dev, bool on)
{
int ret = 0;
const struct udc_ambiq_config *cfg = dev->config;
/* Check that both power control GPIO is defined */
if ((cfg->vddusb33_gpio.port == NULL) || (cfg->vddusb0p9_gpio.port == NULL)) {
LOG_WRN("vddusb control gpio not defined");
return -EINVAL;
}
/* Enable USB IO */
ret = gpio_pin_configure_dt(&cfg->vddusb33_gpio, GPIO_OUTPUT);
if (ret) {
return ret;
}
ret = gpio_pin_configure_dt(&cfg->vddusb0p9_gpio, GPIO_OUTPUT);
if (ret) {
return ret;
}
/* power rails set */
ret = gpio_pin_set_dt(&cfg->vddusb33_gpio, on);
if (ret) {
return ret;
}
ret = gpio_pin_set_dt(&cfg->vddusb0p9_gpio, on);
if (ret) {
return ret;
}
am_hal_delay_us(50000);
return 0;
}
#if CONFIG_SOC_SERIES_APOLLO5X
static int init_apollo5x(const struct udc_ambiq_data *priv)
{
uint32_t am_ret = AM_HAL_STATUS_SUCCESS;
am_hal_clkmgr_board_info_t board;
am_hal_usb_phyclksrc_e phyclksrc;
/* Decide PHY clock source according to USB speed and board configuration*/
am_hal_clkmgr_board_info_get(&board);
if (priv->usb_speed == AM_HAL_USB_SPEED_FULL) {
phyclksrc = AM_HAL_USB_PHYCLKSRC_HFRC_24M;
} else if (board.sXtalHs.ui32XtalHsFreq == 48000000) {
phyclksrc = AM_HAL_USB_PHYCLKSRC_XTAL_HS_DIV2;
} else if (board.sXtalHs.ui32XtalHsFreq == 24000000) {
phyclksrc = AM_HAL_USB_PHYCLKSRC_XTAL_HS;
} else if (board.ui32ExtRefClkFreq == 48000000) {
phyclksrc = AM_HAL_USB_PHYCLKSRC_EXTREFCLK;
} else if (board.ui32ExtRefClkFreq == 24000000) {
phyclksrc = AM_HAL_USB_PHYCLKSRC_EXTREFCLK_DIV2;
} else {
phyclksrc = AM_HAL_USB_PHYCLKSRC_PLL;
}
if (phyclksrc == AM_HAL_USB_PHYCLKSRC_PLL) {
am_ret = am_hal_clkmgr_clock_config(AM_HAL_CLKMGR_CLK_ID_SYSPLL, 24000000, NULL);
if (am_ret != AM_HAL_STATUS_SUCCESS) {
LOG_WRN("Unable to configure SYSPLL for USB. Fallback to HFRC clock "
"source");
phyclksrc = AM_HAL_USB_PHYCLKSRC_HFRC_24M;
}
}
am_hal_usb_set_phy_clk_source(priv->usb_handle, phyclksrc);
am_hal_usb_phy_clock_enable(priv->usb_handle, true, priv->usb_speed);
return 0;
}
#endif
#if CONFIG_UDC_AMBIQ_DEB_ENABLE
static void init_double_buffers(const struct udc_ambiq_data *priv)
{
uint32_t mask;
mask = CONFIG_UDC_AMBIQ_DEB_ENABLE & 0xFFFF;
while (mask) {
uint32_t ep = find_lsb_set(mask);
am_hal_usb_enable_ep_double_buffer(priv->usb_handle, ep, AM_HAL_USB_OUT_DIR, true);
mask &= ~(1U << (ep - 1));
}
mask = (CONFIG_UDC_AMBIQ_DEB_ENABLE >> 16) & 0xFFFF;
while (mask) {
uint32_t ep = find_lsb_set(mask);
am_hal_usb_enable_ep_double_buffer(priv->usb_handle, ep, AM_HAL_USB_IN_DIR, true);
mask &= ~(1U << (ep - 1));
}
}
#endif
static int udc_ambiq_init(const struct device *dev)
{
struct udc_ambiq_data *priv = udc_get_private(dev);
const struct udc_ambiq_config *cfg = dev->config;
uint32_t ret = 0;
/* Create USB */
if (am_hal_usb_initialize(0, (void *)&priv->usb_handle) != AM_HAL_STATUS_SUCCESS) {
return -EIO;
}
/* Register callback functions */
cfg->callback_register_func(dev);
/* enable internal power rail */
am_hal_usb_power_control(priv->usb_handle, AM_HAL_SYSCTRL_WAKE, false);
/* Assert USB PHY reset in MCU control registers */
am_hal_usb_enable_phy_reset_override();
/* Enable the USB power rails */
ret = usb_power_rails_set(dev, true);
if (ret) {
return ret;
}
/* Disable BC detection voltage source */
am_hal_usb_hardware_unreset();
/* Release USB PHY reset */
am_hal_usb_disable_phy_reset_override();
#if CONFIG_SOC_SERIES_APOLLO5X
ret = init_apollo5x(priv);
if (ret) {
return ret;
}
#endif
#if CONFIG_UDC_AMBIQ_DEB_ENABLE
init_double_buffers(priv);
#endif
/* Set USB Speed */
am_hal_usb_set_dev_speed(priv->usb_handle, priv->usb_speed);
/* Enable USB interrupt */
am_hal_usb_intr_usb_enable(priv->usb_handle, USB_INTRUSB_Reset_Msk);
/* Configure DMA Modes */
#if CONFIG_UDC_AMBIQ_DMA1_MODE
am_hal_usb_set_xfer_mode(priv->usb_handle, AM_HAL_USB_OUT_DMA_MODE_1);
am_hal_usb_set_xfer_mode(priv->usb_handle, AM_HAL_USB_IN_DMA_MODE_1);
#elif CONFIG_UDC_AMBIQ_DMA0_MODE
am_hal_usb_set_xfer_mode(priv->usb_handle, AM_HAL_USB_OUT_DMA_MODE_0);
am_hal_usb_set_xfer_mode(priv->usb_handle, AM_HAL_USB_IN_DMA_MODE_0);
#endif
/* Enable Control Endpoints */
if (udc_ep_enable_internal(dev, USB_CONTROL_EP_OUT, USB_EP_TYPE_CONTROL, EP0_MPS, 0)) {
LOG_ERR("Failed to enable control endpoint");
return -EIO;
}
if (udc_ep_enable_internal(dev, USB_CONTROL_EP_IN, USB_EP_TYPE_CONTROL, EP0_MPS, 0)) {
LOG_ERR("Failed to enable control endpoint");
return -EIO;
}
/* Connect and enable USB interrupt */
cfg->irq_enable_func(dev);
return 0;
}
static int udc_ambiq_shutdown(const struct device *dev)
{
struct udc_ambiq_data *priv = udc_get_private(dev);
const struct udc_ambiq_config *cfg = dev->config;
int ret = 0;
LOG_INF("shutdown");
/* Disable Control Endpoints */
if (udc_ep_disable_internal(dev, USB_CONTROL_EP_OUT)) {
LOG_ERR("Failed to disable control endpoint");
return -EIO;
}
if (udc_ep_disable_internal(dev, USB_CONTROL_EP_IN)) {
LOG_ERR("Failed to disable control endpoint");
return -EIO;
}
/* Disable USB interrupt */
cfg->irq_disable_func(dev);
/* Assert USB PHY reset */
am_hal_usb_enable_phy_reset_override();
#if CONFIG_SOC_SERIES_APOLLO5X
/* Release USB PHY Clock*/
am_hal_usb_phy_clock_enable(priv->usb_handle, false, priv->usb_speed);
#endif
/* Disable the USB power rails */
ret = usb_power_rails_set(dev, false);
if (ret) {
return ret;
}
/* Power down USB HAL */
am_hal_usb_power_control(priv->usb_handle, AM_HAL_SYSCTRL_DEEPSLEEP, false);
/* Deinitialize USB instance */
am_hal_usb_deinitialize(priv->usb_handle);
priv->usb_handle = NULL;
return 0;
}
static void udc_ambiq_lock(const struct device *dev)
{
udc_lock_internal(dev, K_FOREVER);
}
static void udc_ambiq_unlock(const struct device *dev)
{
udc_unlock_internal(dev);
}
static void ambiq_handle_evt_setup(const struct device *dev)
{
struct udc_ambiq_data *priv = udc_get_private(dev);
struct net_buf *buf;
int err;
/* Create network buffer for SETUP packet and pass into UDC framework */
buf = udc_ctrl_alloc(dev, USB_CONTROL_EP_OUT, sizeof(struct usb_setup_packet));
if (buf == NULL) {
LOG_ERR("Failed to allocate for setup");
return;
}
net_buf_add_mem(buf, priv->setup, sizeof(priv->setup));
udc_ep_buf_set_setup(buf);
LOG_HEXDUMP_DBG(buf->data, buf->len, "setup");
/* Update to next stage of control transfer */
udc_ctrl_update_stage(dev, buf);
if (udc_ctrl_stage_is_data_out(dev)) {
/* Allocate and feed buffer for data OUT stage */
LOG_DBG("s:%p|feed for -out-", buf);
err = usbd_ctrl_feed_dout(dev, udc_data_stage_length(buf));
priv->ctrl_pending_in_ack = true;
if (err == -ENOMEM) {
udc_submit_ep_event(dev, buf, err);
}
} else if (udc_ctrl_stage_is_data_in(dev)) {
/* Submit event for data IN stage */
LOG_DBG("s:%p|feed for -in-status", buf);
udc_ctrl_submit_s_in_status(dev);
} else {
/* Submit event for no-data stage */
LOG_DBG("s:%p|feed >setup", buf);
udc_ctrl_submit_s_status(dev);
}
}
static inline void ambiq_handle_evt_dout(const struct device *dev, struct udc_ep_config *const cfg)
{
struct net_buf *buf;
/* retrieve endpoint buffer */
buf = udc_buf_get(cfg);
if (buf == NULL) {
LOG_ERR("No buffer queued for control ep");
return;
}
/* Clear endpoint busy status */
udc_ep_set_busy(cfg, false);
/* Handle transfer complete event */
if (cfg->addr == USB_CONTROL_EP_OUT) {
if (udc_ctrl_stage_is_status_out(dev)) {
udc_ctrl_update_stage(dev, buf);
udc_ctrl_submit_status(dev, buf);
} else {
udc_ctrl_update_stage(dev, buf);
}
if (udc_ctrl_stage_is_status_in(dev)) {
udc_ctrl_submit_s_out_status(dev, buf);
}
} else {
udc_submit_ep_event(dev, buf, 0);
}
}
static void ambiq_handle_zlp_tx(const struct device *dev, struct udc_ep_config *const cfg)
{
udc_ambiq_tx(dev, cfg->addr, NULL);
}
static void ambiq_handle_evt_din(const struct device *dev, struct udc_ep_config *const cfg)
{
struct udc_ambiq_data *priv = udc_get_private(dev);
struct udc_data *data = dev->data;
struct net_buf *buf;
bool udc_ambiq_rx_status_in_completed = false;
/* Clear endpoint busy status */
udc_ep_set_busy(cfg, false);
/* Check and Handle ZLP flag */
buf = udc_buf_peek(cfg);
if (cfg->addr != USB_CONTROL_EP_IN) {
if (udc_ep_buf_has_zlp(buf)) {
udc_ep_buf_clear_zlp(buf);
udc_ambiq_tx(dev, cfg->addr, NULL);
ambiq_handle_zlp_tx(dev, cfg);
return;
}
}
/* retrieve endpoint buffer */
buf = udc_buf_get(cfg);
if (buf == NULL) {
LOG_ERR("No buffer queued for control ep");
return;
}
LOG_DBG("DataIn ep 0x%02x len %u", cfg->addr, buf->size);
/* Handle transfer complete event */
if (cfg->addr == USB_CONTROL_EP_IN) {
if (udc_ctrl_stage_is_status_in(dev) || udc_ctrl_stage_is_no_data(dev)) {
if (data->caps.out_ack == 0) {
/* Status stage finished, notify upper layer */
udc_ctrl_submit_status(dev, buf);
}
if (udc_ctrl_stage_is_status_in(dev)) {
udc_ambiq_rx_status_in_completed = true;
}
}
if (priv->ctrl_setup_recv_at_status_in && (buf->len == 0)) {
priv->ctrl_setup_recv_at_status_in = false;
net_buf_unref(buf);
return;
}
priv->ctrl_setup_recv_at_status_in = false;
/* Update to next stage of control transfer */
udc_ctrl_update_stage(dev, buf);
if (((data->caps.out_ack == false) && udc_ctrl_stage_is_status_out(dev)) ||
((data->caps.out_ack == true) && (data->stage == CTRL_PIPE_STAGE_SETUP))) {
/*
* IN transfer finished, release buffer,
* control OUT buffer should be already fed.
*/
net_buf_unref(buf);
}
/*
* Trigger deferred SETUP that was hold back if we are
* waiting for DATA_OUT status stage to be completed
*/
if (udc_ambiq_rx_status_in_completed && priv->ctrl_pending_setup) {
priv->ctrl_pending_setup = false;
udc_ambiq_ep0_setup_callback(dev, priv->ctrl_pending_setup_buffer);
}
} else {
udc_submit_ep_event(dev, buf, 0);
}
}
static void udc_event_xfer(const struct device *dev, struct udc_ep_config *const cfg)
{
struct net_buf *buf;
buf = udc_buf_peek(cfg);
if (buf == NULL) {
LOG_ERR("No buffer for ep 0x%02x", cfg->addr);
return;
}
if (USB_EP_DIR_IS_IN(cfg->addr)) {
udc_ambiq_tx(dev, cfg->addr, buf);
} else {
udc_ambiq_rx(dev, cfg->addr, buf);
}
}
static ALWAYS_INLINE void ambiq_thread_handler(void *const arg)
{
const struct device *dev = (const struct device *)arg;
struct udc_ep_config *ep_cfg;
struct udc_ambiq_event evt;
while (true) {
k_msgq_get(&drv_msgq, &evt, K_FOREVER);
ep_cfg = udc_get_ep_cfg(dev, evt.ep);
switch (evt.type) {
case UDC_AMBIQ_EVT_XFER:
udc_event_xfer(dev, ep_cfg);
break;
case UDC_AMBIQ_EVT_HAL_SETUP:
LOG_DBG("SETUP event");
ambiq_handle_evt_setup(dev);
break;
case UDC_AMBIQ_EVT_HAL_OUT_CMP:
LOG_DBG("DOUT event ep 0x%02x", ep_cfg->addr);
ambiq_handle_evt_dout(dev, ep_cfg);
break;
case UDC_AMBIQ_EVT_HAL_IN_CMP:
LOG_DBG("DIN event");
ambiq_handle_evt_din(dev, ep_cfg);
break;
default:
__ASSERT_NO_MSG(false);
break;
}
}
}
/*
* This is called once to initialize the controller and endpoints
* capabilities, and register endpoint structures.
*/
static int udc_ambiq_driver_init(const struct device *dev)
{
struct udc_ambiq_data *priv = udc_get_private(dev);
const struct udc_ambiq_config *cfg = dev->config;
struct udc_data *data = dev->data;
int ep_mps = 0;
int err;
if (cfg->speed_idx == 1) {
data->caps.hs = false;
priv->usb_speed = AM_HAL_USB_SPEED_FULL;
ep_mps = EP_FS_MPS;
} else if ((cfg->speed_idx == 2)) {
data->caps.hs = true;
priv->usb_speed = AM_HAL_USB_SPEED_HIGH;
ep_mps = EP_HS_MPS;
}
for (unsigned int i = 0; i < cfg->num_endpoints; i++) {
cfg->ep_cfg_out[i].caps.out = 1;
if (i == 0) {
cfg->ep_cfg_out[i].caps.control = 1;
cfg->ep_cfg_out[i].caps.mps = EP0_MPS;
} else {
cfg->ep_cfg_out[i].caps.bulk = 1;
cfg->ep_cfg_out[i].caps.interrupt = 1;
cfg->ep_cfg_out[i].caps.iso = 1;
cfg->ep_cfg_out[i].caps.mps = ep_mps;
}
cfg->ep_cfg_out[i].addr = USB_EP_DIR_OUT | i;
err = udc_register_ep(dev, &cfg->ep_cfg_out[i]);
if (err != 0) {
LOG_ERR("Failed to register endpoint");
return err;
}
}
for (unsigned int i = 0; i < cfg->num_endpoints; i++) {
cfg->ep_cfg_in[i].caps.in = 1;
if (i == 0) {
cfg->ep_cfg_in[i].caps.control = 1;
cfg->ep_cfg_in[i].caps.mps = EP0_MPS;
} else {
cfg->ep_cfg_in[i].caps.bulk = 1;
cfg->ep_cfg_in[i].caps.interrupt = 1;
cfg->ep_cfg_in[i].caps.iso = 1;
cfg->ep_cfg_in[i].caps.mps = ep_mps;
}
cfg->ep_cfg_in[i].addr = USB_EP_DIR_IN | i;
err = udc_register_ep(dev, &cfg->ep_cfg_in[i]);
if (err != 0) {
LOG_ERR("Failed to register endpoint");
return err;
}
}
data->caps.addr_before_status = true;
data->caps.rwup = true;
data->caps.out_ack = true;
data->caps.mps0 = UDC_MPS0_64;
cfg->make_thread(dev);
return 0;
}
static const struct udc_api udc_ambiq_api = {
.device_speed = udc_ambiq_device_speed,
.ep_enqueue = udc_ambiq_ep_enqueue,
.ep_dequeue = udc_ambiq_ep_dequeue,
.ep_set_halt = udc_ambiq_ep_set_halt,
.ep_clear_halt = udc_ambiq_ep_clear_halt,
.ep_try_config = NULL,
.ep_enable = udc_ambiq_ep_enable,
.ep_disable = udc_ambiq_ep_disable,
.host_wakeup = udc_ambiq_host_wakeup,
.set_address = udc_ambiq_set_address,
.test_mode = udc_ambiq_test_mode,
.enable = udc_ambiq_enable,
.disable = udc_ambiq_disable,
.init = udc_ambiq_init,
.shutdown = udc_ambiq_shutdown,
.lock = udc_ambiq_lock,
.unlock = udc_ambiq_unlock,
};
/*
* A UDC driver should always be implemented as a multi-instance
* driver, even if your platform does not require it.
*/
#define UDC_AMBIQ_DEVICE_DEFINE(n) \
K_THREAD_STACK_DEFINE(udc_ambiq_stack_##n, CONFIG_UDC_AMBIQ_STACK_SIZE); \
\
static void udc_ambiq_evt_callback_##n(am_hal_usb_dev_event_e dev_state) \
{ \
udc_ambiq_evt_callback(DEVICE_DT_INST_GET(n), dev_state); \
} \
\
static void udc_ambiq_ep0_setup_callback_##n(uint8_t *usb_setup) \
{ \
udc_ambiq_ep0_setup_callback(DEVICE_DT_INST_GET(n), usb_setup); \
} \
\
static void udc_ambiq_ep_xfer_complete_callback_##n( \
uint8_t ep_addr, uint32_t xfer_len, am_hal_usb_xfer_code_e code, void *param) \
{ \
udc_ambiq_ep_xfer_complete_callback(DEVICE_DT_INST_GET(n), ep_addr, xfer_len, \
code, param); \
} \
\
static void udc_ambiq_register_callback_##n(const struct device *dev) \
{ \
struct udc_ambiq_data *priv = udc_get_private(dev); \
\
am_hal_usb_register_dev_evt_callback(priv->usb_handle, \
udc_ambiq_evt_callback_##n); \
am_hal_usb_register_ep0_setup_received_callback(priv->usb_handle, \
udc_ambiq_ep0_setup_callback_##n); \
am_hal_usb_register_ep_xfer_complete_callback( \
priv->usb_handle, (am_hal_usb_ep_xfer_complete_callback) \
udc_ambiq_ep_xfer_complete_callback_##n); \
} \
static void udc_ambiq_thread_##n(void *dev, void *arg1, void *arg2) \
{ \
ambiq_thread_handler(dev); \
} \
\
static void udc_ambiq_make_thread_##n(const struct device *dev) \
{ \
struct udc_ambiq_data *priv = udc_get_private(dev); \
\
k_thread_create(&priv->thread_data, udc_ambiq_stack_##n, \
K_THREAD_STACK_SIZEOF(udc_ambiq_stack_##n), udc_ambiq_thread_##n, \
(void *)dev, NULL, NULL, \
K_PRIO_COOP(CONFIG_UDC_AMBIQ_THREAD_PRIORITY), K_ESSENTIAL, \
K_NO_WAIT); \
k_thread_name_set(&priv->thread_data, dev->name); \
} \
\
static void udc_ambiq_irq_enable_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), udc_ambiq_usb_isr, \
DEVICE_DT_INST_GET(n), 0); \
\
irq_enable(DT_INST_IRQN(n)); \
} \
\
static void udc_ambiq_irq_disable_func_##n(const struct device *dev) \
{ \
irq_disable(DT_INST_IRQN(n)); \
} \
static struct udc_ep_config ep_cfg_out[DT_INST_PROP(n, num_bidir_endpoints)]; \
static struct udc_ep_config ep_cfg_in[DT_INST_PROP(n, num_bidir_endpoints)]; \
\
static const struct udc_ambiq_config udc_ambiq_config_##n = { \
.num_endpoints = DT_INST_PROP(n, num_bidir_endpoints), \
.ep_cfg_in = ep_cfg_out, \
.ep_cfg_out = ep_cfg_in, \
.speed_idx = DT_ENUM_IDX(DT_DRV_INST(n), maximum_speed), \
.vddusb33_gpio = GPIO_DT_SPEC_GET_OR(DT_DRV_INST(n), vddusb33_gpios, {0}), \
.vddusb0p9_gpio = GPIO_DT_SPEC_GET_OR(DT_DRV_INST(n), vddusb0p9_gpios, {0}), \
.irq_enable_func = udc_ambiq_irq_enable_func_##n, \
.irq_disable_func = udc_ambiq_irq_disable_func_##n, \
.make_thread = udc_ambiq_make_thread_##n, \
.callback_register_func = udc_ambiq_register_callback_##n, \
}; \
\
static struct udc_ambiq_data udc_priv_##n = {}; \
\
static struct udc_data udc_data_##n = { \
.mutex = Z_MUTEX_INITIALIZER(udc_data_##n.mutex), \
.priv = &udc_priv_##n, \
}; \
\
DEVICE_DT_INST_DEFINE(n, udc_ambiq_driver_init, NULL, &udc_data_##n, \
&udc_ambiq_config_##n, POST_KERNEL, \
CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &udc_ambiq_api);
DT_INST_FOREACH_STATUS_OKAY(UDC_AMBIQ_DEVICE_DEFINE)